A Generic Computer Support for Concurrent Design

Jaagues Lonchamp
LORIA, BP 254, 54500/ andoauvre-lés-Nancy, France
Jaagues.Lonchamp@loria.fr

Abstract

Concurrent Design (CD) involves collabaration,
coordination, and information-based co-dedsion making
within a pdentially distributed multifunctiond team. This
paper shows that a generic processcentered environment
kernel, based on fine grain and aedsion-oriented task
modeling, using customizable product models, providing
capabhliti es for task model refinement at run time, and
true ollabaration suppat, is a good canddate for
building dedicated computer aided CD environments.
DOTS (‘Dedsion-Oriented Task Suppot), a Java
prototype of such a generic environment kernel, is
described in this paper and its usage in the CD
apgication damain is discussd.

1 Introduction

The reseach described in this paper deds with
computer suppat for Concurrent Design (CD), i.e., for
the ealy phases of the Concurrent Engineging process
During CD, multifunctional teans, possbly distributed in
time and space work together for designing some
prodwct. In such a setting an efficient suppat for
collabaration, coordination, and information-based co-
dedsion making is needed.

Collaboration can be defined as a group process in
which the group has common gals and produces one
unanimous result (i.e,, contributions are no longer
attributes to group members, and the whale group takes
resporsibility for the result). Information sharing is the
basic prerequisite for collaborative work: it implies
common data models, shared data, and controlled access
to them [1]. But data sharing is not sufficient for
establi shing and maintaining atrue ‘ shared understanding
among the participants. Knowledge integration is also
required, for instance through colledive idea generation
and dscusson. In fad, a ‘common information space is
negatiated bythe adorsinvolved [2].

Coordination is concened bah with the
synchronization of adivities (sometimes cdled ‘adivity-
level coordination’” [3]) and the synchronization of
concurrent access to shared oljeds (cdled ‘objed-level
coordination’ [3]). Design proceses are mmplex and
intelledually demanding, and cannot be @mpletely
ceptured in a fixed process definition beforehand. To
achieve flexible adivity-level coordination, fadliti es are
needed to suppat design process modeling, model
exeaution, and (possbly collaborative) model refinement
at runtime.

Co-dedsion makingis central to CD [1]. It implies first
dlocdion and sharing of responsibilities among the
participants, and seaondly, flexible suppart for various co-
dedsion making processs.

The objedive of this paper is to show that a generic
processcentered kernel, based on fine grain and etdsion-
oriented task modeling, using customizable product
models, providing cgpabiliti es for task model refinement
at run time, and true ollaboration suppat, is a good
candidate for building dedicated computer aided CD
environments, becaise it takes in acount explicitly the
three a@peds above-mentioned. The paper describes
DOTS (‘Dedsion-Oriented Task Suppat’), a Java
prototype of such a generic kernel, and discusss its usage
in the CD applicaion domain.

We begin the paper by defining the general objedives
of DOTS projed. We then describe, in sedion 3 its
conceptual meta model, with a particular emphasis on the
argumentative reasoning asped. In sedion 4, we discuss
the achitedure and wsage of the aurrent prototype, and
we offer a small example of use in the CD domain. The
paper closes by oulining further research dredions.

2 The Objectives

This sdion summarizes the main objedives and
requirements of DOTS projed. They were daborated with
diff erent appli cation domainsin mind.

(1) The system shoud suppat a smal group d
people (from two to lessthan ten) participatingin a
collaborative task, mainly distributed in time
(asynchronous) and space ‘occaiondly
synchronows’ work shoud aso be cnsidered. The
coordination with ather individual or collaborative
tasks, i.e., the dasdcd workflow asped, is left
outside DOTS prototyping eff ort because two ather
projeds in the same reseach tean focus on
different aspeds of Java-based workflow suppat
[4,5].

(2) The system shoud suppat a range of tasks,
through a generic infrastructure, parameterized by
a task model; this model shoud be often the
customization d a basic library model, with some
aspeds that could remain urresolved urtil the
exeaution (dynamic task model refinement).

(3) The system shoud provide an efficient asdstance
in three domains. guidance (i.e., task performance
asdstance and task model refinement asdstance),
argumentation and dedsion asdstance and goup
awareness(both asynchronous and synchronots).

