

Extended Relational
Reference Architecture for Data Analytics

Description: Although this reference architecture is completely

based on relational model principles and SQL-based DBMS, it

intensively uses MPP and In-Memory techniques to improve

scalability and extensibility.

Consequences:

★★★ Ad-hoc analysis – supports complex ad-hoc real-time read queries

★★ Real-time analysis – near-real time with micro-batching technique

★★ Unstructured data processing – supports ingesting and querying semi-

structured data such as JSON/XML

★★ Scalability – can run terabytes with MPP and clustering capabilities

★ Cost economy – MPP RDBMS license cost is quite expensive

Sample implementations: Business Reporting, Enterprise Data

Warehousing, Data Discovery

Advanced

Analytics

In-Memory

Analytics

Query &

Reporting
MPP Analytic

RDBMS

Messaging

ETL

Integration Data Storages Analytics

Data
Source

Data Users

Pure Non-relational
Reference Architecture for Data Analytics

Description: This reference architecture does not rely on

relational model principles. Often it is built on NoSQL storage,

Hadoop, Search Engines and is highly effective for processing

semi and unstructured data.

Consequences:

★★ Ad-hoc analysis - ad-hoc real-time query support is more difficult than

in relational architecture

★★½ Real-time analysis – real-time with one-at-a-time processing

★★★ Unstructured data processing – supports easy storing and

processing of semi and unstructured data

★★★ Scalability – can scale keeping petabytes

★★★ Cost economy – cost minimized due to open-source technologies

Sample implementations: Data Discovery, Data Lake, Operational

Intelligence, Business Reporting

Advanced

Analytics

Query &

Reporting

Messaging

ETL

Integration Data Storages Analytics

Data
Source

Data UsersDistributed File

Systems
Map Reduce

NoSQL

Databases

Lambda Architecture (Hybrid)

Reference Architecture for Data Analytics

Description: This reference architecture enables real-time

operational and historical analytics in the same solution. While

the batch layer is based on non-relational techniques (usually

Hadoop), the speed layer is based on streaming techniques to

support strict real-time analytics requirements.

Consequences:

★★ ½ Ad-hoc analysis - ad-hoc real-time query support is more difficult

than in relational architecture
★★★ Real-time analysis – streaming approach with low data latency

★★★ Unstructured data processing – supports processing of semi and

unstructured data

★★★ Scalability – can scale keeping petabytes

★★★ Cost economy – cost minimized due to open-source technologies

Sample implementations: Real-time Intelligence, Data Discovery,

Business Reporting

Batch Layer Serving Layer

Speed Layer

Master
Dataset

Data
Stream

Real-time
Views

Pre-Computing Batch Views

Query &
Reporting

Data Refinery (Hybrid)

Reference Architecture for Data Analytics

Description: This reference architecture is a mix of relational and

non-relational techniques. Non-relational part acts as an ETL to

refine semi and unstructured data and load it cleansed into

relational data warehouse for further analysis.

Consequences:

★★★ Ad-hoc analysis – supports complex ad-hoc real-time read queries

★ Real-time analysis – data latency is high due to batch processing

★★★ Unstructured data processing – supports processing of semi and

unstructured data

★★ Scalability – can run terabytes with MPP and clustering capabilities

★ Cost economy – MPP RDBMS license cost is quite expensive

Sample implementations: Data Discovery, Business Reporting,

Enterprise Data Warehousing

Advanced

Analytics

Query &

Reporting
MPP Analytic

RDBMS

Messaging

ETL

Integration Data Storages Analytics

Data
Source

Data UsersDistributed File

Systems
Map Reduce

Data Collector

Family/Integration/Messaging

Description: This pattern aims to collect, aggregate and transfer

log data for later use. Usually Data Collector implementations

offer out of the box plug-ins for integrating with popular event

sources and destinations.

Consequences:

★★ Performance – can handle large amounts of data in real time

★★★ Compatibility – can be plugged with popular event sources and

destinations

★★ Flexibility – imposes limitations on usage scenarios compared to the

Message Broker pattern

Sample implementations: Apache Flume, Logstash, Fluentd,

Scribe

Producer
Log Collector

Source
Producer

Sink

Distributed Message Broker

Family/Integration/Messaging

Description: This pattern is a descendant of a more traditional

Message Broker, but offers high scalability by distributing

messages across multiple nodes. Most implementations offer

Pub/Sub and Peer-to-Peer modes.

Consequences:

★★★ Performance – can handle high throughput with low latency

★ Compatibility – in most cases requires writing of custom code to be

plugged with event producers and consumers

★★★ Flexibility – can be used for multiple purposes – routing,

transformation, aggregation, pub-sub, etc.

