
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Design:
Reuse

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 10

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Where are we? What comes next?

• We have covered:
• Introduction to Software Engineering (Chapter 1)
• Modeling with UML (Chapter 2)
• Requirements Elicitation (Chapter 4)
• Analysis (Chapter 5)
• Design Patterns (Chapter 8 and Appendix A)

• Today:
• Object Design (Chapter 8)

• Next week (Wednesday 30 May 2007)
• System Design (Chapter 6)

• Saturday 2 June 2007:
• Mid-Term.

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Details for the Mid-Term:
• Coverage:

• Lecture 1 - lecture 10 (this lecture)
• Textbook: Chapter 1 - 8 (Chapter 6 - 7 are not covered)

• Date: Saturday 2 June 2007, Location: MW 0001
• Closed book exam

• 13:00 to 14:30 am: 90 min
• Format: Paper-based, handwritten notes
• Questions about definitions and modeling activities

• Questions in English
• Answers in English or German
• Dictionaries are allowed

• For additional information, check the lecture portal
• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl/SoftwareEngineeringSoSe2007#GradingCriteria

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of Today

• Object Design
• Reuse examples

• Reuse of code, interfaces and existing classes

• White box and black box reuse
• The use of inheritance
• Implementation vs. specification inheritance
• Delegation vs. Inheritance
• Abstract classes and abstract methods
• Contraction: Bad example of inheritance
• Meta model for inheritance
• Frameworks and components
• Documenting the object design.

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Design

• Purpose of object design:
• Prepare for the implementation of the system model

based on design decisions
• Transform the system model (optimize it)

• Investigate alternative ways to implement the
system model

• Use design goals: minimize execution time, memory
and other measures of cost.

• Object design serves as the basis of
implementation.

System Development as a Set of Activities

Custom objects

Analysis

- System Design

 - Object Design

System Model

Design

Application objects

Solution objects

Existing Machine

Problem

Off-the-Shelf Components

Design means “Closing the Gap”

Example of a Gap:
San Andreas Fault

“Subsystem 1”: Rock material
from the Southern Sierra

Nevada mountains (moving north)

“Subsystem 2”: San Francisco
Bay Area

“Subsystem 3” closes the Gap:
San Andreas Lake

Design means “Closing the Gap”

Solution objects

System Model

Application objects

Custom objects

Off-the-shelf components

System design gap

Object
design gap

Requirements gap

Problem

Machine

Develop-
ment
Gap

“Higher level Virtual
Machine”

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

One Way to do System Design

• Component-Based Software Engineering
1. Identify the missing components
2. Make a build or buy decision to get the missing

component

• Special Case: COTS-Development
• COTS: Commercial-off-the-Shelf
• Every gap is filled with a commercial-off-the-shelf-

component.
=> Design with standard components

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Design with Standard Components is similar to
solving a Jigsaw Puzzle

Puzzle Piece
(“component”)

Design Activities:
1. Start with the architecture (subsystem decomposition)
2. Identify the missing component
3. Make a build or buy decision for the component
4. Add the component to the system (finalizing the design).

Next week‘s Lecture
(Chapter 6)

Standard Puzzles:
„Corner pieces have
two straight edges“

What do we do
 if that is not true?“

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What do we do if we have non-Standard
Components?

Advanced
Jigsaw Puzzles

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Customization Projects are like Advanced Jigsaw
Puzzles

http://www.puzzlehouse.com/_

Design Patterns!

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of Today

• Object Design
• Reuse examples

• Reuse of code, interfaces and existing classes

• White box and black box reuse
• The use of inheritance
• Implementation vs. specification inheritance
• Delegation vs. Inheritance
• Abstract classes and abstract methods
• Contraction: Bad example of inheritance
• Meta model for inheritance
• Frameworks and components
• Documenting the object design.

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Reuse of Code

• I have a list, but my customer would like to have a
stack

• The list offers the operations Insert(), Find(), Delete()
• The stack needs the operations Push(), Pop() and Top()
• Can I reuse the existing list?

• I am an employee in a company that builds cars
with expensive car stereo systems

• Can I reuse the existing car software in a home stero
system?

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Reuse of interfaces

• I am an off-shore programmer in Hawaii. I have a
contract to implement an electronic parts catalog
for an automotive company

• How can I be sure that I access the company’s database
correctly?

• I would like to develop a window system for Linux
that behaves the same way as in Vista

• How can I make sure that I follow the conventions for
Vista and not those for MacOS X?

• I want to develop a new service for cars, that
automatically calls a help center when the car is
involved in a crash

• Can I reuse the help desk software that I developed for a
company in the telecommuniction industry?

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Reuse of existing classes

• I have an implementation for a list of elements
of Typ int

• Can I reuse this list to build
• a list of customers
• a spare parts catalog
• a flight reservation schedule?

• I have developed a class “Addressbook” in
another project

• Can I add it as a subsystem to my e-mail program
which I purchased from a vendor (replacing the
vendor-supplied addressbook)?