(4) The projeda shoud provide a ©@mplete system for
initial model development (editing, compili ng, and
verifying), system deployment suppat (installing
and instantiating), and model exeaution and
dynamicd refinement. In simple cases, it shoud be
posdble to generate afully operational customized
system from the task model and from the standard
kernel. In more @mmplex cases, the environment
designer shoud have to customize the generic
product and tod types, and rarely shoud have to
work at the generated code level.

(5) Both the etire infrastructure (client, server,
development toadls) and the generated code shoud
be Java mde, mainly for taking advantage of Java
platform portability property.

(6) The projea shoud provide alibrary of generic
task models for brainstorming, colledive review/
inspedion, colledive nfrontation/merging o
conceptua descriptions, free agumentation (i.e.,
emulation d an argumentation goupware), etc.

The next four subsedions describe these perspedives
and the last subsedion emphasizes the agumentative
ressoning asped.

Task
model
I
Activity- Decision- Product- Organization-
oriented view | | oriented view | | oriented view oriented view

——Pp Whole-part link

Figure 1 The overall conceptual organization of a
task model.

3.1 Theactivity-oriented view

A collaborative task is dructured into pheses, in which
the nature of the work (see sedion 32), the number and
the identity of the participants can vary. During a phase
(individual or colledive) dedsions are taken that modify
the prodwcts under construction: operations are the
edementary chunks of work, triggered by a dedsion.
During a phase, participants can also fredy accesstools
for performing adivities not related to dedsions (e.g.
through qery tods, server-side scripts, client-side
external toadls). The adivity-oriented view of the task
model mainly describes the phase types, the operation
types, and the toadl types (seeFig. 2).

When the task model is instantiated, a graph o phase
instances is built, with phase precalence links. This
instantiation can take place éher staticdly (i.e., before
exeaution) or dynamicdly (i.e., during exeaution).

Activity-
oriented view
I
Phase type Operation type Tool type

| Give_access /]\

3 Theconceptual meta model ———> Semantic association at the type level
Figure 2 Main elements of the activity-oriented

In DOTS, atask model is described acrding to four view

perspedives: adivity-oriented, dedsion-oriented, product-
oriented, and aganizaion-oriented, as $own in Fig. 1.
Of course these perspedives are not independent and
there ae many relationships between them.

Fig. 3(a) shows sich an instantiated model describing
how a design daument is reviewed. First, the initial
document is written down (here, we do nd describe this

task in detals). Then, during the ‘Review model
refinement phase’, areview model is chaosen (individually
or colledively) and dyramicdly instantiated. In the first
refinement solution d Fig. 3(b), defeds are first proposed
individually and privately; then, during the ‘ Public defea
evaluation plese’, the proposed defeds are mlledively
discussed and evaluated, i.e., accepted o rgjeded; finaly,
the document editor modifies the document in acerdance
with the review results. Then a new review can take place
whose model is one more time dynamicdly chasen and
instantiated. A simpler review, withou private phases can
be sufficient at this ¢age a depicted by Fig 3(c).

Initial Review
document model
production refinement

phase phase

=

(& aninstantiated model including a model
refinement phase (with adoule frame).

v Publi
c .
Private d efela Document Review
review [P .| revison |—p mock
hese evaluation hase refinement
P phese P phase
=l
i (b) afirst refinement with private reviews
' andapublic evaluation.
\/
. Review
Public Document
document model
—» revison P oo
discusson
hase
P phase
phase

(c) asemndrefinement with a pubdic discusson.

Figure 3 A task model instance and two possible
refinements.

3.2. Thedecision-oriented view

An issue is a problem that must be solved, generally
concerning the products under construction. But the
choice between dfferent task refinements, as discussed in
the previous fdion, isalso an issue.

In most tasks, the different isae types are
progressvely taken into consideration. A phase is mainly
defined by the subset of the task isaue types taken in
consideration at this gage.

Several option types edfy how the isaie type can be
solved (eg., AcceptDefedOption, and ReedDefed
Option for Evaluate Defedlsaue).

At the level of the task exeaution, i.e., at the level of
the instances, users argue éou the options of ead isae
instance. The dedsion takes (more or lesg into acourt
this argumentation in relation with the resolution mode of
the isaue type (seebelow).

