
Page 1 of 14

ASEET TUTORIAL TIMELINE
TIME: ACTIVITY [PERSON]

000: TUTORIAL INTRODUCTION [J]
005: CC2020 PROJECT OVERVIEW AND COMPETENCY [J]
020: SWECOM MODEL OVERVIEW AND SKILLS [P]
030: INDUSTRY PERSPECTIVES, GRADUATE ATTRIBUTES [P]
040: SWE CC2020 DRAFT COMPETENCIES [N]
050: Q&A ON PRESENTATIONS [ALL]
055: ACTIVITY 1 INSTRUCTIONS [J,P,N]
060: BREAKOUT1: CC2020/SWECOM SAMPLES [A]
075: DISCUSSION: COMPETENCIES FOR SWE [ALL]
090: PAUSE/BREAK
100: ACTIVITY2 INSTRUCTIONS [N, P, J]
105: BREAKOUT2: CREATE SWE COMPETENCIES [A]
135: REPORT BACK [ALL]
155: FUTURE SWE EDUCATIONAL ACTIVITIES [ALL]
170: CLOSING REMARKS [P, N, J]
180: ADJOURNMENT [ALL]

A=Audience, N=Nancy, P=Pierre, J=John, All=Everyone

CC2020 Report (2020)

http://www.cc2020.net/
https://cc2020.nsparc.msstate.edu/

SWECOM Report (2014)

https://ieeecs-media.computer.org/media/education/swebok/swecom.pdf

Page 2 of 14

The CC2020 Competency Model

The CC2020 project specifies competency to be three components within the performance of a
task in context.

Competency = [Knowledge + Skills + Dispositions] in Task/Context

 Figure A illustrates the meaning of competency taken from the CC2020 report.
 It illustrates a structure of knowledge, skills, and dispositions that are observable in the

accomplishment of a task in context.
 Competency emphasizes the overlapping or intersection of knowledge, skills, and

dispositions. That is, competency must involve all these three components.

Figure A

Knowledge is the “know-what” dimension of competency that is factual.

Skills express the “know-how” and usually develop over time and with practice.

Dispositions frame the “know-why” dimension of competency, which prescribes a requisite
character or quality in task performance.

Task is the construct that frames the skilled application of knowledge and makes dispositions
concrete.

Page 3 of 14

Software Engineering Knowledge Elements

Table A identifies software engineering knowledge elements from CC2020 (Appendix C.2.5)
which are derived notably from SE2014. Appendix C.2.5 appears at the end of this document.

Table A
Software Engineering Knowledge Elements (in alphabetical order)

Behavioral Attributes

Human-Computer Interaction
Project Management

Software Configuration Management
Software Construction

Software Design
Software Measurement

Software Process and Life Cycle

Software Quality
Software Requirements

Software Safety
Software Security

Software Sustainment
Software Systems Engineering

Software Testing

Page 4 of 14

Professional Knowledge Elements

Table B shows thirteen professional knowledge elements with their meaning as presented in the
CC2020 report.

Table B
Professional Knowledge Elements from CC2020

Knowledge Elements Meaning

Analytical and Critical Thinking:
A mental process of simplifying complex information
into basic parts and evaluating results to make proper
decisions.

Collaboration and Teamwork: Apportion challenging tasks into simpler ones and
then work together to complete them efficiently.

Ethical and Intercultural Perspectives:
Ethical perspectives are the different viewpoints
someone uses to view a problem in the context of
individual human values.

Mathematics and Statistics: Use of numbers and theories abstractly especially in
the collection and analysis of numerical data

Multi-Task Prioritization and Management:
Processing several issues or tasks at once while
arranging them according to importance to do specific
one first.

Oral Communication and Presentation:
Conveying a message orally using real-time
presentations with visual aids related to audience
interests and goals.

Problem Solving and Trouble Shooting: A logical and orderly search for the source of a unit
problem and making the unit operational again.

