
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatik

Improved Integration of
Plagiarism Detection in

Artemis

Philipp Bauch

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatik

Improved Integration of Plagiarism Detection
in Artemis

Verbesserte Integration der Plagiatskontrolle
in Artemis

Author: Philipp Bauch

Supervisor: Prof. Dr. Bernd Brügge

Advisor: Dr. Stephan Krusche

Date: 15.02.2021

I confirm that this bachelor’s thesis is my own work and I have documented
all sources and material used.

Munich, 15.02.2021 Philipp Bauch

Abstract

Exercises are an essential part of software engineering courses as students
can apply the knowledge taught in class to specific problems. When exer-
cises are graded or even part of an exam, it is crucial to assure students have
worked on the assignments independently. Especially for large courses, com-
paring submissions by hand is too time-consuming, and instructors should
use automated tools to detect plagiarism efficiently.

The current integration of plagiarism detection in Artemis requires in-
structors to use external software to review plagiarism incidents and sort out
false positives manually. This process involves managing dozens of files and is
error-prone as accidentally confounding student submissions can cause false
accusations. Differences in each instructor’s workflow might lead to incon-
sistent assessment results.

This thesis improves the existing integration by processing the plagiarism
results directly in Artemis and highlighting similarities between submissions
by color. Instructors can confirm or deny a plagiarism incident and leave feed-
back to students whose submissions were confirmed as plagiarized. Artemis
displays a similarity distribution of detected results that helps instructors
evaluate the plagiarism found. Instructors can filter out submissions irrele-
vant for comparison to increase plagiarism detection performance.

Zusammenfassung

Übungen sind ein wesentlicher Bestandteil von Software-Engineering-Kursen,
da die Studenten das im Unterricht vermittelte Wissen auf spezifische Pro-
bleme anwenden können. Wenn Übungen benotet werden oder sogar Teil
einer Prüfung sind, muss sichergestellt werden, dass die Studenten die Auf-
gaben selbstständig bearbeitet haben. Besonders bei großen Kursen ist der
Vergleich von Einreichungen per Hand zu zeitaufwändig, und die Dozenten
sollten automatisierte Tools einsetzen, um Plagiate effizient zu erkennen.

Die derzeitige Integration der Plagiatserkennung in Artemis erfordert,
dass Dozenten externe Software verwenden, um Plagiatsvorfälle zu überprüfen
und falsch erkannte Plagiate manuell auszusortieren. Dieser Prozess umfasst
die Verwaltung von Dutzenden von Dateien und ist fehleranfällig, da ver-
sehentliche Verwechslungen von Einreichungen zu falschen Anschuldigungen
führen können. Unterschiede in den Arbeitsabläufen der einzelnen Dozenten
können zu inkonsistenten Bewertungsergebnissen führen.

Die vorliegende Arbeit verbessert die bestehende Integration, indem sie
die Plagiatsergebnisse direkt in Artemis verarbeitet und Ähnlichkeiten zwi-
schen Einsendungen farblich hervorgehoben werden. Die Dozenten können
einen Plagiatsvorfall bestätigen oder verwerfen und den Studenten Kommen-
tare zu Plagiatsvorwürfen hinterlassen. Artemis zeigt eine Ähnlichkeitsverteilung
der gefundenen Ergebnisse an, die den Dozenten hilft, gefundene Plagiate zu
bewerten. Dozenten können für die automatisierte Plagiatserkennung irrele-
vante Einreichungen herausfiltern, um deren Dauer zu reduzieren.

Contents

1 Introduction 2
1.1 Problem . 2
1.2 Motivation . 3
1.3 Objectives . 4
1.4 Outline . 5

2 Background 6
2.1 Computer-assisted plagiarism detection 6

2.1.1 JPlag . 7
2.1.2 Moss . 8

2.2 Errors in binary classification 9

3 Requirements Analysis 10
3.1 Overview . 10
3.2 Current System . 11
3.3 Proposed System . 12

3.3.1 Functional Requirements 13
3.3.2 Nonfunctional Requirements 14

3.4 System Models . 15
3.4.1 Scenarios . 15
3.4.2 Use Case Model . 16
3.4.3 Analysis Object Model 18
3.4.4 Dynamic Model . 20
3.4.5 User Interface . 21

4 System Design 26
4.1 Overview . 26
4.2 Design Goals . 26
4.3 Subsystem Decomposition . 28
4.4 Persistent Data Management 30
4.5 Access Control . 31

ii

5 Object Design 33
5.1 JPlag API . 33
5.2 Integration of JPlag in Artemis 35

6 Summary 37
6.1 Status . 37

6.1.1 Realized Goals . 37
6.1.2 Open Goals . 39

6.2 Conclusion . 40
6.3 Future Work . 40

iii

API Application Programming Interface

CLI Command Line Interface

CSS Cascading Style Sheets

GUI Graphical User Interface

HTML Hypertext Markup Language

REST Representational State Transfer

TMS Text Matching Software

UI User Interface

UML Unified Modeling Language

URPS Usability Reliability Performance Supportability

1

Chapter 1

Introduction

Artemis is an interactive learning platform that offers course instructors the
possibility to create and manage online exercises of five different types: quiz,
text, programming, file upload, and modeling [KS18].

Students can then participate in an exercise and upload submissions that
will be graded either automatically or manually by the instructors. Part of
the assessment is ensuring students solved the given task on their own. For
this, instructors can use Artemis to trigger a plagiarism detection algorithm
to check submissions for similarity. Each type of exercise might require a
different algorithm to detect plagiarism.

1.1 Problem

The COVID-19 pandemic forced most activities to move online, including
teaching. Most universities no longer conduct exams on-site but online as
well. Among other online education difficulties, many universities reported
widespread cheating in online examinations in Spring 2020 [BM21]. To prop-
erly conduct both exams and other types of graded assignments, plagiarism
detection is an essential part of modern learning platforms.

Artemis provides instructors with a simple integration of automated pla-
giarism detection tools for modeling, programming, and text exercises. How-
ever, relying on automated detection alone runs the risk of students being
accused of plagiarism due to a false positive [BCJ+09], even though they
solved the problem independently. That’s why the automated plagiarism
detection results always have to be checked manually by the instructors.
However, the current integration is very limited and requires the instructors
to perform several manual steps to process the results. They have to use
third-party software to manage and review dozens of files generated by the

2

1.2. MOTIVATION

automated plagiarism detection software. This process can be error-prone,
and the use of different tools and differences in each instructor’s workflow
might lead to inconsistent assessments of the results.

Figure 1.1: CSV file containing the results of automatic plagiarism detection
sorted by similarity

It is particularly difficult to compare student submissions that are part
of a plagiarism incident. Figure 1.1 presents an example file generated by
plagiarism detection software, which has a numeric reference to the involved
submissions but does not contain their actual content. Therefore, instruc-
tors have to manually download and compare the submissions to confirm or
dismiss the plagiarism incident.

1.2 Motivation

This thesis aims to provide course instructors with powerful and easy to use
tools to detect plagiarism and assess suspected submissions. In the following,
we explain our motivation to improve the integration of plagiarism detection
in Artemis.

3

CHAPTER 1. INTRODUCTION

Facilitate online exams. As possibly hundreds of students take part in
online exams, manually checking student submissions for plagiarism is not
feasible. Automated plagiarism detection can be an effective counter to
cheating in online examinations and assuring compliance with academic reg-
ulations.

Increase student learning outcomes. Interactive exercises enhance the
learning experience of students in online courses [KvFA17]. To maximize
the learning outcome, it is essential that students solve problem assignments
independently and don’t copy from each other. A convenient and robust
plagiarism detection system can disincentivize students from cheating.