Arguments are instances of a single Argument type and
include afree textual rationale. Participants argue @&ou
the options and abou the aguments themselves. They can
aso gve qualitative preference onstraints between the
arguments (MorelmportantThan or >, LesdmportantThan
or <, EqualylmportantThan or =). Participants can also
argue dou the mnstraints: constraints as arguments are
refutable. All the time, the system computes ‘the best
solution’ in acordance with the airrent argumentation
state (seesedion 35); but the adual dedsionis generally
kept independent from the agumentation.

To eat option type can be asciated an operation
type. The operation is triggered when the option is
chaosen. This operation can modify:

- aproduct or one of its comporents (e.g. add adefea
to the list of proposed defeds); this product
evolution can in turn suggest new isaues,

- the task content (e.g. dynamica credion d isales,
options, phase instances, tools).

An option can aso terminate aphase (seeFig. 4).

Dedsion
oriented view
I
¢ Has_option, ¢ ¢ ¢
Issie Optiontype | | Argument | | Preference
type constraint
Contain Terminate Trigger

(the semantic assciations

Phase type Operationtype | a the instance level are

described in sedion 3.5)

Figure 4 Main elements of the decision-oriented
view.

The main charaderistic of an isauetypeisitsresolution
mode:

- individual: theissueis olved byits credor;
- individual Private: similar to the previous mode but

the isaue and its consequences are only visible by
the aedor of theisaue;

- collediveDemocratic: the resolution is colledive
becaise the solution is necessrily ‘the best
solution’ propcsed by the system (see sedion 35)
and at least two diff erent users must take part in the
argumentation;

- collediveAutocraticWithouJustification: the agu-
mentation is colledive but the choiceis individual
(autocratic); the choice is independent from the
best solution proposed by the system and daes not
require any formal justification;

- collediveAutocraticWithJustificaiion: the dhoiceis
autocratic but requires a forma judtification: an
explanation step follows the agumentation in
which only the dedsion-maker can argue in order
to make the best solution equal to higher own
solution.

From a dynamicd point of view, the life gycle of an
issle is a sequence of interadions (expresed below as
regular expressons):

- Raiselsaie: credes the isale instance (generaly
with parameters) and the @rrespondng ogion
instances,

- (GiveArg | GiveConstr) *: credes the agumentation
tree

- Solvelsaie: solves the isale and triggers the
operation associated to the dchasen opion (this
operation eneraly makes use of the iswe
parameters).

There eist two important simplified cases. For an
individual isaue with a single option, only Raiselsae is
necessry (al the remaining is automatic): the issueis just
an elementary adion. For an individual issue with several
options, only Raiselsaie and GiveArg are necessry: the
issle is just an individua choice between several
elementary adions, the agument can be understood as the
rationale for the individual choice

3.3. The product-oriented view

A product includes comporents at different levels of
granularity. Products are aurrently spedalized into textual
product, list product, image product, and gaph product
(seeFig. 5). A pardlel clasdficdion exists for tods (e.g.
textual viewers, list viewers, image viewers, graph
viewers). A minimum set of feaures is provided by these
generic types (such as automatic graph layout methods);
more spedfic feaures can be introduced through
spedalization a choice anong pedefined constraint
verificaion rules, in the spirit of generic concept map
editors aich as [6]. Andor goa structures or design
rationale descriptions are examples of spedalized graphs

useful in CD task models, which can be provided by a
customized kernel. Documents and tools can be
instantiated either staticdly or dynamicdly.

Product-
oriented view
* Crede
Product Modify | Operation
element Delete type
RIS SN
Product [Comporent
type [Se. Element type
<. T~~. Node
Textual || Image || List || Graph | FEd%e
roduct || produwct || product
produwct || p p proawet (- > isa

Figure 5 Main elements of the product-oriented
view.

3.4. The organization-oriented view

Actors (currently restricted to human participants) play
roles. Role types define what adors are dlowed to do(see
Fig. 6). Actors are instantiated staticdly or dynamicaly

Organization
oriented view
+ play +
Role type Actor
Can_Be_ Can_Be Raised_By
Can_Be_Participated_By
Started By Can_Be Solved_By
Phase
type Issle type

Figure 6 Main elements of the organization-
oriented view.