Project and Task Organization and Planning:
A process to provide decisions about a project
concerning organization and planning to achieve a
successful result.

Quality Assurance / Control:
Use of techniques, methods, and processes to identify
and prevent defects according to defined quality
standards.

Relationship Management:
A strategy to maintain an ongoing level of
engagement usually between a business and its
customers or other businesses.

Research and Self-Starter/Learner: Someone who begins or undertakes work or a project
without needing direction or encouragement to do so.

Time Management:
An ability to use a person’s time effectively or
productively to work efficiently in multiple
environments.

Written Communication:
Use of a written form of interaction between people
and organizations that provides an effective way of
messaging.

Page 5 of 14

Levels of Cognitive Skills

Table C describes six skill levels as they appear in the CC2020 report. These skill levels are
commensurate with modern taxonomies to describe levels of performance.

Table C
Levels of Cognitive Skills from CC2020

Remembering Understanding Applying Analyzing Evaluating Creating
Exhibit

memory of
previously

learned
materials by

recalling facts,
terms, basic

concepts, and
answers

Demonstrate
understanding

of facts and
ideas by

organizing,
comparing,
translating,

interpreting,
giving

descriptions.

Solve
problems to

new
situations by

applying
acquired

knowledge,
facts,

techniques,
and rules in a
different way

Examine and
break

information
into parts by
identifying
motives or

causes; make
inferences

and find
evidence to

support
solutions.

Present and
defend

opinions by
making

judgments
about

information,
validity of
ideas, or
quality of
material.

Compile
information
together in a
different way
by combining
elements in a
new pattern
or proposing
alternative
solutions.

Page 6 of 14

Dispositional Elements

Table D describes eleven dispositional elements as they appear in the CC2020 report. The set of
dispositions is an essential characteristic of a well-structured competency.

Table D
Elements of Dispositions from CC2020

Element Elaboration Element Elaboration

Proactive: With initiative, self-starter,
independent Adaptable: Flexible; agile, adjust in response

to change
Self-

directed:
Self-motivated, determination,
independent Collaborative: Team player, willing to work

with others

Passionate: Conviction, strong
commitment, compelling Responsive: Respectful; react quickly and

positively
Purpose-

driven:
Goal-driven, achieve goals,
business acumen Meticulous: Attentive to detail;

thoroughness, accurate

Professional: Professionalism, discretion,
ethical, astute Inventive: Exploratory. Look beyond simple

solutions

Responsible: Use judgment, discretion, act
appropriately

Page 7 of 14

SWECOM Skill Areas

Table E lists the Software Engineering Life Cycle Skill Areas and Software Engineering Cross
Cutting Skill Areas as they appear in the SWECOM report.

Table E

Software Engineering Skill Areas from SWECOM
Software Engineering
Life Cycle Skill Areas

Software Engineering
Crosscutting Skill Areas

Software Requirements Skills
Software Design Skills

Software Construction Skills
Software Testing Skills

Software Sustainment Skills

Software Process and Life Cycle Skills
Software Systems Engineering Skills

Software Quality Skills
Software Security Skills
Software Safety Skills

Software Configuration Management Skills
Software Measurement Skills

Human-Computer Interaction Skills

Page 8 of 14

Competency Cluster Template

It is possible to take the suggested elements to create a competency cluster based on knowledge
(computing and professional knowledge), cognitive skills, dispositions, and SWECOM attributes.
The elements derive from relevant tables A, B, C, D, and E in Figure B, combined from CC2020
and SWECOM.

Name of Area

Competency Statement

A sentence to describe the competency.