Reduce administrative work for instructors. As described in previous
sections, checking plagiarism detection results can be a time-consuming task
for instructors. We want to reduce this effort and give instructors more
resources to focus on teaching rather than on administrative tasks.

1.3 Objectives

This thesis defines three central objectives for the improved integration of
plagiarism detection in Artemis based on the previous sections.

Decrease complexity of plagiarism detection. The use of automated
plagiarism detection has so far led to a considerable administrative burden
for course instructors. By improving the integration of plagiarism detection
in Artemis, instructors should have an easy way to check the automatically
detected results without external software. Also, students should be informed
directly in Artemis about plagiarism accusations.

Increase consistency of plagiarism detection results. Because a pla-
giarism offense can have severe consequences for students, the risk of false
accusations must be minimized. Therefore, course instructors must have an
efficient way to review the plagiarism results that were automatically de-
tected. An integrated view that displays student submissions side-by-side
should further facilitate manual inspection.

Give students more insights into plagiarism accusations. Students
should be able to understand better why instructors accused their submission
of plagiarism. Giving students direct insight into the submissions involved

4

1.4. OUTLINE

and providing them with additional feedback from the instructors can help
them relate to the allegation and respond appropriately.

1.4 Outline

The outline of this thesis resembles the main software development activities
as described in [BD09]. Chapter 2 gives the necessary theoretical background
to understand the topic of this thesis. Chapter 3 identifies the proposed
system’s requirements, refers them to the current system, and presents the
analysis models. Chapter 4 addresses the requirements by specifying design
goals and transforms the analysis model into a system design model. Chap-
ter 5 specifies selected objects of the solution domain. Chapter 6 summarizes
the results of this thesis and gives an outlook on potential future work.

5

Chapter 2

Background

Plagiarism is defined as the practice of taking someone else’s work or ideas
and passing them off as one’s own [Dic89]. The increasing usage of computers
and the internet in online education have made it easier to plagiarize the
work of others [CL01]. In the academic world, most institutions consider
plagiarism by students a severe offense that is subject to sanctions such as
a failing grade on the particular assignment, the entire course, or even being
expelled from the institution [Smi18]. According to [Tur], the three most
common forms of plagiarism committed by students are:

• Submitting someone’s work as their own.

• Taking passages from their previous work without adding citations
(self-plagiarism).

• Re-writing someone’s work without properly citing sources.

Comparing student submissions by hand is the most traditional form
of plagiarism detection but can be a time-consuming task [BM09]. Sec-
tion 2.1 explains the fundamentals of computer-assisted plagiarism detection
and presents some examples. In Section 2.2, we discuss common types of
errors in binary classification problems like plagiarism detection.

2.1 Computer-assisted plagiarism detection

Nowadays, course instructors can use text-matching software (TMS) to find
similar passages of text in a set of student submissions. TMS saves academic
staff much time by quickly matching student assignments with electronic
sources. Most TMS programs match assignments submitted by students

6

2.1. COMPUTER-ASSISTED PLAGIARISM DETECTION

with other students’ submissions and an electronic archive of articles and
web documents [KS07].

The following list briefly describes three common techniques of TMS to
detect plagiarism in text documents:

• Fingerprinting: This method tries to find a compact representation
of the content, also referred to as fingerprint, of each given document.
For this, key substrings of a document are mapped to an integer using
a mathematical function. TMS compares the resulting set of numbers
with other fingerprints and determines a score representing the number
of elements two fingerprints have in common [HZ03].

• String matching: The goal of string matching is to find exact dupli-
cations in a set of strings by detecting matches. Matches are pairs of
identical substrings that cannot be extended to the left or right. String
matching algorithms commonly use the suffix tree data structure to
efficiently query substrings of documents [Bak93].

• Stylometry: This approach attempts to detect stylistic changes in a
document by extracting features from the text that quantify aspects
of an author’s writing style [BRC19]. Passages that differ stylistically
from others in the same document are marked as potentially plagia-
rized.

Detecting plagiarism in computer programs requires different methods
compared to plagiarism detection in text documents. In most cases, students
disguise copied code intentionally to make plagiarism more challenging to
detect: they rename variables, add whitespace and comments, or restructure
code while keeping programs functionally equivalent. Traditional TMS don’t
work well in those cases, and therefore, source code submissions must be
normalized, for example, by using a lexer to convert a program into a list of
tokens [RC07].

2.1.1 JPlag

JPlag is a system for detecting plagiarism among a set of programs [PMP00]
and is currently used in the Artemis system. While JPlag also works for
text documents, it initially supported plagiarism detection for source code
written in Java, Scheme, C, and C++ [PMP00].

First, JPlag uses a parser front-end to normalize documents and trans-
form source code into a string of tokens. Second, it implements the Greedy
String Tiling algorithm to compare pairs of token strings and determine

7

CHAPTER 2. BACKGROUND

their similarity. Greedy String Tiling can deal with the transposition of
substrings and identify the longest duplicate text sequence between two doc-
uments [Wis93]. In JPlag, instructors can specify the minimum length of
duplicate fragments to avoid the detection of irrelevant similarities. After the
pairwise comparison of documents is complete, JPlag generates web pages
of the results highlighting similarities between two suspected submissions, as
seen in Figure 2.1.

Figure 2.1: JPlag report of two similar student submissions

Initially provided as a web service, JPlag is only available as a command-
line interface (CLI) application and is thus difficult to integrate into exter-
nal software systems. We cover more details about developing an applica-
tion programming interface (API) for JPlag and integrating it in Artemis in
Chapter 5.

2.1.2 Moss

Moss (for Measure Of Software Similarity) is another popular tool for de-
tecting duplication within a set of source code documents. It was released
in 1997 and is widely used in engineering courses to detect plagiarism in
programming assignments [Aik20].

Moss is provided as an internet service. Its usage involves packaging up
students’ submissions, uploading them for automated comparison, and in-
specting the results. The server responds with generated web pages that
highlight similarities between student submissions similar to JPlag. Instruc-
tors can also provide template code that student submissions are based on to
eliminate false positives that arise from legitimate sharing of code [Aik20].

Compared to JPlag, which applies a string matching technique on a set
of normalized tokens, Moss implements a copy-detection algorithm based

8

2.2. ERRORS IN BINARY CLASSIFICATION

on fingerprinting of the documents after whitespace, identifiers, and specific
language keywords are removed. Moss uses the winnowing algorithm to select
the fingerprints to be compared for each document [SWA03], but it is out of
the scope of this thesis to explain the algorithm in more detail.

Figure 2.2: Confusion matrix of binary classiciation for plagiarism detection

2.2 Errors in binary classification

In statistics, classification is the task of determining to which of a set of
categories a new observation belongs [MST95]. Detecting plagiarism can be
considered a binary classification problem. Given a set of student submis-
sions, the task is to split the set into two groups, of which one contains
plagiarized submissions. Figure 2.2 shows a confusion matrix with four dif-
ferent combinations of predicted and actual values. Confusion matrices can
be used to visualize a classification algorithm’s performance and to calcu-
late the relative proportion of different types of errors on the total set of
observations [V.S97].

In the context of plagiarism detection, a type I error (false positive) occurs
if the system accuses a submission of plagiarism that the student solved inde-
pendently; a type II error (false negative) occurs if a plagiarized submission is
undetected. It’s difficult to avoid type I and type II errors entirely [BCJ+09].
Reducing one type of error generally results in increasing the other type of
error [SB75]. Hence, we trade off error rates against each other: if we want to
detect all plagiarism incidents, we have to accept false accusations; if we don’t
want to make false accusations, we won’t catch all plagiarized submissions.