3.5. The argumentative reasoning aspect

The system provides participants means of expressng
their individual arguments and qualitative preferences, the
aim being the seledion d a cetain solution. We discuss
the evaluation procedure in two steps related to the
absence (presence) of qualitative preference onstraints.

Without preference constraints. The isale, the options,
the aguments ‘for' and ‘against’ the options, the
arguments ‘for’ and ‘against’ the aguments form an
argumentation tree A score and a status (adive, inadive)
that derive from the score charaderize eab nock of the
tree The score of a father noce is the sum of the weights
of its adive dild nodes that are ‘for’ their father minus
the sum of the weights of its adive dild nodes that are
‘against’ their father. If the score is pasitive the node is
adive otherwise it is inadive. Only status propagates in
the tree (because scores have no dobal meaning).

Withou preference onstraints, all nodes have the
same weight (for instance 5, midde of the abitrary
interval 0-10 wed in the next subsedion, where 10
denotes the maximum importance). Leaves are dways
adive. The preferred option (best solution d the isaue -
one or severa) has the maximum score anong all the
options (seeFig. 7).

With preference constraints. Preference mnstraints are
qualitative preferences between arguments of different
options (global constraint) or between arguments of a
same father argument (locd constraint). One agument
(source) is compared to the other (destination).

isauel

fc/ %gai nt for against
argument1 argument2 argument3 argument4
score=5 score=5 score=5 score = -5
status = adive | | Status = adive | | status = adive| | Status = inadive

T against

argument5

—— P instancelevel semantic link

score=5
status = adive

Figure 7 An argumentation tree without
constraint.

Consistency is evaluated when the nstraint is creaed
and evaluated when anather constraint becomesinadive.

To ead constraint is asciated a Constraintlsaue with
three positions. MorelmportantThan (>), Lesdmportant
Than (<), EqualylmportantThan (=). A congraint is
adive if both the aguments are adive, if one of its

options is chasen (score strictly higher than the others)
and if it is consistent with the other constraints (the
evaluation is based on a path consistency algorithm). For
instance, if argl, arg2, and arg3 have the same father, and
argl > arg2, arg2 > arg3, then arg3 > argl is inconsistent.
Thislast constraint becomes (provisionaly) inadive.

The weight of all arguments having the same isale &
grand father (global constraint) or the same agument as
father (locd constraint) is computed by the following
heuristics:

- al > relationships are defined by popagating them

aongthe = relationships,

- for ead argument arg involved in a constraint:

its max weight is computed, by subtrading 1
(starting from 10) for ead argi such argi > arg;

. its min weight is computed, by adding 1 (starting

from 0) for ead argument argj such arg > argj;

. its final weight is computed as the average of its

max and min weights.

. the weight of an argument not involved in any

constraint is kept to the average value (5);
- the rules of the previous item for computing the

scores and the status are @plied with these
computed weights.

option
score=1 score =
N s
argument1 argument2 argument3 argument4
score = 5,5 score = 4,5 ** score=5 score= -5
status = adive| | Status=adive | | status= adive| | status = inadive

destination

against T
constraintlsauel

arguments

score=5
status = adive

score=0

argumenté * 55=(10+1)/2

** 45=(9+0)/2

score=5
status = adive

Figure 8 The argumentation tree of Figure 7 after
introducing a constraint.

After ead modification the whole treeis re-evaluated:
for instance, inadivating an argument can re-adivate a
constraint that was inadive becaise it was inconsistent
with the former constraint, which changes the status of an
argument, which propagates on the upper level, and so on
As an illugtration, in Fig. 8 a @nstraint is added to the
argumentation treedepicted by Fig. 7. This argumentative
ressoning technique is based on bah Hermes and Zeno
approaches[7,8].

4. DOTSPROTOTYPE

4.1.The system ar chitecture

The system has a dient/server architedure aound an
objed database with a Java API. The database provides
persistency, consistency, safety, and seaurity.
Communication and ndificaion aspeds are managed by a
spedfic Java infrastructure. Persistency is conforming to
the ODMG Java hinding: persistent classes are dedared
staticdly and pre-processed before the Java compiler is
cdled. This makes impossbhle dynamicd schema
evolutions. So, in the aurrent prototype, we have chasen
to generate (transparently) one separate database for ead
version d atask model. All these databases are accesd
through a ‘super base’, and can be locaed on dfferent
machines. Each database mntains the kernel, one task
model version, and al the task instances conforming to
thismodel. If atask model ischanged, it ispossbleto run
instances of these two dff erent versions locaed in the two
diff erent databases.