Sample implementations: RabbitMQ, Apache Kafka, Apache

ActiveMQ, Amazon SQS

Producer
Message Broker

Producers
Producer

Consumers

Column-Family

Family/Data Storage/NoSQL Database

Description: Extends Key-Value databases by storing not strictly

defined collections of one or more key-value pairs that match a

record. Can be presented as two dimensional arrays whereby

each key has one or more key-value pairs attached to it.

Consequences:

★★★ Performance – is extremely fast due to absence of schema

definition, relational, transactional or referential integrity functionality

★★★ Scalability – can be linearly scaled by splitting data across servers

using hash value calculated based on a row key

★★★ Availability – high availability is provided by clustering and

distributed file system (e.g. HDFS)

★ Ad-hoc Analysis – supports secondary indexing, but no aggregate

functions

Sample implementations: Cassandra, HBase

Document-Oriented

Family/Data Storage/NoSQL Database

Description: Works similarly to Column-Family database, but

allows much deeper nesting and complex structures to be stored

(e.g. a document, within a document, within a document).
Documents overcome constraints of one or two level of key-value

nesting of Column-Family databases. Complex and arbitrary

structure can form a document, which can be stored as a record.

Consequences:

★★ Performance – performance varies significantly from one

implementation to the next, but overall not as fast as Key-Value databases

★★★ Scalability – over 100 organizations run clusters with 100+ nodes.

Some clusters exceed 1,000 nodes

★★★ Availability – high availability is provided by clustering and

replication

★½ Ad-hoc analysis – somewhat better than other NoSQL families, but still

not as good as relational databases or interactive query engines

Sample implementations: MongoDB, CouchDB

Distributed File System

Family/Data Storage

Description: The modern distributed file systems are highly fault-

tolerant and designed to run on low-cost hardware. Open source

implementations such as HDFS (Hadoop Distributed File System)

and CFS (Cassandra File System) provide high throughput access

to application data and are suitable for applications that process

large data sets.

Consequences:

★★ Performance – designed for fast sequential read/write access, really

good for batch processing (Map Reduce). For random read/write

recommended using NoSQL databases (e.g. HBase on top of HDFS).

★★★ Scalability – massively and linearly scalable, number of nodes

theoretically is unlimited, existing production clusters with up to 10,000

nodes

★★★ Availability – default replication of data to 3 nodes, rack and

datacenter-awareness, no single-points of failure

Sample implementations: Hadoop Distributed File System

(HDFS), Cassandra File System (CFS)

Interactive Query Engine

Family/Analytics/Search & Query

Description: Distributed Query Processor is aimed for running

batch as well as interactive analytic queries against data sources

of large size.

Consequences:

★★ Performance – can query large amounts of data in human-time (2-30

seconds), however still not as fast as relational data warehouse

★★½ Reliability – some implementations provide long-running query

support and mid-query fault recovery

★★★ Ad-hoc analysis – best in class, similar to relational MPP data

warehouse engines

Sample implementations: Impala, Apache Hive, Spark SQL

Data
Node

Data
Node

Query
Client

Local Data Local Data

CouchDB

Technology/Data Storage/NoSQL Database/Document-Oriented

Description: CouchDB is a database that embraces the web by

storing data with JSON documents; allowing accessing data via

HTTP; indexing, combining, and transforming your documents

with JavaScript. CouchDB works well with modern web and

mobile apps, supports incremental replication and master-master

setups with automatic conflict detection.

Consequences:

★★ Performance – fast for direct ID lookups and map-reduce jobs, but

that’s it. Users reported performance issues.

★ Reliability – serious problems with reliability and availability were

reported by users despite functionality like replication and automatic

conflict resolution. Not yet suitable for highly-available or heavy-loaded

solutions.

★ Ad-hoc analysis – CouchDB is generally queried by direct ID lookups and

is not designed for ad-hoc despite secondary indexes and full-text search

support

★★★ Real-time analysis – fast ID lookups and fast aggregation calculation

using map-reduce

★★★ Ease of use – HTTP-based API makes it very easy to use and

integrate with web applications. Administration of DB could be made using

HTTP API too.

Distributed Search Engine
Family/Analytics/Search & Query

Description: Scalable indexing solution with full-text, interactive

search. Most implementations provide API that allows executing

complex queries on semi-structured data such as logs, web pages

and document files.

Consequences:

★★ Ad-hoc analysis – query languages often include faceted and

geospatial search, stat functions and simple joins to query, analyze and

visualize data

★★★ Scalability – can be linearly scaled by providing distributed indexing

★★★ Availability – high availability is provided by clustering and

replication

Sample implementations: Elasticsearch, Apache Solr, Splunk

Indexer

Producer
Search Engine

Data
Source

Search
Client

in d ex