As discussed previously, plagiarism offense is subject to sanctions that
can have severe consequences for students. Therefore, reducing the risk of
false accusations while detecting as many plagiarized submissions as possible
is a fundamental design goal of the proposed system and will be addressed
in more detail in Chapter 4.

9

Chapter 3

Requirements Analysis

This chapter covers two of the main object-oriented software engineering
activities: requirement elicitation and analysis [BD09]. Section 3.1 gives an
overview of the proposed system’s purpose, scope, objective, and success
criteria. Section 3.2 describes the current system and depicts the problems
faced by it. Following this, Section 3.3 describes the changes proposed by
this thesis and lists the functional and non-functional requirements for the
proposed system. Lastly, Section 3.4 models the application domain in the
form of an analysis model in the semi-formal Unified Modeling Language
(UML) [BD09].

3.1 Overview

Purpose: The purpose of the proposed system is to facilitate manual in-
spection of plagiarism results. Instructors should not need to rely on external
software to manage plagiarism incidents and compare suspected submissions.
The proposed system should also support communication between students
and instructors on plagiarism accusations.

Scope: We will concentrate on improving the integration of plagiarism de-
tection software used in the current system. Adding new tools or implement-
ing alternative algorithms is beyond the scope of this thesis.

Objectives: The proposed system’s primary goal is to provide a user in-
terface (UI) to compare similar submissions side by side. Instructors should
be able to confirm or dismiss plagiarism incidents to sort out false positives.
Automatic plagiarism detection should be configurable, and students should
get notified about plagiarism accusations on their submissions.

10

3.2. CURRENT SYSTEM

Success Criteria: We infer the three main success criteria from the pur-
pose of the proposed system described above:

• Artemis supports side-by-side comparison of suspected submissions and
highlights similarities

• Instructors can confirm or dismiss plagiarism incidents to sort out false
positives

• Students get notified about plagiarism accusations and receive feedback
directly in Artemis

Figure 3.1: The current system allows instructors to download the plagiarism
results in JSON or CSV format

3.2 Current System

Automatic plagiarism detection is available for modeling, text, and program-
ming exercises. Instructors can download the results generated by plagiarism
detection software after the automated comparison is complete. It is not
possible to view the results directly in Artemis. Instructors have to manu-
ally open two separate browser windows to compare suspected submissions
and sort out false positives. Artemis does not highlight similarities between
modeling exercise submissions, making them more difficult to compare. Most
instructors use Microsoft Excel1 to manage the status of plagiarism incidents

1https://www.microsoft.com/en-us/microsoft-365/excel

11

CHAPTER 3. REQUIREMENTS ANALYSIS

and keep track of student responses to plagiarism accusations. This pro-
cess puts a lot of administrative burden on the instructors, and accidentally
confounding student submissions can lead to an improper allegation of pla-
giarism.

Figure 3.2: Result files generated by plagiarism detection software used in the
current system

For courses with many students, a pairwise comparison of submissions for
plagiarism detection can take a long time. Regardless of course size and in-
structor preferences, automatic plagiarism detection is not configurable. For
example, instructors have no way to specify which submissions to ignore for
plagiarism detection. Skipping low-scoring submissions because they are of
low relevance to plagiarism could significantly increase automated plagiarism
detection performance. Also, the plagiarism detection results are not stored
in the current system and get lost after downloading. If multiple instructors
want to access the results, they must either run the plagiarism detection
themselves or share the generated results via other means.

3.3 Proposed System

The proposed system builds on the existing integration for plagiarism de-
tection to make the manual inspection of plagiarism incidents more efficient

12

3.3. PROPOSED SYSTEM

and less error-prone. It introduces an integrated workflow for instructors to
compare and manage similar student submissions.

In particular, the proposed system adds a new page for instructors to
configure the automatic plagiarism detection, compare detected submissions
side by side, and keep track of plagiarism incidents’ status. Additionally, the
proposed system highlights similarities between submissions by color and
gives instructors access to statistics about a plagiarism detection run. De-
tected matches get sorted by similarity, and instructors can write comments
on confirmed plagiarism incidents to give students detailed feedback.

3.3.1 Functional Requirements

This section describes the functional requirements (FR) of the proposed sys-
tem. Functional requirements define what the proposed system should do
and describe the interactions between the system and its environment in-
dependent of its implementation [BD09]. The client and the user evaluate
the listed requirements using the six validation criteria: correctness, clarity,
completeness, consistency, realism, and traceability as described in [BD09].

FR1 Compare submissions side by side: Instructors can display similar
submissions side by side to facilitate manual inspection.

FR2 Manage detected plagiarism matches: Instructors can confirm or
deny the results generated by the automatic plagiarism detection to
sort out false positives.

FR3 View plagiarism statistics: The system presents a similarity distri-
bution of all reported incidents to the instructors to help them evaluate
the detected results.

FR4 Highlight similarities: Similarities between submissions are high-
lighted by color to make the inspection more efficient.

FR5 Configure automatic plagiarism detection: Instructors can filter
submissions for plagiarism detection by specifying a minimum score and
size. They can also specify the minimum similarity two submissions
must have to get reported.

FR6 Add detailed feedback: Instructors can provide additional feedback
for the students on why they confirmed a plagiarism incident.

FR7 Respond to feedback: Students can respond to the plagiarism accu-
sation directly in Artemis and justify the validity of their submission.

13

CHAPTER 3. REQUIREMENTS ANALYSIS

FR8 See plagiarism detection progress: Instructors see information
about the number of pending comparisons and the estimated time until
completion.

FR9 Learn from manual inspection: The system improves automatic
plagiarism detection over time by learning from the instructors’ manual
inspection results.

FR10 Detect group plagiarism: The system detects not only pairs, but
also groups of two or more similar submissions.

3.3.2 Nonfunctional Requirements

In this section, we list the nonfunctional requirements (NFR) of the proposed
system. In particular, we categorize all quality requirements according to the
Usability Reliability Performance Supportability (URPS) model described
in [BD09].

Usability

NFR1 Ease of Use: Instructors can start, configure, and inspect the results
of automated plagiarism detection from one page.

NFR2 Responsiveness: Side-by-side comparison of submissions should work
on desktop and tablet screens.

NFR3 Efficiency: Loading submissions and updating a plagiarism incident’s
status can be done by at most three clicks.

Reliability

NFR4 Consistency: Automated plagiarism detection should generate iden-
tical results if submissions and configuration stay unchanged. The in-
tegration should enforce a consistent judgement on detected plagiarism
and reduce the number of complaints by students.

NFR5 Robustness: Students must be informed if their submission has been
accused of plagiarism within one day. It should always be possible for
students to respond to the accusation.

14

3.4. SYSTEM MODELS

Performance

NFR6 Response Time: Automatic plagiarism detection should be feasible
even for large courses and take no longer than two minutes per 100
submissions.

NFR7 Load Time: The manual inspection of the results in the browser
should be possible at 30 frames per second even for large courses with
possibly hundreds of plagiarism incidents.

Supportability

NFR8 Extensibility: The system should be extensible and allow to integrate
additional plagiarism detection software.

3.4 System Models

This section describes the system models, which are formed from the require-
ment analysis.