The dient is independent of the task model. It is
written in Java axd swing. The development and
deployment environment includes three other tods, all
written in Java and swing: a development toal (editor and
compiler), an instantiation todl, and a static analyzer of
instantiated models.

4.2. Themain functionalities

The user enters the system with a registered user name
(creaed with the instantiation tod and kept in the ‘super
base’), in ore of the task instances in which he/she plays a
role. The user can then ad in acwmrdance with the task
model, the arrent task status, and his/her role. The user
receves a thredold assstance guidance (how to perform
the task and how to refine the task model), argumentation
and ceasion assstance, synchronows and asynchronois
group awareness

For task exeaution, the user can oltain the list of
possble next interadions in acmrdance with the airrent
task status and Hg/her role: isale types that can be raised,
isale instances that can be participated in, and solved,
phase instances that can be started, etc. Obvioudly only
those posdble interadions are acceted by the dient. The
user can aso access to dfferent textual and gaphicd
views of the task model and d the task history (with
colors highlighting for instance the adive dements).
Refining a task model is lving an isaue that defines the
different avail able solutions. As for ead isue some static
guidance is provided. Dedicaed tods (e.g. query tools)
can adso provide dynamicd information to make the
choice eaier.

At the agumentation level, the best option o ead
open isaue is own in color in the graphicd view, as the
adive aguments and constraints; scores and weights can
be displayed. The user can also list all open isauesthat are
currently inconclusive (no ogion with a higher score than
the others).

The main medanism for asynchronows awareness
shows what has evolved since the last conredion d the
same user in the same task (textual list, and spedfic color
in all graphicd views). For “occaiondly synchronos’
work, the user can oltain thelist of al the mwnneded users
in the same task, can recave the natificaion o all
constructive public adions from these other users in a
natificaiion window, and is warned when a document or a
graphicd representation bemmes out of date (its
badkgroundcolor changes).

Fig. 9 shows a dient during the evaluation ptese of a
simple review, whose model is diown in window 1.
Window 2 is the log window that contains the results of
the interadions (here, a “what can | do? " request).
Window 3 is the natificetion window: one can see that
ancther user haslogged in and hes proposed a new defed.
Window 4 is the NotY etEvaluatedDefed viewer too and
its content has become out of date dter the aedion o the
new defed (the out of date marker is the dark badkground
color). Window 5 shows graphicdly the aurrent state of
an iswe; this description as the task descriptionin window
1is up to date (white badkground. Icons with a mlored
frame highlight adive phases in windov 1 and adive
nodesin window 5.

4.3. A CD example

We onsider a multifunctional team of domain experts
participating in a ollaborative goal-direded aquisition
task. The objedive is to buld colledively a goal-subgc
structure for a particular system (and/or graph).

=2 Client DOTS
Fil Phase Argument

Issue Constraint Tool Guidance

Options

=1o] x|

B D$e P

E

& 2|PP

RANSICE

s‘ Log Window as %

ion Window

=8
3 %‘ DOTS-Client Info

DOTS: Login
Jacoues you are logoed for the review?2 process of the Model3 model

2

Egs

DOTS: What can | do 7
Mo phase can be started by you now
“ou can raise: ProposeDefectlssue EvalusteDefectissue
Mo izsue can be solved by you now
Mo argument can be given by you now

DOTS: Raise an lssue

—
ENmYetEvalumedDefenList

[The natifier has started
= khalid is looged

== |asue ProposeDefectlssue is raised

This iszue is no-choice and individual. s resolution is automatic
Iz=1e ProposeDetectissue-108 is sohved