Knowledge Elements
[Tables A and B]

Skills Level
[Table C]

Software Engineering Knowledge Element 1 Skill level 1
Software Engineering Knowledge Element 2 Skill level 2
Software Engineering Knowledge Element 3 Skill level 3
Software Engineering Knowledge Element 4 Skill level 4

-
Software Engineering Knowledge Element m Skill level m

Professional Knowledge Element 1 Skill level 1
Professional Knowledge Element 2 Skill level 2
Professional Knowledge Element 3 Skill level 3
-
Professional Knowledge Element n Skill level n

Dispositions

[Table D]
Disposition
Element 1

Disposition
Element 2 - - - - - - - - - - Disposition

Element k

SWECOM Skill Areas
[Table E]

SWECOM Skill Area 1
SWECOM Skill Area 2
SWECOM Skill Area 3

- - - - - - - - - -
SWECOM Skill Area p

Figure B. Template structure of a SWE competency cluster

Page 9 of 14

Sample SWE Competency: Example 1

Software Construction

Competency Statement

As a member of a project team, evaluate a software system against modern
software practices such as defensive programming, error and exception

handling, and accepted fault tolerances in a runtime mode that considers
state-based table-driven constructions on a large project.

Knowledge Elements

[Tables A and B]
Skills Level

[Table C]
Software Construction Evaluating

Software Quality Analyzing
Software Security Applying

Software Configuration Management Understanding
Software Design Understanding
Software Testing Understanding

Software Sustainment Applying
Software Systems Engineering Understanding

Analytical and Critical Thinking Evaluating
Collaboration and Teamwork Applying

Quality Assurance and Control Evaluating
Written Communication Applying

Dispositions

[Table D]

Professional Responsible Collaborative Meticulous

SWECOM Skill Areas[Table E]

Software Design Skills
Software Construction Skills

Software Testing Skills
Software Sustainment Skills

Software Systems Engineering Skills
Software Quality Skills
Software Security Skills

Software Configuration Management Skills

Figure C. Sample SWE Competency Cluster 1

Page 10 of 14

Sample SWE Competency: Example 2

Software Requirements

Competency Statement
Verify and validate the requirements using standard techniques, including

inspection, modeling, prototyping, and test case development, as a
contributing member of a requirements team.

Knowledge Elements

[Tables A and B]
Skills Level

[Table C]
Software Requirements Evaluating

Software Quality Evaluating
Software Testing Applying

Human-Computer Interaction Understanding
Project Management Understanding

Software Design Understanding
 Software Process and Life Cycle Understanding

Software Safety Understanding
Software Security Understanding

Software Systems Engineering Understanding

Analytical and Critical Thinking Evaluating
Collaboration and Teamwork Applying
Quality Assurance / Control Evaluating

Written Communication Applying

Dispositions
[Table D]

Professional Responsible Collaborative Meticulous

 SWECOM Elements
[Table E]

Software Requirements Skills
Software Quality Skills
Software Testing Skills

Human-Computer Interaction Skills
Software Design Skills

Software Process and Life Cycle Skills
Software Security Skills
Software Safety Skills

Software Systems Engineering Skills

Figure D. Sample SWE Competency Cluster 2

Page 11 of 14

Instructions for Activity 1

• Split into teams as directed

• Read ASEET - Background-Instructions

• Read Sample SWE competencies: Example 1 and Example 2, pp. 9-10

• Use the next slide to reflect on the sample competencies

• Identify a team leader who will report the result of the team’s discussions

Consider the Following Points

Read the two example competencies and consider the following:

1. When you read each example competency, do you nod your head in agreement or scratch

your head trying to figure out the point?

2. Are the competencies written at a consistent level with one another?

3. How well do they relate to the SWECOM material presented earlier?

Page 12 of 14

C.2.5: Software Engineering Draft Competencies

Software Requirements
1. Identify and document software requirements by applying a known requirements elicitation technique in work sessions with

stakeholders, using facilitative skills, as a contributing member of a requirements team.
2. Analyze software requirements for consistency, completeness, and feasibility, and recommend improved requirements

documentation, as a contributing member of a requirements team.
3. Specify software requirements using standard specification formats and languages that have been selected for the project, and

be able to describe the requirements in an understandable way to non-experts such as end users, other stakeholders, or
administrative managers, as a contributing member of a requirements team.