3.4.1 Scenarios

Scenarios are a technique to describe the requirements and bridge the con-
ceptual gap between end-users and developers. They explain the system’s
use as a series of interactions from the viewpoint of a single actor [BD09].
We divide the scenarios described in this section into visionary and demo
scenarios. Visionary scenarios describe a potential future system that would
entirely solve the problem at hand, even if it is not realizable. In contrast,
demo scenarios describe the proposed system, including the previous section’s
functional requirements.

Visionary Scenario: Inspect detected plagiarism matches in real
time

Alice teaches a software engineering course that uses Artemis to manage
programming exercises. It is important to Alice that students solve their
assignments independently. Therefore, Alice runs the automated plagiarism
detection in Artemis, which checks student submissions for similarities. Al-
though many students participate in Alice’s course, she doesn’t have to wait
long for the results because detected plagiarism is returned in real-time as
soon as any are detected. Alice also receives precise information about the
progress of plagiarism detection and the number of pending comparisons.

15

CHAPTER 3. REQUIREMENTS ANALYSIS

The system learned from Alice’s previous decisions when sorting out false
positives and improved its algorithm. This time, she can confirm all de-
tected plagiarism incidents. Alice saves time during manual inspection since
clicking on a detected match in one submission leads her directly to the
other submission’s corresponding match. This feature comes in handy when
student submissions span multiple files, and manually navigating to similar
sections is time-consuming.

Demo Scenario: Automatic plagiarism detection for large courses

Bob is the instructor of a university course with several hundred students.
As part of a graded homework assignment, Bob has created a programming
exercise in Artemis with a maximum score of 10 points. The due date has
already passed, and Bob and his teaching assistants have graded all the sub-
missions. To make sure that students have not copied from each other while
working on the assignments, Bob starts the automated plagiarism detection.
Bob knows that for courses with many students, the system must perform
numerous comparisons. To reduce the time required for plagiarism detection,
Bob adjusts some configuration options. Because submissions that have re-
ceived a low score are irrelevant for plagiarism detection, the software should
only consider submissions with a score of at least 40%. Also, Bob configures
the automated plagiarism detection to return only comparisons with a sim-
ilarity of at least 75%. After the automated plagiarism check is completed,
Bob checks the results manually. Bob can confirm suspected plagiarism in
two cases and writes detailed feedback for the involved students on why he
considers their submissions invalid. His students can communicate with Bob
directly in Artemis to respond to the plagiarism accusation.

3.4.2 Use Case Model

The use case model describes the functional behavior of the system as seen
by the user [BD09]. This functional model later delivers new methods for
the object model. The actors interacting with the proposed system as an
external entity are:

• Instructor: Starts the plagiarism detection and inspects the results.

• Student: Reviews and responds to a plagiarism accusation.

16

3.4. SYSTEM MODELS

Figure 3.3: Use case diagram of the plagiarism detection and feedback system in
Artemis

Base Use Cases

Start the automated plagiarism detection: Instructors can trigger
the automated plagiarism detection once the exercise’s due data has
passed and all student submissions were uploaded. The system then
loads all submissions and performs a pairwise comparison.

Inspect the plagiarism detection result: After the automated pla-
giarism detection is completed, the system returns all detected submis-
sions to the instructor. To avert the danger of false plagiarism accu-
sations, the instructor manually reviews the results and sorts out false
positives.

Review a plagiarism accusation: Students have the possibility to
review the plagiarism incident if it was confirmed by an instructor.
This involves viewing their submission next to the other submission
involved to see similarities, as well as reading the feedback provided by
the instructor.

Extension Use Cases

Configure automated plagiarism detection: To reduce the num-
ber of submissions to compare and thus decrease the time needed for

17

CHAPTER 3. REQUIREMENTS ANALYSIS

plagiarism detection, instructors can set options to sort out submis-
sions irrelevant for plagiarism detection. For example, they can specify
a minimum score in percent a submission must have in order to be
compared.

Respond to the plagiarism accusation: Students might want to re-
spond to the plagiarism accusation and justify their submissions valid-
ity. The feedback loop between instructor and student can be repeated
multiple times.

Inclusion Use Cases

Confirm a plagiarism incident: When checking the automatically
reported plagiarism incident, the instructor can confirm the accusation.
This will mark the involved submissions as invalid so that they are
excluded from the exercise. It is up to the instructor to further punish
the involved students.

Dismiss a plagiarism incident: It is also possible for an instructor
to dismiss detected plagiarism if it is considered a false positive. In this
case, the instructor resolves the incident and no further steps will be
taken.

Write detailed feedback: If a plagiarism incident was confirmed,
the instructor has the option to provide the students with additional
information on why their submission was accused of plagiarism. This
can help students to properly respond to the accusation and clarify
misunderstandings.

3.4.3 Analysis Object Model

This section describes the application domain in terms of the static structure
of the proposed system. Figure 3.4 models the plagiarism detection and feed-
back system with an analysis object model illustrating the relevant objects,
their attributes and methods. Access modifiers or methods’ return types are
omitted for abstraction.

Exercise: Students can participate in an exercise and create submis-
sions with their solution. After the exercise’s dueDate, instructors can
detect plagiarism among all students submissions.

Submission: Submissions represent a student’s solution to the prob-
lem statement of a given exercise. If a submission is too similar to

18

3.4. SYSTEM MODELS

Figure 3.4: Analysis object model of the plagiarism detection and feedback sys-
tem

another student’s submission, instructors can accuse it of plagiarism.
Once the plagiarism incident has been reviewed and confirmed, the
submission is marked invalid.

Plagiarism: A plagiarism object relates to a pair of two similar sub-
missions. It contains a list of matches containing elements present in
both submissions. Its similarity property indicates to which degree
both submissions equal. Additionally, instructors can review a pla-
giarism incident and add feedback for the student, if the plagiarism
was confirmed. Students can only review plagiarism objects they are
directly involved in.

Plagiarism Feedback: Instructors can add feedback to an incident
to give students more insights on why their submission was accused
of plagiarism. Students can respond to the feedback to justify their
submission’s validity.

Student: If a student’s submissions was marked as plagiarism, instruc-
tors notify the student about the incident.

19

CHAPTER 3. REQUIREMENTS ANALYSIS

3.4.4 Dynamic Model

This section describes the proposed system’s internal behavior with an ac-
tivity diagram, which visualizes the control and data flow of plagiarism de-
tection. The flow of events in the proposed system does not differ much from
the activities related to plagiarism detection in the current system. However,
the proposed system aims at integrating the presented workflow for plagia-
rism detection more directly into Artemis. We will cover details about the
integration in Chapter 4.

Figure 3.5: Activity diagram visualizing the flow of events of plagiarism detection
and the feedback loop in Artemis.

Figure 3.5 groups the presented activities in three swimlanes, each rep-
resenting a different actor in the plagiarism detection and feedback system.
Although courses on Artemis usually have many students participating in an

20

3.4. SYSTEM MODELS

exercise, the left swimlane only describes a single student’s activities. As part
of the plagiarism detection flow, students first participate in an exercise and
create submissions. In the next step, the instructor triggers the automatic
plagiarism detection to compare the created submissions with each other. For
each pair of student submissions, the Artemis system automatically checks
whether the given submissions exceed a given similarity threshold. If their
similarity is insignificant, the system will ignore the pair of submissions. Oth-
erwise, the Artemis system passes a new plagiarism object to the instructor
for manual inspection.