The Defect has been created

Type the issue name : List

) [=] 3

Type the phase hame : |

List E

| CanceIX/H/ Continue ‘

i
EvaluateDefectissue Details
Guid =
Cancel X uldance
ic Erpilor cancel ¥ ‘ ‘ Continue |
Options
TerminateProposalOption-138
e
1 . / \ . . / \ .
. . . H
osalPhaseArgumem-20| |TerminateProposalPhaseArgumem-ZZ TerminateProposalPhaseArgument-21 | ‘Term\nateProposa\Pha
[‘PT OR SOUCE Asﬂnaﬂon Aw - /‘;BSt\na
[TheProposalPhase |—<—] TheSecondORFhase | [Conanzz]
\\ p N 5 »
H H
OR [T
B | |
g -0 | -0 | -] | N | -] |
TheEvaluationPhase . —
|KMore\mportam0ptlun-32 | ‘ KLessimportard dption-33 ‘ |KEquaHyImportam0ptlon-34 | ‘ Khlorelmportart Option-26 ‘ |KLessImportant'
P~ + , R
: :
ol ‘ rEDOTemHEH “ervt-35 ‘ TerminateProposalPhasedrgument-44 nﬁraimArgumem&B - lz
Figure 9 DOTS Client.

The task model organization. Classcd strategies can
apply: for instance a private brainstorming phese for
éiciting a maximum number of goas, followed by a
pubic discusson plese for seaching dupicae or
irrelevant proposas, followed by an initial goal structure
construction plese (for instance by the team lealer), and
terminated by an iterative review-revise ¢cle for
improving theinitial propcsal.

First, DOTS provides the aility to manipulate
graphicd goa structures (graph management, graph
layout, node epansion, etc.): the generic concept map
library can be astomized for this kind d graph, with
customized presentation charaderistics, and besic or
spedfic properties verification.

Private brainstorming can be suppated. In this mode,
eath participant canna see the proposals of the others.
Relaxed privacy is also posshle (e.g. with atod allowing
to see arandam choice of proposed gaals), as pubdic
brainstorming. Propcsing a new defed is just solving
individually a ProposeGoallssue, the agument being the
rationale of the propacsal.

In the pubic discusson plese, participants can raise
issues for resolving dupicaes, and for chalenging
irrelevant proposals. These isaues are discussed, posshly
with a very complex argumentation tree and solved in
acordance with some resolution mode (sedion Il1-B).
Asynchronous and ‘quasi synchronows (i.e. through
immediate natificaions and ou of date markers) working
modes are avail able.

The initial construction and the iterative review-revise
cycle ae similar to the processdiscussd in sedionllll -A.

By introdwcing in the goal structure notation oheds
which are procesor for adions and the ‘is resporsible
for and ‘wishes relations, more asdgstance can be
provided through g@l reduction heuristics [9]. In DOTS,
dedicated qLery tools can suggest possble goal reductions
(such as the list all goals for which the resporsibility is
shared among several agents that are candidate for further
reduction).

Thetask model specification. A task model isdivided in
two parts which describe the model spedfic entity types
(speddizaion d phase, isale, option, role, document,
tool, comporent, operation types) and the relationship
types between them (Contain, Give_Access Has Option,
Trigger, Terminate, Can_Be Started By, Can_Be_
Raised, Can_Be Participated By, Can_Be Solved_By,
Creae, Modify, Delete — seesedion 3.

The re part of ead task model spedfiesisaie types and
related operation types that aim at changing product
comporents. An isale type has aname, aresolution mode
(KIND), a bodean saying if the isue is a smple
aternative (in this case dl the agumentation takes place
on asingle option, otherwise it is necessary to argue ‘for’
and ‘againgt’ al the options), two bodeans sying if only
a single instance or a single adive instance can exist, the
parameters of the isaue (with the interadion messages and
possbly OQL queries for generating list boxes), a textual
description, and ogionaly a static guidance on how to
choose anongthe diff erent option types:

<i ssue-type- name>

KI ND <node>
TRUE_ALTERNATI VE <bool ean>
UNI QUE_I NSTANCE <bool ean>
UNI QUE_ACTI VE_I NSTANCE <bool ean>
PARAVETERS

(LABEL<nessage>

[QUERY <OQL-query>]";")*

END_PARAMETERS
DESCRI PTI ON <t ext >
[GUI DANCE <t ext >]

The document types and the todl types are dasdfied by
content: text, image, list (giving the comporent type
name), and gaph (giving the node type name, and the
edge type name). The @mporent types can have
attributes:

ATTRI BUTE_TYPES
(<type-nane> <attribute-name>
["=" <constant>] ";")*
END_ATTRI BUTE_TYPES

The operation types are described through a list of
elementary adion spedficaions (of type CREATE,
MODIFY, DELETE, EXECUTE - ascript -, MAILTO):

