
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Engineering
SS 2006

Lecture 1: Introduction

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Intended audience

• Bachelor in Informatics
• Master in Informatics
• Bachelor in Information Systems
• Master in Information Systems
• Master in Applied Informatics
• Master in computational science and engineering

(CSE)
• Students taking Informatics as a minor

(“Nebenfach”).

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

• Appreciate Software Engineering:
• Build complex software systems in the context of

frequent change

• Understand how to
• produce a high quality software system within time while

dealing with complexity and change

• Acquire technical knowledge
• Acquire basic managerial knowledge

Objectives of the Class

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Assumptions for this Class

• Assumption:
• You are proficient in a programming language

• Preferably object-oriented such as Java or C++
• You have no experience in the analysis or design of a

system
• You want to learn more about the technical and

managerial aspects of the development of complex
software systems

• Beneficial:
• You have had practical experience with a large

software system
• You have already participated in a large software

project
• You have experienced major problems.

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Times and Locations
• Main lecture: HS 1, 00.02.001

• Tuesdays 12:45 - 13:30
• Wednesdays 8:30 - 10:00

• Exercises:
• Registration starts today at 15:00
• Registration ends Friday, April 20th 12:00
• Exercise sessions start on Monday, April 23th

• Written Exams:
• Mid-term: 2 June 2007, 13:00-15:00
• Final: 21 July 2007, 13:00-15:00

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Grading Criteria

The final grade is the weighted average of the mid term
(30%) and final grades (70%)

• To pass this course your final grade must be 4.0 or better
• Successful participation in the exercises is an admission

requirement for the final exam
• If you participation is excellent, you can get a bonus of 1/3

on the final grade (e.g., this can get you from 2.3 to 2.0)
• The bonus applies only if your grade is 4.0 or better

• Information on the participation is available on the
exercise portal

• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/SoftwareTechnikSoSe2
007Exercises

• Hours per week: 3 hours (lecture) + 1 hour (exercises)
• ECTS Credits: 5.0.

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Acquire Technical Knowledge

• Understand system modeling
• Learn about modeling notations (Unified

Modeling Language UML, Object Constraint
Language OCL)

• Learn about different modeling methods
• Learn how to use tools
• Become proficient in testing
• Become proficient in model-based software

development.

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Acquire Managerial Knowledge

• Learn the basics of software project
management

• Understand how to manage with a software
lifecycle

• Be able to capture software development
knowledge (Rationale Management)

• Manage change: Configuration Management
• Learn the basic methodologies

• Traditional software development
• Agile methods.

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of Today’s Lecture

• Modeling complex systems
• Dealing with change
• Concepts

• Abstraction
• Modeling
• Hierarchy

• Organizational issues
• Lecture schedule
• Exercise schedule
• Associated Project

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Can you develop this system?

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Can you develop this system?

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Can you develop this system?

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Can you develop this system?

The impossible
Fork

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Physical Model of the
impossible Fork (Shigeo Fukuda)

From: http://illusionworks.com/mod/movies/fukuda/DisappearingColumn.mov

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Physical Model of the
impossible Fork (Shigeo Fukuda)

From: http://illusionworks.com/mod/movies/fukuda/DisappearingColumn.mov

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Why is software development difficult?

• The problem domain (also called application
domain) is difficult

• The solution domain is difficult
• The development process is difficult to manage
• Software offers extreme flexibility
• Software is a discrete system

• Continuous systems have no hidden surprises
• Discrete systems can have hidden surprises! (Parnas)

David Lorge Parnas is an early pioneer in
software engineering who developed the
concepts of modularity and information hiding
in systems which are the foundation of
object oriented methodologies.

