
–
m
ai
n
–

On Complementing an Undergraduate

Software Engineering Course with Formal Methods

CSEE&T 2020 — November, 9th–12th — Internet

Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Structure
–
m
ai
n
–

2/8

• Working Definition ‘Formal Methods’

• Formal Methods in the Context
of Software Engineering

(Towards Learning Objectives)

• The Challenge of Complementation

• Proposed Didactical Approach

• Conclusion



Definition and Examples
–
m
ai
n
–

3/8

Definition. [(Bjørner & Havelund, 2014)]
A method is called formal method if and only if its tech-
niques and tools can be explained inmathematics.



Definition and Examples
–
m
ai
n
–

3/8

Definition. [(Bjørner & Havelund, 2014)]
A method is called formal method if and only if its tech-
niques and tools can be explained inmathematics.

Examples:

• Requirements Patterns

• Decision Tables

• Sequence Diagrams

• Class-/Object-Diagrams, OCL

• State Machines

• Pre- and Post-Conditions

• etc. etc.



Definition and Examples
–
m
ai
n
–

3/8

Definition. [(Bjørner & Havelund, 2014)]
A method is called formal method if and only if its tech-
niques and tools can be explained inmathematics.

Examples:

• formal Requirements Patterns

• formal Decision Tables

• formal Sequence Diagrams

• formal Class-/Object-Diagrams, OCL

• formal State Machines

• formal Pre- and Post-Conditions

• etc. etc.



Definition and Examples
–
m
ai
n
–

3/8

Definition. [(Bjørner & Havelund, 2014)]
A method is called formal method if and only if its tech-
niques and tools can be explained inmathematics.

Examples:

• formal Requirements Patterns → automatic consistency analyses

• formal Decision Tables → automatic test case generation

• formal Sequence Diagrams → precise acceptance test instructions

• formal Class-/Object-Diagrams, OCL → unambiguous documentation

• formal State Machines → exhaustivemodel checking

• formal Pre- and Post-Conditions → automatic static analyses

• etc. etc.



Definition and Examples
–
m
ai
n
–

3/8

Definition. [(Bjørner & Havelund, 2014)]
A method is called formal method if and only if its tech-
niques and tools can be explained inmathematics.

Examples:

• formal Requirements Patterns → automatic consistency analyses

• formal Decision Tables → automatic test case generation

• formal Sequence Diagrams → precise acceptance test instructions

• formal Class-/Object-Diagrams, OCL → unambiguous documentation

• formal State Machines → exhaustivemodel checking

• formal Pre- and Post-Conditions → automatic static analyses

• etc. etc.

Catching up with Method and Process Practice:

An Industry-Informed Baseline for Researchers

Jil Klünder�, Regina Hebig†, Paolo Tell‡, Marco Kuhrmann§, Joyce Nakatumba-Nabende¶, Rogardt Heldal†,

Stephan Krusche��, Masud Fazal-Baqaie††, Michael Felderer‡‡, Marcela Fabiana Genero Bocco
x

, Steffen Küpper‡,

Sherlock A. Licorish
xi

, Gustavo López
xii

, Fergal McCaffery
xiii

, Özden Özcan Top
xiii

, Christian R. Prause
xiv

,

Rafael Prikladnicki
xv

, Eray Tüzün
xvi

, Dietmar Pfahl
xvii

, Kurt Schneider� and Stephen G. MacDonell
xviii

�Leibniz University Hannover, Germany, Email: {jil.kluender, kurt.schneider}@inf.uni-hannover.de; †Chalmers | University

of Gothenburg, Sweden, Email: {regina.hebig, heldal}@cse.gu.se, ‡IT University Copenhagen, Denmark, Email: pate@itu.dk,
§Clausthal University of Technology, Germany, Email: {marco.kuhrmann, steffen.kuepper}@tu-clausthal.de, ¶Makerere

University, Uganda, Email: jnakatumba@cis.mak.ac.ug, ��Technical University of Munich, Germany,

Email: krusche@in.tum.de, ††Fraunhofer IEM, Germany, Email: masud.fazal-baqaie@iem.fraunhofer.de, ‡‡University of

Innsbruck, Austria, Email: michael.felderer@uibk.ac.at,
x
University of Castilla-La Mancha, Spain,

Email: marcela.genero@uclm.es,
xi

University of Otago, New Zealand, Email: sherlock.licorish@otago.ac.nz,
xii

University of

Costa Rica, Costa Rica, Email: gustavo.lopez h@ucr.ac.cr,
xiii

Dundalk Institute of Technology & Lero, Ireland,

Email: {fergal.mccaffery, ozden.ozcantop}@dkit.ie,
xiv

DLR Space Administration, Germany, Email: christian.prause@dlr.de,
xv

Pontif�́cia Universidade Católica do Rio Grande do Sul, Brazil, Email: rafael.prikladnicki@pucrs.br,
xvi