ACTI ON
(<action-specification> ";")*
END_ACTI ON

For instance, the ChallengeGoallsaue type of the pubic
discusdon phese is pedfied by

Chal | engeGoal | ssue
KIND col | ecti veDenocratic
TRUE_ALTERNATI VE true
UNI QUE_| NSTANCE f al se
UNI QUE_ACTI VE_I NSTANCE f al se
PARAVETERS
LABEL "G ve the goal identifier:
QUERY SELECT * FROM Mbdel . Goal Ext ent
VWHERE st atus = "proposed”;
/] paranmeter 1 with a |ist box
END_PARAMETERS
DESCRI PTION "Col | ecti ve eval uati on of one
of the individually proposed goal "
GUI DANCE " Choose either to reject the
goal or to keep it"

Two options types are asciated to ChallengeGoallsaue:
KeegGoaOption, and RejedGoaOption. RejedGoal
Option can trigger an operation o type Invalidate
GoalOperation:

I nval i dat eGoal Operati on

ACTI ON
MODI FY Goal PARAM 1) W TH status =
"refused";
/1 PARAM1) is a reference to the
/1 paraneter 1 of the associated issue
/Il type
END_ACTI ON

In more @mplex cases, the comporent can aso be
retreived through an OQL query, possbly including
references to the isaue parameters. Moreover, several
adions in the same operation can be related throughlocd
variables. The semnd example below shows the
dynamicd credion d a goa substructure, of the graph
document associated to this comporent, and d its viewer
toal:

Cr eat eGoal Substructure
ACTI ON
CREATE Goal Structure AS gstruct
/1 local variable gsstruct
W TH | Nane = PARAM 2)
W TH encl osi ngGoal Structure =

PARAM 1) ;
CREATE Goal SubGraph AS gsgraph
/1 local variable gsgraph
W TH referent = gsstruct
W TH referent Attri bute = "encl osi ng"
W TH conponent | conPath =
"I mages/ Goal Graph. A F";
CREATE Goal GraphVi ewer
W TH TheG aph = gsgraph
W TH | Nane = PARAM 3);
END_ACTI ON

The locd variables gsdruct and gsgraph are useful for
linking the threedynamicdly creaed comporents.

5. CONCLUSION

The generic infrastructure described in this paper aims
at asssting participants of dedsion-oriented collaborative
tasks. The @proach is manly based on fine-grain
modeling o these tasks and the use of different assstance
techniques. guidance, argumentative reasoning, group
awareness

To sum up, DOTS makes a synthesis of classcd
feadures of flexible generic process-centered
environments, of argumentation and dedsion suppat
systems, and d synchronow/asynchronows groupware
systems.

Most of existing CD environments just ad as a
repository for and a oontroller to design artifads (e.g.
CASCADE [1Q], CoConu [11], Flecse [12], SHARE
[13]). These systems do nd provide adivity-level
coordination suppat (process sippat). On the oppdite,
Workflow Management Systems (WFMS) suppat
predefined procedures and sometimes aso ad-hoc
proceses, but do nd have aequate suppat for
synchronows or asynchronows collaborative and co-
dedsion making adivities. Therefore, some gproaches
am at integrating more or less tightly WFMS and

Acknowledgements

We would like to thank all members of the ECOO
INRIA projed for helpful discussons.

References

[1] R. Reddy, K. Srinivas, V. Jagannathan, R. Karinthi,
"Computer Suppat for Concurrent Engineaing’, IEEE
Computer, Vol 27, pp 1216, 1993

collaboration todls (such as WoTédl [14] or iDCSS[15] in
the cncurrent engineaing damain). Only few systems
truly integrate mllaboration and coordination fadliti es.
SCOPE [16€] is the dosest system from DOTS: it provides
flexible suppat for spedficaion, modification,
monitoring, and exeaution o sesson-based collaborative
processes. However, DOTS argumentation suppat has no
courterpart in SCOPE.

From the concrete feasibility point of view, a previous
mock-up system written in Smalltalk had arealy
convinced us of the gproach interest, in particular
through a red size eperiment [17]. The fundamental
‘issie-argument-dedsion-operation’ cycle seams easy to
understand and se, even for inexperienced end users.