4. Verify and validate the requirements using standard techniques, including inspection, modeling, prototyping, and test case
development, as a contributing member of a requirements team.

5. Follow process and product management procedures that have been identified for the project, as a contributing member of the
requirements engineering team.

Software Design
1. Present to business decision makers architecturally significant requirements from a software requirements specification

document.
2. Evaluate and compare tradeoffs from alternative design possibilities for satisfying functional and non-functional requirements

and write a brief proposal summarizing key conclusions for a client.
3. Produce a high-level design of specific subsystems that is presentable to a non-computing audience by considering

architectural and design patterns.
4. Produce detailed designs for a client for specific subsystem high-level designs by using design principles and cross-cutting

aspects to satisfy functional and non-functional requirements.
5. Evaluate software testing consideration of quality attributes in the design of subsystems and modules for a

developer/manufacturer.
6. Create software design documents which communicate effectively to software design clients such as analysts, implementers,

test planners, or maintainers.

Software Construction
1. Design and implement an API using an object-oriented language and extended libraries, including parameterization and

generics on a small project.
2. Evaluate a software system against modern software practices such as defensive programming, error and exception

handling, accepted fault tolerances, in a runtime mode that considers state-based table-driven constructions on a large
project, as a member of a project team.

3. Develop a distributed cloud-based system that incorporates grammar-based inputs and concurrency primitives for a medium-
size project and then conduct a performance analysis to fine-tune the system, as a member of a project team.

Software Testing
1. Perform an integrative test and analysis of software components by using black-box and use case techniques in collaboration

the clients.
2. Conduct a regressive test of software components for a client that considers operational profiles and quality attributes specific

to the application in accordance with empirical data and the intended usages.
3. Conduct a test utilizing appropriate testing tools focused on desirable quality attributes specified by the quality control team

and the client.
4. Plan and conduct process to design test cases for an organization using both clear- and black-box techniques to measure quality

metrics in terms of coverage and performance.

Software Sustainment
1. Describe the criteria for transition into a sustainment status and assist in identifying applicable systems and software

operational standards.
2. Relate to the needs of operational support personnel for documentation and training, and help develop software transition

documentation and operational support training materials.
3. Help in determining the impacts of software changes on the operational environment.
4. Describe the elements of software support activities, such as configuration management, operational software assurance, help

desk activities, operational data analysis, and software retirement.
5. Perform software support activities; and interact effectively with other software support personnel.
6. Assist in implementing software maintenance processes and plans, and make changes to software to implement maintenance

needs and requests.

Page 13 of 14

Software Process and Life Cycle
1. Engage with a team to translate a software development process into individual areas of responsibility.
2. Commit to and perform tasks related to assigned or agreed upon areas of responsibility. [MEE: Would it make sense to

designate "on time, or "with a reasonable explanation for and plan for addressing delays"]
3. Propose and provide a justification for software lifecycle process improvements based on team capacity, project progress data,

and quality analysis as part of a software development team's retrospective activities.

Software Systems Engineering
1. Provide a description of system engineering concepts and activities to identify problems or opportunities, explore alternatives,

create models and test them.
2. Develop the big picture of a system in its context and environment in order to simplify and improve system architectures for

supporting system designers.
3. Develop interfaces, which interact with other subsystems. Use information hiding to isolate the contents and collaborations

within subsystems, so that clients of the subsystem need not be aware of the internal design of subsystems.
4. Work effectively with engineers and developers from other disciplines to ensure effective interaction.

Software Quality
1. Distinguish quality attributes that are discernable at run-time (performance, security, availability, functionality, usability),

from those not discernable at run-time (modifiability, portability, reusability, integrability, and testability), and those related
to the intrinsic qualities of architecture and detailed design (conceptual integrity, correctness, and completeness). [Based on
SWEBOK 2014]

2. Design, coordinate, and execute, within a project team, software quality assurance plans for small software subsystems and
modules, considering the way in which quality attributes are discernable. Correspondingly, measure, document, and
communicate appropriately the results.