From this point on in the control and data flow presented in Figure 3.5,
only a single plagiarism incident will be considered at once to demonstrate
the workflow in a specific case. Manual inspection allows the course instruc-
tor to dismiss any plagiarism incident that may have been wrongly detected
by the Artemis system, thus averting the danger of false accusations. If the
instructor confirms the plagiarism incident, he provides additional feedback
for the students involved. The student receives the plagiarism accusation
together with the instructor’s feedback. In response, the student can justify
his submission’s validity, to which the instructor can respond again. It is
possible to repeat this feedback loop multiple times. In the last step, given
the student’s feedback, the instructor can dismiss the plagiarism incident
again. In total, a pair of submissions must pass three checks to be accused of
plagiarism: automatic detection, manual inspection, and instructor’s judg-
ment after the feedback loop. This workflow reduces the likelihood of false
accusations.

3.4.5 User Interface

This section depicts and explains the rational of the plagiarism detection UI
in the proposed system. Figure 3.6 shows the entire plagiarism detection
page with two similar submission displayed side by side. Figure 3.8 shows
additional information about the detected results and the detection run itself.

Plagiarism Split View

Instructors can start and configure plagiarism detection from the page header
at the top. The page also has a sidebar to display a list of detected plagiarism.
However, the main area of the page is reserved for the split view that helps
instructors compare student submissions. A detailed explanation of the UI
components is listed below.

Red: By clicking on the page header, instructors can expand or col-
lapse the configuration panel. After automatic plagiarism detection

21

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.6: Plagiarism detection page of the proposed system showing the split
view that highlights similarities between two suspected submissions

finishes, more vertical space might be useful to compare the detected
submissions more easily.

Pink: The configuration panel contains multiple options instructors
can adjust to their preferences. Instructors must enable optional config-
uration values like Minimum Score in % and Minimum Size by clicking
on the related checkbox to take effect.

Purple: The Check Plagiarism button triggers a new automated pla-
giarism detection run with the selected configuration values. Once the
results are available, instructors can use the Download button to down-
load the results.

Gray: In the side panel on the left, instructors can access all detected
plagiarism incidents sorted by similarity. Each item in the list has a
small indicator for its status and contains the student logins involved
in the plagiarism. Selecting an item from the list displays the involved
submissions in the split view.

Cyan: The split view displays two similar submissions side by side. For
text and modeling exercises, the split pane header shows the student’s
login who created the submission. For programming exercises, the split
pane header also displays the currently selected file and can be clicked

22

3.4. SYSTEM MODELS

to open the list of files the submission consists of (see Figure 3.7).
The system highlights similarities between both submissions by color
to make the submissions easier to compare.

Figure 3.7: Split pane header displaying a list of all files a programming submis-
sion consists of

Orange: With the split view controls, instructors can quickly max-
imize each submission or reset the split view. Although instructors
can adjust the split panels by dragging the gutter separating them,
these shortcuts can save some time when focusing on the submissions’
content.

Green: The Confirm and Deny button update the status of the se-
lected plagiarism incident. This makes it easy for instructors to sort out
plagiarism that was incorrectly detected and proceed to manage only
confirmed incidents. If a plagiarism was confirmed, instructors can
write additional comments for the students, as depicted in Figure 3.9.

Blue: The Run details tab at the top of the side panel opens the
plagiarism run details view explained in the next section.

Plagiarism Run Details

Figure 3.8 shows the details of an example plagiarism detection run. The
view is used to provide instructors with additional information about the
run and its results.

The similarity distribution is visualized as a bar chart and indicates how
detected plagiarism incidents are distributed in similarity. For example, in
short, highly constrained problems, there’s not much room for variation and

23

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.8: Run details tab showing the duration of the plagiarism detection run
and the similarity distribution of its results

the exercise might yield more similar student submissions due to the lim-
ited set of correct solutions. The similarity distribution can help instructors
evaluate the detected results.

Plagiarism Comment Section

The comment section is displayed below the split view of a given plagiarism
incident. As shown in Figure 3.9, instructors can leave additional comments
to provide students with feedback on why they accused their submission of
plagiarism. Students also have acccess to the comment section to respond to
the received feedback.

Exercise Overview

If instructors accuse a student’s submission of plagiarism, a hint for the
student is displayed on the respective exercise in the exercise overview. As
depicted in Figure 3.10, the student can click on View incident to open the
plagiarism detection page and see both the involved submissions in the split
view and the feedback provided by instructors.

24

3.4. SYSTEM MODELS

Figure 3.9: Comment section of a plagiarism incident showing the feedback of
two instructors

Figure 3.10: Exercise overview displaying a hint that the student’s submission
was accused of plagiarism

25

Chapter 4

System Design

This chapter transforms the analysis model developed in the previous chap-
ter into a system design model by following the system design template
in [BD09]. This process aims to bridge the gap between the application
domain and the solution domain and design the internal structure of the
proposed system in more detail.

4.1 Overview

The proposed system extends Artemis and builds upon its current client-
server architecture. The application client provides the graphical user inter-
face (GUI) and handles all interactions with the end-user. It is implemented
in HTML, SCSS, and TypeScript and uses the JavaScript-Framework Angu-
lar 11 and the CSS-Framework Bootstrap. The application server is written
in Java and utilizes the Spring framework and Hibernate. The server offers
its business logic through a REST-based Application Programming Interface
(API) and WebSockets. Furthermore, it is connected to a MySQL database
to store and manipulate the application data. The server also communicates
with external systems like the version control (VC) server and the continuous
integration (CI) server.

4.2 Design Goals

We derive the design goals presented in this section from the non-functional
requirements listed in Section 3.3.2. Design goals describe the system’s quali-
ties and values against which alternative designs should be evaluated [BD09].
As non-functional requirements may conflict with each other, we identify

26

4.2. DESIGN GOALS

trade-offs and order the design goals according to their priority from high to
low.

Reliability Courses on Artemis typically have hundreds of students.
It is therefore unfeasible for instructors to manually check student sub-
missions for plagiarism. This is why automated plagiarism detection
should always be available for instructors as a first step to detect similar
student submissions. Although instructors must double-check detected
matches, achieving high reliability and consistency of the results is the
most important design goal.

Usability To help instructors compare detected submissions efficiently,
the UI must provide easy ways to navigate through the results and offer
enough screen area to compare detected submissions side by side. The
page must also include all necessary controls to manage a plagiarism
incident and to write comments optionally.

Performance The automated plagiarism detection performs a pair-
wise comparison of all student submissions for a given exercise. Be-
sides starting the plagiarism detection, instructors only have to wait
for the comparisons to complete to inspect the result. However, for
large courses, automatic plagiarism detection has to perform many
comparisons. As a result, instructors might have to wait a long time
before the system returns the actual results. Long waiting times can
be inconvenient, but don’t restrict the overall functionality. Therefore,
performance is the least prioritized among all design goals.

Extensibility vs. Usability It might be desirable to extend the
proposed system in the future to use different plagiarism detection
technologies. Extending a system, however, also increases complex-
ity. Another plagiarism detection algorithm might offer a different set
of configuration options that are tightly coupled to its implementa-
tion. Because plagiarism detection should be reliable, easy to use, and
the manual inspection as easy as possible, we prioritize usability over
extensibility.

Rapid development vs. Functionality There is a limited period
of 4 months to develop and integrate the proposed system in Artemis.
Hence we prioritize functionality. Within the scope of this thesis, we
might not implement some functionality with lower priority. We elab-
orate more on the status of the functionality in Section 6.1.

27

CHAPTER 4. SYSTEM DESIGN

4.3 Subsystem Decomposition

In this section, we identify the subsystems, services and their relationship to
each other. The goal in this section is to design an architecture that reduces
the complexity of the system while allowing change. This can be achieved
when the subsystems are loosely coupled. In Figure 4.1 the system is divided
into two main subsystems: the client and the server subsystem, which are
communicating through the Submission Contents and Plagiarism Detection
interface.