Our central claim is that building dedicated computer
aided environments (in the CD application damain for
instance) is made eaier with DOTS. The main part of the
work is to write the task model, possbly with model
refinement alternatives. It is worth naing that most
models will be onstructed as a mbination and
customization d generic building Hocks. Ancther part of
the work is to tailor the generic product and tod types,
such as OQL-based query tods for dynamic guidance
What is given for free ae the dient/server architedure,
the dient interface the seaure server storage, the process
engine, the agumentation engine, the guidance ad
awarenesscapabiliti es.

In the next future, we plan to use DOTS for studyingin
depth and systematicdly several collaborative tasks that
congtitute the basic building Hocks of many cooperative
processes, such as concept graph co-authoring, and
concept graph merging.

In a longer perspedive we want to investigate other
kinds of asdstance that could be plugged in DOTS
kernel. For instance, the wllaboration could take placenaot
only between human participants, but could be ssdsted by
software agents customized for participating to issue
instances production and, posshly, to issue instances
evaluation and resolution.

[2] K. Schmidt, L. Bannon "Taking CSCW Seriously ", CSCW
Int. Journdl, vol 1, 1/2, Kluwer Academic Publisher, pp 7-
40, 1992

[3] C. Ellis, J. Wainer, "A Conceptual model of Groupware”, in
Proceadings of ACM CSCW'94 | pp. 788, 1994

[4] K. Bendi, M. Munier, C. Godart, "Cooperation models in
co-design’, International Journa of Agile Manufaduring
(1JAM), 2, 2, 1999

[5] G. Cands, P. Molli, C. Godart, "Tuamotu: suppat for
telemoperative engineaing applicaions with replicated
versions', IGROUP Workshop, WorkingPaper B-56, Oulu

University Press www.idi.ntru.no/~igroup/proceeadings/
canals.doc, 1998

[6] R. Kremer, "Constraint Graphs. a @ncept map meta
language", PhD Thesis, University Of Cagary, www.
cpsc.ucdgary.ca~kremer/dissertation/index.html, 1997.

[7] N. Karacailidis, D. Papadias, "A group ddsion and
negotiation suppat system for argumentation based
resoning’, in Leaning and reasoning with complex
representations, LNAI 1266 Springer-Verlag, 1997.

[8] N. Karacgilidis, D. Pepadias, T. Gordon "An
argumentation besed framework for defeasible and
qualitative reasoning’, in Advances in Artificia
Intelligence LNAI 1159 Springer Verlag, pp 1-10, 1996

[9] A. Dardenne, S. Fickas, A. van Lamsweade, "Goal-direded
concept aquisition in requirements elicitation”, in
Procealings of 6th Int. Workshop on Software
Spedficaionand Design (IWSD), pp 1421, 1991

[10Q] C. Branki, "The ads of Cooperative Design”, CERAS, 3, 3,
pp 237245 1995

[11] U. Jasnoch, H. Kress K. Schroeder, M. Ungerer,
"CoConu: Computer-Suppat for Concurrent Design
using STEP", in Procealings Wetlce, 1994

[12] P. Dewan, J. Riedl, "Toward Computer-Suppated
Concurrent Software Engineaing’, IEEE Computer, Vol
27, pp 1727,1993

[13] G. Toye, M. Cutkosky, L. Leifer, J. Tenenbaum, J.
Glicksman, "SHARE: A Methoddogy and Environment
for Collaborative Product Development”, in Proceadings
of IEEE Infrastructure for Coll aborative Enterprises, 1993

[14] M. Weber, G. Partsch, S. Hoedk, G. Schneider, A. Scheller-
Houy, J.Schweitzer, "Integrating Synchronous Multimedia
Collaboration into Workflow Management”, in
Procealings of GROUP'97, pp 281290, 1997.

[15 M. Klein, "IDCSS Integrating Workflow, Conflict and
Rationale-based Concurrent Engineging Coordination
Tedhndogies', CERAS, 3, 1, 1995

[16] Y. Miao, J. Ha&e, Suppating Concurrent Design by
Integrating Information Sharing and Activity
Synchronizaion”,

[17] J. Lonchamp, B. Denis, "Fine-grained process modelling
for collaborative work suppat: experiences with CPCE",
Journal of Dedsion Systems, 7, Hermes, pp.263-282,
1998