Bilkent University,

Turkey, Email: eraytuzun@cs.bilkent.edu.tr,
xvii

University of Tartu, Estonia, Email: dietmar.pfahl@ut.ee,
xviii

Auckland University of Technology, New Zealand, Email: smacdone@aut.ac.nz

Abstract—Software development methods are usually not ap-
plied by the book. Companies are under pressure to continuously
deploy software products that meet market needs and stakehold-
ers’ requests. To implement ef�cient and effective development
processes, companies utilize multiple frameworks, methods and
practices, and combine these into hybrid methods. A common
combination contains a rich management framework to organize
and steer projects complemented with a number of smaller
practices providing the development teams with tools to complete
their tasks. In this paper, based on 732 data points collected
through an international survey, we study the software develop-
ment process use in practice. Our results show that 76.8% of
the companies implement hybrid methods. Company size as well
as the strategy in devising and evolving hybrid methods affect
the suitability of the chosen process to reach company or project
goals. Our �ndings show that companies that combine planned
improvement programs with process evolution can increase their
process’ suitability by up to 5%.

Index Terms—software development, software process, hybrid
methods, survey research

I. INTRODUCTION

For decades, software companies, teams, and even individ-

ual developers have sought approaches that enable ef�cient and

effective software development. Since the 1970’s, numerous

processes have been proposed. The community started with

the Waterfall model [1], then the Spiral model [2], followed by

agile methods and lean development approaches [3]. Since the

early 2000s, few innovative software development approaches

were proposed, but several proposals for scaling agile methods,

e.g., SAFe or LeSS, were published. Meanwhile, an increasing

number of studies showing that modern software development

is neither purely “traditional” nor “agile” can be found re-

�ecting that companies use processes comprised of various

development practices [4], [5].
Problem Statement: Research that focuses on agile meth-

ods and practices only cannot support practitioners who

are faced with the reality of hybrid development methods.

Similarly, the 100+ tailoring criteria [6], [7] for processes

established in the last decade seem to have no relevance for

practitioners who are devising hybrid methods and seeking im-

mediate and practical solutions to solve short-term problems.

Thus, process-related research has lost momentum as it is no

longer aligned with the concerns of practice.
Objective: In response to the situation above, our ob-

jective is to understand how and why practitioners devise

hybrid development methods. Our goal is to set a new baseline

for the next decade of evidence-based research on software

development approaches driven by practice.
Contribution: Based on an online survey comprising 732

data points we study the use of hybrid methods and the fac-

tors in�uencing the suitability of development approaches for

reaching goals. According to our results, 3/4 of the companies

use a hybrid method, and company size and strategies to devise

hybrid methods in�uence the suitability of the approach to

achieve de�ned goals.
Context: This research is based on the HELENA study1,

which is a large-scale international survey in which 75 re-

searchers and practitioners from 25 countries participated. We

1HELENA: Hybrid dEveLopmENt Approaches in software systems devel-
opment, online: https://helenastudy.wordpress.com.

���

���������	
������������������������������������������������������������������������������������������������
���� 

�!"���!�"���!#��!	��	$%�&���'���������
()����&����	���������&����&���%#

(Klünder et al., 2019)



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

formal method

real-world software engineering

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

(1) engineers need to know syntax and semantics
to formalise understandings of, e.g., a design idea



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

(1) engineers need to know syntax and semantics
to formalise understandings of, e.g., a design idea

(2) engineers may need to validate formalisations with clients
(is the formal description a valid model of, e.g., a requirement?)



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

(1) engineers need to know syntax and semantics
to formalise understandings of, e.g., a design idea

(2) engineers may need to validate formalisations with clients
(is the formal description a valid model of, e.g., a requirement?)

(3) engineers need to be able to analyse for properties



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

(1) engineers need to know syntax and semantics
to formalise understandings of, e.g., a design idea

(2) engineers may need to validate formalisations with clients
(is the formal description a valid model of, e.g., a requirement?)

(3) engineers need to be able to analyse for properties

(4) outcomes of formal analyses need to be interpreted in context,
appropriate actions need to be taken



Formal Methods in the Context of Software Engineering
–
m
ai
n
–

4/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

(1) engineers need to know syntax and semantics
to formalise understandings of, e.g., a design idea

(2) engineers may need to validate formalisations with clients
(is the formal description a valid model of, e.g., a requirement?)

(3) engineers need to be able to analyse for properties

(4) outcomes of formal analyses need to be interpreted in context,
appropriate actions need to be taken

(5) techniques need to be discussed in contemporary context



Approach: Interpolative instead of Extrapolative
–
m
ai
n
–

5/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)



Approach: Interpolative instead of Extrapolative
–
m
ai
n
–

5/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

informal

semi-formal

formal



Approach: Interpolative instead of Extrapolative
–
m
ai
n
–

5/8

Syntax and Semantics

Properties (e.g., Consistency)

Analysis Algorithms and Tools

real-world software engineering

formal method

client

engineer

product

practice

(2)

(1)

(3)

(4)

(5)

informal

semi-formal

formal

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Complementing an ‘Ordinary’ Introduction to Software Engineering
–
m
ai
n
–