The Artemis server consists of three layers, as shown in Figure 4.1.
The Web Layer provides server resources through a REST API that is used
by the client. The Application Layer bundles the actual application logic
and contains important services, and the Data Layer provides connectors to
the MySQL database used by Artemis. Plagiarism detection functionality is
available via the Exercise Resource. It uses the Plagiarism Detection Service
to start a new plagiarism detection run for a given exercise or fetch the lat-
est results. For the latter, the Plagiarism Detection Service communicates
with the Plagiarism Persistence Service, which is responsible for saving and
updating plagiarism results in the database. In a new plagiarism detection
run, the Plagiarism Detection Service uses the Submission Service to retrieve
the students’ submissions to the exercise. After comparison, the Plagiarism
Persistence Service stores the results in the database before the Exercise Re-
source returns them via the Plagiarism Detection interface. The Submission
Resource also uses the Submission Service to fetch the content of specific
submissions directly.

The Artemis client consists of two layers: the User Interface Layer dis-
plays the components of a page and is responsible for handling user interac-
tion. Most UI components depend on functionality provided by the Service
Layer, which contains the client logic and communicates with the server
through the presented interfaces. The Plagiarism Detection Component dis-
plays all elements required to start and configure plagiarism detection for a
given exercise. It uses the Plagiarism Service to fetch existing plagiarism
results or trigger a new plagiarism detection run with the configured options
via the Plagiarism Detection interface. The Split View Component visualizes
the results by displaying two similar submissions side by side and highlighting
similarities. It requires the Submission Service to fetch each suspected sub-
mission’s actual content via the Submission Contents interface and utilizes
the Plagiarism Service to update a plagiarism incident’s status.

28

4.3. SUBSYSTEM DECOMPOSITION

Figure 4.1: Component diagram of the plagiarism detection system following the
client-server architecture of Artemis.

29

CHAPTER 4. SYSTEM DESIGN

Figure 4.2: Entity diagram of the data model for plagiarism detection in Artemis

4.4 Persistent Data Management

This section explains the changes to the relational database model of Artemis
required by the proposed system. We aim to relate to existing data mod-
els as often as possible to reduce the number of new tables. This design
step aims to integrate new entities related to plagiarism detection without
increasing the complexity of existing models and while keeping the database
model extensible for future development. Figure 4.2 depicts the updated
database model with relations between the new plagiarism detection entities
and existing entities.

Since instructors can start automatic plagiarism detection for an exercise
multiple times, each Exercise is in a one-to-many relationship with Plagia-
rismResults. The PlagiarismResult entity contains all relevant information
about a specific plagiarism detection run and stores its configured options in
the related PlagiarismOptions entity. Hence, we don’t have to change the
existing Exercise entity at all. By keeping track of who created a Plagia-
rismResult object in the createdBy field, other users can later consult the
instructor who started plagiarism detection.

For each PlagiarismResult, we store all PlagiarismComparison objects

30

4.5. ACCESS CONTROL

whose similarity is above the specified similarity threshold. The Plagia-
rismStatus enumeration represents a PlagiarismComparison’s status, which
instructors can update during the manual inspection process. Each Plagia-
rismComparison relates to a pair of PlagiarismSubmission objects. We can
extend this relationship in the future to include more than two submissions
and allow the detection of group plagiarism. PlagiarismSubmission entities
store a representation of the original Submission in multiple PlagiarismSub-
missionElements, which are more efficient to compare. Again, this design
allows us to keep the existing Submission entity unchanged.

A PlagiarismComparison also stores information about similarities be-
tween two PlagiarismSubmissions inside PlagiarismMatch entities. They
contain the indices of similar PlagiarismSubmissionElements and the length
of matches. Students and Instructors can leave comments on a Plagiarism-
Comparison, which stores PlagiarismComments in a one-to-many relation-
ship.

4.5 Access Control

This section explains the rationale behind the plagiarism detection and feed-
back system’s access control and permission concept. Since the plagiarism
system provides insight into many student submissions and the information
about a plagiarism offense is highly confidential, we must strictly regulate its
access. The following permission concept adheres to the Principle of Least
Privilege, which states that every user of the system should operate using
the least set of privileges necessary to complete the job [SS75].

• Overall, only instructors have the right to start a plagiarism detection
and view all results. In addition, they can confirm or reject any detected
plagiarism and optionally leave feedback, as depicted in Table 4.1.

• Students can only view their own incident, if any. Thus, they can
see both their own and the other involved submission. In addition, the
student can read feedback on their own incident and respond to it.

• Tutors do not have access to the plagiarism system at all in order to
reduce the number of authorized persons to a minimum. This decision
is driven by the Principle of Least Privilege mentioned above.

31

CHAPTER 4. SYSTEM DESIGN

Table 4.1: Access control matrix of the plagiarism detection and feedback system

32

Chapter 5

Object Design

This chapter describes the new JPlag API and its integration into the Artemis
system in more detail. As explained in Chapter 2, before this thesis, JPlag
was only available as a CLI tool and difficult to use in external software.
JPlag also automatically generated web pages of the results. As this was the
only form of output, post-processing the results with software would bring a
significant overhead by parsing the web pages to access relevant information.
Section 5.1 presents the results of our refactoring and the development of the
new JPlag API. Section 5.2 discusses how we use the new API to integrate
JPlag into the Artemis server.

5.1 JPlag API

Our main goal was to extend JPlag by new classes that allow other tools like
Artemis to invoke JPlag in a more object-oriented way. We did not change
the algorithm JPlag uses to compare submissions, and instructors can still
use it from the command line. In our refactoring, adding new classes served
the sole purpose of making previously unavailable functionality accessible to
external programs.

As depicted in Figure 5.1, we designed the new JPlag API around three
fundamental classes:

• JPlag: This is the main class responsible for preprocessing the sub-
missions and performing plagiarism detection. The JPlag class bundles
the entire business logic and exposes a simple run method to start pla-
giarism detection.

• JPlagOptions: Previously, users could configure JPlag via command-
line options. The JPlagOptions class is an object-oriented representa-

33

CHAPTER 5. OBJECT DESIGN

Figure 5.1: Diagram of relevant JPlag classes and their relationship after the
refactoring

tion of these options. Users can create an instance of JPlagOptions,
change its attributes according to their preferences, and pass it to a
JPlag instance before starting the plagiarism detection.

• JPlagResult: To make the plagiarism detection results easier to in-
terpret by other programs, we created the JPlagResult class contain-
ing all relevant information about a plagiarism detection run. This
class allows other programs to post-process the results, store them in
a database, or export them in a custom format. Generating a report
from a JPlagResult is optional.

Figure 5.2 shows an example usage of the new JPlag API. In lines 1-2, we
create a new JPlagOptions instance with the path to the directory containing
all student submissions and the programming language of the source code
files. We also specify the name of the directory with the template code that
all submissions are based on. In line 4, we instantiate a JPlag object and pass
the JPlagOptions instance to configure the program. Then, we call the run
method to parse the submissions and perform the actual plagiarism detection.
The run method returns a JPlagResult instance that we use in line 7 to get
the list of all comparisons. We could access additional information about the
plagiarism detection run or post-process the JPlagComparion objects at this

34

5.2. INTEGRATION OF JPLAG IN ARTEMIS

Figure 5.2: Example code snippet of the new JPlag API

point. In lines 10-13, we optionally create a new Report of the JPlagResult,
which we can export to generate web pages that visualize the results.