3. Perform peer code reviews for evaluating quality attributes that are not discernable at run-time.
4. Explain the statistical nature of quality evaluation when performed on software execution; develop, deploy and implement

approaches to collect statistical usage and testing outcome data; compute and analyze statistics on outcome data.
5. Interact with external entities including clients, users, and auditing agencies in conveying quality goals for processes and

products.

Software Security
1. Apply the project’s selected security lifecycle model (e.g. Microsoft SDL), as a contributing member of a project team.
2. Identify security requirements by applying the selected security requirements method, as a contributing member of a software

project team.
3. Incorporate security requirements into architecture, high-level, and detailed design, as a contributing member of a software

project team.
4. Develop software using secure coding standards.
5. Execute test cases that are specific to security.
6. Adhere to the project’s software development process, as a contributing member of a software project team.
7. Develop software that supports the project’s quality goals and adheres to quality requirements.

Software Safety
1. Describe the principal activities with the development of software systems, which involve safety concerns (activities related

to requirements, design, construction, and quality);
2. Create and verify preliminary hazard lists; perform hazard and risk analyses, identify safety requirements;
3. Implement and verify design solutions, using safe design and coding practices, to assure that the hazards are mitigated and the

safety requirements are met;
4. Be aware of the consequences of the development of unsafe software, that is, the negative affect on those who use or receive

services from the software.

Software Configuration Management

[None]

Software Measurement
1. Develop and implement plans for measurement of software processes and work products using appropriate methods, tools,

and abilities.

Human-Computer Interaction

[None]

Page 14 of 14

Project Management
1. Explain the principal elements of management for a small project team;
2. Assist in the managerial aspects of a small project team, including software estimation, project planning and tracking, staffing

and resource allocation, and risk management;
3. Develop and implement plans for measurement of software processes and work products using appropriate methods and tools.
4. Work effectively with other team members in project management activities.

Behavioral Attributes
1. Engage with team members to collaborate in solving a problem, effectively applying oral and/or written communication skills.

Work done towards team effort is accomplished on time; it is in compliance with the role played in the team: it uses established
quality procedures; and it advances the team effort.

2. Assist in the analysis and presentation of a complex problem, taking into account the needs of stakeholders from diverse
cultures, needs, and/or geographic locations. Help in developing a solution for the problem and presenting it to stakeholders,
explaining the economic, social and/or environmental impact of the proposed solution. Identify areas of uncertainty or
ambiguity, and explain how these have been managed.

3. Analyze software employment contracts from various social and legal perspectives, ensuring that the final product conforms
to professional and ethical expectations, and follows standard licensing practices.

4. Locate and make sense of learning resources, and use these to expand knowledge, skills, and dispositions. Reflect upon one’s
own learning and how it provides a foundation for future growth.

Number of Draft Competencies = 56

Software Engineering Subgroup Members who are Task Force Members

Nancy Mead (Leader)
Hala Alrumaih
Marisa Exter
Rich LeBlanc
John Impagliazzo
Barbara Viola

Software Engineering Subgroup Members who are not Task Force Members (Contributors)

Kai H. Chang, Auburn University
Dick Fairley, Software and Systems Engineering Associates
Kevin Gary, Arizona State University
Thomas Hilburn, Embry-Riddle Aeronautical University
Gabriel Tamura, Universidad Icesi, Colombia
Chris Taylor, Milwaukee School of Engineering
Jim Vallino, Rochester Institute of Technology
Norha M. Villegas, Universidad Icesi, Colombia

	Competency = [Knowledge + Skills + Dispositions] in Task/Context
	Figure A
	Table A
	Software Engineering Knowledge Elements (in alphabetical order)
	Table C
	Levels of Cognitive Skills from CC2020
	Table D
	Elements of Dispositions from CC2020
	Table E
	Software Engineering Skill Areas from SWECOM
	C.2.5: Software Engineering Draft Competencies