6/8

informal

semi-formal

formal

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Complementing an ‘Ordinary’ Introduction to Software Engineering
–
m
ai
n
–

6/8

informal

semi-formal

formal

Introduction

Software

Process

Management

Requirements

Engineering

Architecture

& Design

Software

Quality

Assurance

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Complementing an ‘Ordinary’ Introduction to Software Engineering
–
m
ai
n
–

6/8

informal

semi-formal

formal

Introduction

Software

Process

Management

Requirements

Engineering

Architecture

& Design

Software

Quality

Assurance

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �

process
modelling

use cases,
scenarios

structural
software
modelling

behavioural
software
modelling

testing



Complementing an ‘Ordinary’ Introduction to Software Engineering
–
m
ai
n
–

6/8

informal

semi-formal

formal

Introduction

Software

Process

Management

Requirements

Engineering

Architecture

& Design

Software

Quality

Assurance

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �

process
modelling

use cases,
scenarios

structural
software
modelling

behavioural
software
modelling

testing

(semi-formal)

(formal)

(formal) (formal)



Complementing an ‘Ordinary’ Introduction to Software Engineering
–
m
ai
n
–

6/8

informal

semi-formal

formal

Introduction

Software

Process

Management

Requirements

Engineering

Architecture

& Design

Software

Quality

Assurance

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �

process
modelling

use cases,
scenarios

structural
software
modelling

behavioural
software
modelling

testing

(semi-formal)

(formal)

(formal) (formal)

decision
tables

program
verification

(formal)

(formal)



Progression
–
m
ai
n
–

7/8

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Progression
–
m
ai
n
–

7/8

semi-formal
→ concrete syntax

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Progression
–
m
ai
n
–

7/8

semi-formal
→ concrete syntax

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer principles of formal
methods

(formal semantics,
formalisation,

validation, formal
analysis, interpretation

of results)

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

customer’s requirements
complete incomplete

DT (formally)
incomplete

false
positive

true
positive

DT (formally)
complete

true
negative

false
negative

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Progression
–
m
ai
n
–

7/8

semi-formal
→ concrete syntax

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer principles of formal
methods

(formal semantics,
formalisation,

validation, formal
analysis, interpretation

of results)

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

customer’s requirements
complete incomplete

DT (formally)
incomplete

false
positive

true
positive

DT (formally)
complete

true
negative

false
negative

complex concrete
and abstract

syntax; complex
semantics

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Progression
–
m
ai
n
–

7/8

semi-formal
→ concrete syntax

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer principles of formal
methods

(formal semantics,
formalisation,

validation, formal
analysis, interpretation

of results)

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

customer’s requirements
complete incomplete

DT (formally)
incomplete

false
positive

true
positive

DT (formally)
complete

true
negative

false
negative

complex concrete
and abstract

syntax; complex
semantics

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

model; less complex syntax
and semantics,

focus on complex modelling

C

D A

c 0,1

a

0,1

∀d1 ∈ allInstancesD •
∀d2 ∈ allInstancesD •
c(d1) = c(d2) =⇒ a(d1) =

a(d2) E<> x == 1

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Progression
–
m
ai
n
–

7/8

semi-formal
→ concrete syntax

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer principles of formal
methods

(formal semantics,
formalisation,

validation, formal
analysis, interpretation

of results)

T : room ventilation r1 r2 r3

b button pressed? × × −

off ventilation off? × − ∗

on ventilation on? − × ∗

go start ventilation × − −

stop stop ventilation − × −

customer’s requirements
complete incomplete

DT (formally)
incomplete

false
positive

true
positive

DT (formally)
complete

true
negative

false
negative

complex concrete
and abstract

syntax; complex
semantics

LSC: get change
AC: true
AM: invariant I: permissive

User Vend. Ma.

C50

E1

pSOFT

SOFT

chg-C50

model; less complex syntax
and semantics,

focus on complex modelling

C

D A

c 0,1

a

0,1

∀d1 ∈ allInstancesD •
∀d2 ∈ allInstancesD •
c(d1) = c(d2) =⇒ a(d1) =

a(d2) E<> x == 1

deductive program
verification

{P} while b ≥ y do

{P ∧ b ≥ y}
b := b− y;
{(a+1) · y+ b = x∧ b ≥ 0}
a := a+ 1
{a · y + b = x ∧ b ≥ 0}
od {P ∧ ¬(b ≥ y)}

informal

semi-formal

formal

simple complex

�
�

�

� �� � � �



Conclusion
–
m
ai
n
–

8/8

• Motivated a need for Formal Methods
in introductions to Software Engineering

• Presented Complementation Approach

• Proposed Progression

• In the paper:

• Details of the motivation, related work.

• Definition of learning objectives.

• Details of the progression.

• Experience from five seaons of teaching an
implementation of this course design:

No indications of student over-strain
(neither time, nor level.)


	Structure
	Definition and Examples
	Formal Methods in the Context of Software Engineering
	Approach: Interpolative instead of Extrapolative
	Complementing an `Ordinary' Introduction to Software Engineering
	Progression
	Conclusion