5.2 Integration of JPlag in Artemis

In Artemis, we use JPlag to detect plagiarism for programming and text
exercises. On the server, the Plagiarism Detection Service interfaces with
the new JPlag API. Figure 5.3 shows a more detailed component diagram
of the Artemis server’s application layer, where we can locate the JPlag
integration.

When the client sends a request to the server to detect plagiarism for a
given exercise, the Plagiarism Detection Service is responsible for perform-
ing or delegating the actual comparison of submissions and returning the
results. In the case of programming and text exercises, the Plagiarism Detec-
tion Service will delegate plagiarism detection to JPlag. Before, it prepares
the submission to be compared by JPlag. Therefore, the service downloads
the submissions and writes them to the local file system on the server. All
submissions must be in the same folder, referred to as the root directory.

We can then invoke JPlag similar to how Figure 5.2 does. JPlag requires
the path to the root directory and the language of the submissions. Parsing
the submissions and performing plagiarism detection is taken care of by the
internal JPlag classes, which return the plagiarism detection results to the
Plagiarism Detection Service. We map the results to a more generic repre-
sentation of plagiarism results compatible with results for modeling exercise.
As seen in Figure 4.2 from the previous chapter, the database scheme is very
similar to JPlag’s class hierarchy presented in Figure 5.1. This similarity
exists by design and makes it easy to persist the results.

35

CHAPTER 5. OBJECT DESIGN

Figure 5.3: Detailed component diagram of the Artemis Server’s Application
Layer

36

Chapter 6

Summary

This chapter summarizes the results of this thesis by discussing the realized
and open goals in Section 6.1. Following this we conclude the results of this
thesis in Section 6.2 and formulate an outlook on future work that could
proceed this thesis in Section 6.3.

6.1 Status

In this section we compare the status of the system with the requirements
we have elicited in Chapter 3. We divide the requirements into the following
three categories:

 Implemented Requirements: The requirement is realized and no
further changes are required.

G# Partially Implemented Requirements: The requirement is only
partially implemented and further changes are required to have the
requirement in a state that will be accepted by the client.

Not implemented Requirement: The requirement is not fulfilled
as it is not implemented yet.

The status of the functional requirements is summarized in Table 5.1 and
the status of the nonfunctional requirements can be found in Table 5.2.

6.1.1 Realized Goals

In total, we managed to implement 10 of the 18 functional and nonfunctional
requirements elicited in Section 3.3. Specifically, we introduced a new page

37

CHAPTER 6. SUMMARY

Functional Requirements Status

FR1 Compare submissions side by side

FR2 Manage detected plagiarism matches

FR3 View plagiarism statistics

FR4 Highlight similarities

FR5 Configure automatic plagiarism detection

FR6 Add detailed feedback #

FR7 Respond to feedback #

FR8 See plagiarism detection progress #

FR9 Learn from manual inspection #

FR10 Detect group plagiarism #

Table 6.1: Implementation status of the functional requirements (completed -
G# partially completed - # incomplete).

for plagiarism detection to the Artemis client, which instructors can use to
start and configure a new plagiarism detection run (FR5). After comparison,
it displays suspected submissions side by side (FR1) and highlights similari-
ties between them by color, making results more efficient to compare (FR4).
Instructors can also manage a plagiarism incident’s status (FR2) by confirm-
ing or denying it and view details about plagiarism detection runs like their
duration or the similarity distribution of the results (FR3).

As depicted in Table 6.2, the developed system (partially) fulfills 7 of the
eight nonfunctional requirements. The new plagiarism detection page allows
instructors to start and configure automated plagiarism detection both from
one site (NFR1). Because the split view panes are resizable and instructors
can collapse the configuration panel to maximize the split view, manual in-
spection of the results works on tablet and desktop devices (NFR2). The
sidebar gives instructors easy access to single plagiarism incidents. Because
the list of plagiarism incidents is paginated and only displays a maximum
of 100 items at once, the client application stays responsive even for large
results (NFR7). Clicking on a sidebar item loads the suspected submissions’
contents, and instructors can update the incident’s status with one click on
the corresponding buttons in the split view header (NFR3). Plagiarism re-
sults don’t change if submissions and configuration stay the same, but we

38

6.1. STATUS

Nonfunctional Requirements Status

NFR1 Ease of Use

NFR2 Responsiveness

NFR3 Efficiency

NFR4 Consistency G#

NFR5 Robustness #

NFR6 Response Time G#

NFR7 Load Time

NFR8 Extensibility

Table 6.2: Implementation status of the nonfunctional requirements (com-
pleted - G# partially completed - # incomplete).

don’t have data of the number of student responses on plagiarism accusa-
tions yet, leaving Consistency (NFR4) partially fulfilled. NFR6 is also only
partially fulfilled because plagiarism detection achieves the desired response
time only for modeling and text exercises. Last, the developed system is
extensible and can support new plagiarism detection algorithms or configu-
ration options (NFR8).

6.1.2 Open Goals

Due to the limited time available to develop the proposed system, we didn’t
fully implement 5 of the functional and 3 of the nonfunctional requirements.
Although instructors can update the status of a plagiarism incident, it is not
possible yet for instructors to leave feedback on that incident for the involved
students (FR6), as shown in Table 6.1. As a consequence, students also
cannot reply to any feedback directly on Artemis (FR7). Hence, instructors
must still use traditional means of communication like e-mail to contact the
students. We also didn’t manage to implement a progress bar for plagiarism
detection with information about the pending comparisons (FR8). Only a
loading spinner is showing up while plagiarism detection is in progress. The
time restrictions also didn’t allow us to fulfill the more visionary requirements
of learning from manual inspection results to improve automated plagiarism
detection (FR9) and detecting group plagiarism (FR10).

In terms of nonfunctional requirements, we didn’t achieve Robustness

39

CHAPTER 6. SUMMARY

(NFR5) yet, which is a direct consequence of the missing feedback system
for plagiarism incidents. Consistency (NFR4) and Response Time (NFR6)
are partially fulfilled, as stated in the previous section.

6.2 Conclusion

In this thesis, we successfully improved the integration of plagiarism detection
in Artemis. Before, the integration was very limited and required instructors
to perform numerous manual steps to process the results. We introduced a
new plagiarism detection page to the Artemis client, allowing instructors to
start and configure automated plagiarism detection for a given exercise.

Previously, instructors had to download the results and use external soft-
ware to inspect the incidents. Now we display all detected plagiarism inci-
dents on the plagiarism detection page. A side-by-side comparison of sus-
pected submissions and the highlighting of similarities between them facili-
tates manual inspection. Although leaving feedback on confirmed plagiarism
incidents is not possible yet, instructors can update a plagiarism incident’s
status and download the processed results to contact only students whose
submissions were confirmed as plagiarized before.

Leaving communication with students the only feature not fully imple-
mented, we managed to integrate most of the previously time-consuming
tasks of plagiarism detection into Artemis and offer a more efficient workflow
for instructors to inspect and manage plagiarism incidents.

6.3 Future Work

This chapter presents some ideas to further improve the plagiarism detec-
tion and feedback system in Artemis. Besides implementing the unfulfilled
requirements elicited in Section 3.3, we could also develop more visionary
features in the future that improve the user experience for instructors and
students.

Automatically start plagiarism detection. After an exercise’s due date
passed, the system could automatically start plagiarism detection for the
given exercise. For this, the system could choose configuration values that
yield the best results on its own or use options instructors specified before-
hand. Making the automated plagiarism detection process asynchronous also
has the advantage that instructors can still use Artemis for other tasks while
plagiarism detection is in progress.

