
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extended Relational 
Reference Architecture for Data Analytics 

 

Description: Although this reference architecture is completely 

based on relational model principles and SQL-based DBMS, it 

intensively uses MPP and In-Memory techniques to improve 

scalability and extensibility. 

 
Consequences: 

★★★ Ad-hoc analysis – supports complex ad-hoc real-time read queries 

★★ Real-time analysis – near-real time with micro-batching technique 

★★ Unstructured data processing – supports ingesting and querying semi-

structured data such as JSON/XML 

★★ Scalability – can run terabytes with MPP and clustering capabilities 

★ Cost economy – MPP RDBMS license cost is quite expensive 

 

Sample implementations: Business Reporting, Enterprise Data 

Warehousing, Data Discovery 
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Pure Non-relational 
Reference Architecture for Data Analytics 

 

Description: This reference architecture does not rely on 

relational model principles. Often it is built on NoSQL storage, 

Hadoop, Search Engines and is highly effective for processing 

semi and unstructured data. 

 
Consequences: 

★★ Ad-hoc analysis - ad-hoc real-time query support is more difficult than 

in relational architecture 

★★½ Real-time analysis – real-time with one-at-a-time processing 

★★★ Unstructured data processing – supports easy storing and 

processing of semi and unstructured data 

★★★ Scalability – can scale keeping petabytes 

★★★ Cost economy – cost minimized due to open-source technologies 

 

Sample implementations: Data Discovery, Data Lake, Operational 

Intelligence, Business Reporting 
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Lambda Architecture (Hybrid) 

Reference Architecture for Data Analytics 

 

Description: This reference architecture enables real-time 

operational and historical analytics in the same solution. While 

the batch layer is based on non-relational techniques (usually 

Hadoop), the speed layer is based on streaming techniques to 

support strict real-time analytics requirements. 

 
Consequences: 

★★ ½ Ad-hoc analysis - ad-hoc real-time query support is more difficult 

than in relational architecture 
★★★ Real-time analysis – streaming approach with low data latency 

★★★ Unstructured data processing – supports processing of semi and 

unstructured data 

★★★ Scalability – can scale keeping petabytes 

★★★ Cost economy – cost minimized due to open-source technologies 

 

Sample implementations: Real-time Intelligence, Data Discovery, 

Business Reporting 

Batch Layer Serving Layer

Speed Layer

Master 
Dataset

Data 
Stream

Real-time 
Views

Pre-Computing Batch Views

Query & 
Reporting

Data Refinery (Hybrid) 

Reference Architecture for Data Analytics 

 

Description: This reference architecture is a mix of relational and 

non-relational techniques. Non-relational part acts as an ETL to 

refine semi and unstructured data and load it cleansed into 

relational data warehouse for further analysis. 

 
Consequences: 

★★★ Ad-hoc analysis – supports complex ad-hoc real-time read queries 

★ Real-time analysis – data latency is high due to batch processing 

★★★ Unstructured data processing – supports processing of semi and 

unstructured data 

★★ Scalability – can run terabytes with MPP and clustering capabilities 

★ Cost economy – MPP RDBMS license cost is quite expensive 

 

Sample implementations: Data Discovery, Business Reporting, 

Enterprise Data Warehousing 
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Data Collector 

Family/Integration/Messaging 

 

Description: This pattern aims to collect, aggregate and transfer 

log data for later use. Usually Data Collector implementations 

offer out of the box plug-ins for integrating with popular event 

sources and destinations. 

 

 

 

 
 

 

Consequences: 

★★ Performance – can handle large amounts of data in real time 

★★★ Compatibility – can be plugged with popular event sources and 

destinations 

★★ Flexibility – imposes limitations on usage scenarios compared to the 

Message Broker pattern 

 

Sample implementations: Apache Flume, Logstash, Fluentd, 

Scribe 
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Distributed Message Broker 

Family/Integration/Messaging 

 

Description: This pattern is a descendant of a more traditional 

Message Broker, but offers high scalability by distributing 

messages across multiple nodes. Most implementations offer 

Pub/Sub and Peer-to-Peer modes. 

 

 

 
 

 

Consequences: 

★★★ Performance – can handle high throughput with low latency 

★ Compatibility – in most cases requires writing of custom code to be 

plugged with event producers and consumers 

★★★ Flexibility – can be used for multiple purposes – routing, 

transformation, aggregation, pub-sub, etc. 

 

Sample implementations: RabbitMQ, Apache Kafka, Apache 

ActiveMQ, Amazon SQS 
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Column-Family 

Family/Data Storage/NoSQL Database 

 

Description: Extends Key-Value databases by storing not strictly 

defined collections of one or more key-value pairs that match a 

record. Can be presented as two dimensional arrays whereby 

each key has one or more key-value pairs attached to it. 