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Engineering is more than
writing Code
• Problem solving

• Creating a solution
• Engineering a system based on the solution

• Modeling
• Knowledge acquisition
• Rationale management

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Techniques, Methodologies and Tools

• Techniques:
• Formal procedures for producing results

using some well-defined notation

• Methodologies:
• Collection of techniques applied across

software development and unified by a
philosophical approach

• Tools:
• Instruments or automated systems to

accomplish a technique
• CASE = Computer Aided Software

Engineering

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Computer Science vs. Engineering
• Computer Scientist

• Assumes techniques and tools have to be developed.
• Proves theorems about algorithms, designs languages,

defines knowledge representation schemes
• Has infinite time…

• Engineer
• Develops a solution for a problem formulated by a client
• Uses computers & languages, techniques and tools

• Software Engineer
• Works in multiple application domains
• Has only 3 months...
• …while changes occurs in the problem formulation

(requirements) and also in the available technology.

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007
20

Challenge: Dealing with complexity and
change

Software Engineering is a collection of techniques,
methodologies and tools that help with the
production of

A high quality software system developed with a
given budget before a given deadline

 while change occurs

Software Engineering: A Working
Definition

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Software Engineering:
 A Problem Solving Activity
• Analysis:

• Understand the nature of the problem and break the
problem into pieces

• Synthesis:
• Put the pieces together into a large structure

For problem solving we use techniques,
methodologies and tools

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

You want to avoid this!

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Course Outline

Dealing with Complexity
• Modeling
• UML Notation
• Requirements Elicitation
• Requirements Analysis
• System Design
• Object Design
• Implementation & Testing

Dealing with Change
• Rationale Management
• Configuration

Management
• Software Project

Management
• Software Life Cycle
• Methodologies

Application of these Concepts in the
Exercises.

Lecture Schedule
April 17 Introduction April 18 Introduction to the UML Notation
April 24 Advanced concepts in UML April 25 Requirements Elicitation

May 1 System Modeling I May 2 System Modeling II
May 8 System Design I May 9 System Design II
May 15 Object Design: Reuse May 16 Intro: Design Patterns
May 22 Design Patterns I May 23 Design Patterns II
May 29 ----- (Holiday) May 30 Software Architecture

June 05 Object Design: Specification June 06 OCL (Object Constraint Language)
June 12 Change Management June 13 Mapping models to code
June 19 Unit Testing June 20 Integration Testing
June 26 System Testing June 27 Lifecycle Modeling

July 3 Risk Management July 4 Examples of Lifecycle Models
July 10 Agile Methodologies I July 11 Agile Methodologies II
July 17 Rationale Management July 18 Putting it all together

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Exercises

• The exercises will include a project based on
existing systems called Arena and Asteroids

• Arena is a game management system
• Asteroids is a specific game

• Both of these systems will also be used in the
lectures to illustrate and apply software
engineering concepts

• We will actually include one exercise into a lecture
• Details will be announced ahead of time

• Project specific models, documents and source
code will be made available incrementally during
the exercises.

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Asteroids

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Exercises

• The exercises are organized in groups coached
by tutors

• Each group has one exercise session (1 hour)
per week

• Registration, attendance in the exercise sessions
and accomplishment of the homework are
mandatory to pass the lecture.

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Exercise - Registration

• There are 19 time-slots with a limit of 20
participants each.

• Registration online:
https://grundstudium.informatik.tu-muenchen.de/anmeldung

• For the exercise registration you need a
certificate. See

• http://ca.informatik.tu-muenchen.de/userca/

• Registration starts today at 15:00
• Registion closes on Friday, April 20th at 12:00
• Exercises start on Monday, April 24th

• The starting times vary for the individual groups.

29© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Textbook

• Bernd Bruegge, Allen H. Dutoit:
• Object-Oriented Software Engineering: Using

UML, Design Patterns and Java, 2nd edition,
Prentice Hall, September 2003

• German Version:
• Bernd Brügge, Allen H. Dutoit: “Objektorientierte

Softwaretechnik mit UML, Entwurfsmustern und
Java, Pearson Education, Oktober 2004.

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

More Questions?

• Lecture Portal:
• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl

/SoftwareEngineeringSoSe2007
• The lecture slides will be posted in PDF format after the

lecture is given

• Exercise Portal:
• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/Softw

areTechnikSoSe2007Exercises

• What happens if I don’t really participate in the
exercises?