40

6.3. FUTURE WORK

Improve plagiarism notifications. Especially if plagiarism detection be-
comes an asynchronous process, it’s important to notify instructors when new
results are available so that they don’t have to check for updates themselves.
We could communicate plagiarism detection updates via Artemis’ notifica-
tion system. Additionally, students could receive a notification if one of their
submissions was accused of plagiarism.

Extend plagiarism context. In the future, the system could detect pla-
giarism not only among all current submissions to an exercise but consider
previous years’ submissions as well. Furthermore, plagiarism detection could
also compare submissions with external sources like internet articles, forum
posts, or literature for similar code snippets or text fragments.

41

List of Figures

1.1 CSV file containing the results of automatic plagiarism detec-
tion sorted by similarity . 3

2.1 JPlag report of two similar student submissions 8

2.2 Confusion matrix of binary classiciation for plagiarism detection 9

3.1 The current system allows instructors to download the plagia-
rism results in JSON or CSV format 11

3.2 Result files generated by plagiarism detection software used in
the current system . 12

3.3 Use case diagram of the plagiarism detection and feedback
system in Artemis . 17

3.4 Analysis object model of the plagiarism detection and feed-
back system . 19

3.5 Activity diagram visualizing the flow of events of plagiarism
detection and the feedback loop in Artemis. 20

3.6 Plagiarism detection page of the proposed system showing the
split view that highlights similarities between two suspected
submissions . 22

3.7 Split pane header displaying a list of all files a programming
submission consists of . 23

3.8 Run details tab showing the duration of the plagiarism detec-
tion run and the similarity distribution of its results 24

3.9 Comment section of a plagiarism incident showing the feed-
back of two instructors . 25

3.10 Exercise overview displaying a hint that the student’s submis-
sion was accused of plagiarism 25

4.1 Component diagram of the plagiarism detection system fol-
lowing the client-server architecture of Artemis. 29

42

LIST OF FIGURES

4.2 Entity diagram of the data model for plagiarism detection in
Artemis . 30

5.1 Diagram of relevant JPlag classes and their relationship after
the refactoring . 34

5.2 Example code snippet of the new JPlag API 35
5.3 Detailed component diagram of the Artemis Server’s Applica-

tion Layer . 36

43

List of Tables

4.1 Access control matrix of the plagiarism detection and feedback
system . 32

6.1 Implementation status of the functional requirements (com-
pleted - G# partially completed - # incomplete). 38

6.2 Implementation status of the nonfunctional requirements (
completed - G# partially completed - # incomplete). 39

44

Bibliography

[Aik20] Alex Aiken. Moss, a system for detecting software similarity.
http://theory.stanford.edu/~aiken/moss/, 2020. Retrieved:
2021-02-05.

[Bak93] Brenda S. Baker. On finding duplication in strings and software.
Journal of Algorithms, 1993.

[BCJ+09] Amitav Banerjee, U. B. Chitnis, S. L. Jadhav, J. S. Bhawalkar,
and S. Chaudhury. Hypothesis testing, type i and type ii errors.
Industrial Psychiatry Journal, 18(2):127–131, 2009.

[BD09] Bernd Bruegge and Allen H Dutoit. Object Oriented Software
Engineering Using UML, Patterns, and Java. Prentice Hall, 2009.

[BM09] Tracey Bretag and Saadia Mahmud. A model for determining
student plagiarism: Electronic detection and academic judgement.
Journal of University Teaching & Learning Practice, 6(1), 2009.

[BM21] Eren Bilen and Alexander Matros. Online cheating amid covid-19.
Journal of Economic Behavior & Organization, 182, 2021.

[BRC19] Imene Bensalem, Paolo Rosso, and Salim Chikhi. On the use
of character n-grams as the only intrinsic evidence of plagiarism.
Language Resources and Evaluation, 53:363–396, 2019.

[CL01] Fintan Culwin and Thomas Lancaster. Plagiarism, prevention,
deterrence and detection. Higher Education Academy, 2001.

[Dic89] Oxford English Dictionary. Plagiarism. Oxford University Press,
1989.

[HZ03] Tim Hoad and Justin Zobel. Methods for identifying versioned
and plagiarized documents. Journal of the American Society for
Information Science and Technology, 54(3), 2003.

45

http://theory.stanford.edu/~aiken/moss/

BIBLIOGRAPHY

[KS07] Dominic Keuskamp and Regina Sliuzas. Plagiarism prevention or
detection? the contribution of text-matching software to educa-
tion about academic integrity. Journal of Academic Language &
Learning, 1(1):91–99, 2007.

[KS18] Stephan Krusche and Andreas Seitz. Artemis: An automatic as-
sessment management system for interactive learning. Proceedings
of the 49th ACM Technical Symposium on Computer Science Ed-
ucation, pages 284–289, 2018.

[KvFA17] Stephan Krusche, Nadine von Frankenberg, and Sami Afifi. Ex-
periences of a software engineering course based on interactive
learning. SEUH, 2017.

[MST95] Donald Michie, David J. Spiegelhalter, and Charles C. Taylor.
Machine Learning, Neural and Statistical Classification. Ellis Hor-
wood, 1995.

[PMP00] Lutz Prechelt, Guido Mahlpohl, and Michael Philippsen. Find-
ing plagiarisms among a set of programs with jplag. Journal of
Universal Computer Science, 8(11), 2000.

[RC07] Chanchal Kumar Roy and James R. Cordy. A survey on software
clone detection research. Technical Report, (2007-541), 2007.

[SB75] R.J. Smith and R.G. Bryant. Metal substitutions in carbonic an-
hydrase: A halide ion probe study. Biochemical and Biophysical
Research Communications, 64(4), 1975.

[Smi18] Katherine Smith. University bosses call for ban on essay-writing
companies. https://www.bbc.com/news/education-45640236,
2018. Retrieved: 2021-02-01.

[SS75] J.H. Saltzer and M.D. Schroeder. The protection of information
in computer systems. Proceedings of the IEEE, 63(9):1278–1308,
1975.

[SWA03] Saul David Schleimer, Daniel S. Wilkerson, and Alex Aiken. Win-
nowing: Local algorithms for document fingerprinting. 2003.

[Tur] Turnitin. The plagiarism spectrum. http://go.turnitin.com/

paper/plagiarism-spectrum. Retrieved: 2021-02-01.

46

https://www.bbc.com/news/education-45640236
http://go.turnitin.com/paper/plagiarism-spectrum
http://go.turnitin.com/paper/plagiarism-spectrum

BIBLIOGRAPHY

[V.S97] Stephen V.Stehman. Selecting and interpreting measures of the-
matic classification accuracy. Remote Sensing of Environment,
62(1):77–89, 1997.

[Wis93] Michael J. Wise. String similarity via greedy string tiling and
running karp-rabin matching. 1993.

47

	Introduction
	Problem
	Motivation
	Objectives
	Outline

	Background
	Computer-assisted plagiarism detection
	JPlag
	Moss

	Errors in binary classification

	Requirements Analysis
	Overview
	Current System
	Proposed System
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Scenarios
	Use Case Model
	Analysis Object Model
	Dynamic Model
	User Interface

	System Design
	Overview
	Design Goals
	Subsystem Decomposition
	Persistent Data Management
	Access Control

	Object Design
	JPlag API
	Integration of JPlag in Artemis

	Summary
	Status
	Realized Goals
	Open Goals

	Conclusion
	Future Work