 

 
 

Consequences: 

★★★ Performance – is extremely fast due to absence of schema 

definition, relational, transactional or referential integrity functionality 

★★★ Scalability – can be linearly scaled by splitting data across servers 

using hash value calculated based on a row key 

★★★ Availability – high availability is provided by clustering and 

distributed file system (e.g. HDFS) 

★ Ad-hoc Analysis – supports secondary indexing, but no aggregate 

functions 

 

Sample implementations: Cassandra, HBase 

Document-Oriented 

Family/Data Storage/NoSQL Database 

 

Description: Works similarly to Column-Family database, but 

allows much deeper nesting and complex structures to be stored 

(e.g. a document, within a document, within a document). 
Documents overcome constraints of one or two level of key-value 

nesting of Column-Family databases. Complex and arbitrary 

structure can form a document, which can be stored as a record. 

 

 
Consequences: 

★★ Performance – performance varies significantly from one 

implementation to the next, but overall not as fast as Key-Value databases 

★★★ Scalability – over 100 organizations run clusters with 100+ nodes. 

Some clusters exceed 1,000 nodes 

★★★ Availability – high availability is provided by clustering and 

replication 

★½ Ad-hoc analysis – somewhat better than other NoSQL families, but still 

not as good as relational databases or interactive query engines 

 

Sample implementations: MongoDB, CouchDB 

Distributed File System 

Family/Data Storage 

 

Description: The modern distributed file systems are highly fault-

tolerant and designed to run on low-cost hardware. Open source 

implementations such as HDFS (Hadoop Distributed File System) 

and CFS (Cassandra File System) provide high throughput access 

to application data and are suitable for applications that process 

large data sets. 

 

  
 

Consequences: 

★★ Performance – designed for fast sequential read/write access, really 

good for batch processing (Map Reduce). For random read/write 

recommended using NoSQL databases (e.g. HBase on top of HDFS). 

★★★ Scalability – massively and linearly scalable, number of nodes 

theoretically is unlimited, existing production clusters with up to 10,000 

nodes 

★★★ Availability – default replication of data to 3 nodes, rack and 

datacenter-awareness, no single-points of failure 

 

Sample implementations: Hadoop Distributed File System 

(HDFS), Cassandra File System (CFS) 

Interactive Query Engine 

Family/Analytics/Search & Query 

 

Description: Distributed Query Processor is aimed for running 

batch as well as interactive analytic queries against data sources 

of large size. 

 

 
 

Consequences: 

★★ Performance – can query large amounts of data in human-time (2-30 

seconds), however still not as fast as relational data warehouse 

★★½ Reliability – some implementations provide long-running query 

support and mid-query fault recovery 

★★★ Ad-hoc analysis – best in class, similar to relational MPP data 

warehouse engines 

 

Sample implementations: Impala, Apache Hive, Spark SQL 
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CouchDB 

Technology/Data Storage/NoSQL Database/Document-Oriented 

 

Description: CouchDB is a database that embraces the web by 

storing data with JSON documents; allowing accessing data via 

HTTP; indexing, combining, and transforming your documents 

with JavaScript. CouchDB works well with modern web and 

mobile apps, supports incremental replication and master-master 

setups with automatic conflict detection. 

 
Consequences: 

★★ Performance – fast for direct ID lookups and map-reduce jobs, but 

that’s it. Users reported performance issues. 

★ Reliability – serious problems with reliability and availability were 

reported by users despite functionality like replication and automatic 

conflict resolution. Not yet suitable for highly-available or heavy-loaded 

solutions. 

★ Ad-hoc analysis – CouchDB is generally queried by direct ID lookups and 

is not designed for ad-hoc despite secondary indexes and full-text search 

support 

★★★ Real-time analysis – fast ID lookups and fast aggregation calculation 

using map-reduce 

★★★ Ease of use – HTTP-based API makes it very easy to use and 

integrate with web applications. Administration of DB could be made using 

HTTP API too. 

Distributed Search Engine 
Family/Analytics/Search & Query 

 

Description: Scalable indexing solution with full-text, interactive 

search. Most implementations provide API that allows executing 

complex queries on semi-structured data such as logs, web pages 

and document files. 

 

 

 
 

 

Consequences: 

★★ Ad-hoc analysis – query languages often include faceted and 

geospatial search, stat functions and simple joins to query, analyze and 

visualize data 

★★★ Scalability – can be linearly scaled by providing distributed indexing 

★★★ Availability – high availability is provided by clustering and 

replication 

 

Sample implementations: Elasticsearch, Apache Solr, Splunk 
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