• Can I reuse this class in the billing software of my
dealer management system?

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Customization: Build Custom Objects

• Problem: Close the object design gap
• Develop new functionality

• Main goal:
• Reuse knowledge from previous experience
• Reuse functionality already available

• Composition (also called Black Box Reuse)
• New functionality is obtained by aggregation
• The new object with more functionality is an

aggregation of existing objects

• Inheritance (also called White-box Reuse)
• New functionality is obtained by inheritance

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

White Box and Black Box Reuse

• White box reuse
• Access to the development products (models, system

design, object design, source code) must be available

• Black box reuse
• Access to models and designs is not available, or

models do not exist
• Worst case: Only executables (binary code) are

available
• Better case: A specification of the system interface

is available.

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Identification of new Objects during Object
Design

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Object Design
(Language of Solution

Domain)

Incident
Report

Text box Menu Scrollbar

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Application Domain vs Solution Domain Objects

Requirements Analysis (Language of Application Domain)

Subject

subscribe(subscriber)
unsubscribe(subscriber)
notify()

update()

Observer
*observers

Object Design (Language of Solution Domain)

ConcreteSubject
state
getState()
setState()

ConcreteObserver
observeState

update()

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Other Reasons for new Objects

• The implementation of algorithms may
necessitate objects to hold values

• New low-level operations may be needed during
the decomposition of high-level operations

• Example: EraseArea() in a drawing program
• Conceptually very simple
• Implementation is complicated:

• Area represented by pixels
• We need a Repair() operation to clean up objects

partially covered by the erased area
• We need a Redraw() operation to draw objects

uncovered by the erasure
• We need a Draw() operation to erase pixels in

background color not covered by other objects.

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Why Inheritance?

1. Organization (during analysis):
• Inheritance helps us with the construction of

taxonomies to deal with the application domain
• when talking the customer and application domain

experts we usually find already existing
taxonomies

2. Reuse (during object design):
• Inheritance helps us to reuse models and code to deal

with the solution domain
• when talking to developers

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

The use of Inheritance

• Inheritance is used to achieve two different goals
• Description of Taxonomies
• Interface Specification

• Description of Taxonomies
• Used during requirements analysis
• Activity: identify application domain objects that are

hierarchically related
• Goal: make the analysis model more understandable

• Interface Specification
• Used during object design
• Activity: identify the signatures of all identified objects
• Goal: increase reusability, enhance modifiability and

extensibility

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Inheritance can be used during Modeling
as well as during Implementation

• Starting Point is always the requirements
analysis phase:

• We start with use cases
• We identify existing objects (“class identification“)
• We investigate the relationship between these objects;

“Identification of associations“:
• general associations
• aggregations
• inheritance associations.

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
}

26© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Inheritance comes in many Flavors

Inheritance is used in four ways:

• Specialization
• Generalization
• Specification Inheritance
• Implementation Inheritance.

27© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Discovering Inheritance

• To “discover“ inheritance associations, we can
proceed in two ways, which we call
specialization and generalization

• Generalization: the discovery of an inheritance
relationship between two classes, where the sub
class is discovered first.

• Specialization: the discovery of an inheritance
relationship between two classes, where the
super class is discovered first.

28© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Generalization

• First we find the subclass, then the super class
• This type of discovery occurs often in science

Generalization Example: Modeling a
Coffee Machine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine
Generalization:
The class CoffeeMachine is
discovered first, then the class
SodaMachine, then the
superclass
VendingMachine

totalReceipts
cansOfBeer
cansOfCola

collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

30© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Restructuring of Attributes and Operations
is often a Consequence of Generalization

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMachine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

cansOfBeer
cansOfCola
chill()

SodaMachine

totalReceipts
numberOfCups
coffeeMix
collectMoney()
makeChange()
heatWater()
dispenseBeverage()
addSugar()
addCreamer()

CoffeeMachine

VendingMachine

totalReceipts
cansOfBeer
cansOfCola

collectMoney()
makeChange()
chill()
dispenseBeverage()

SodaMachine

Called Remodeling if done on
the model level;

called Refactoring if done on
the source code level.

31© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Specialization

• Specialization occurs, when we find a subclass
that is very similar to an existing class.

• Example: A theory postulates certain particles and
events which we have to find.

• Specialization can also occur unintentionally:

32© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Which Taxonomy is correct for the Example
in the previous Slide?

 fly()

 Airplane

 drive()

Car

 drive()

Car

fly()

Airplane

33© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Another Example of a Specialization

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseBeverage()

VendingMaschine

cansOfBeer
cansOfCola
chill()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseSnack()

CandyMachine

CandyMachine is a new
product and designed as a sub
class of the superclass
VendingMachine

A change of names might now
be useful: dispenseItem()
instead of

dispenseBeverage()
and
dispenseSnack()

34© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of a Specialization (2)

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

35© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Meta-Model for Inheritance

Inheritance

Specification

Inheritance

Implementation

Inheritance

Inheritance
for ReuseTaxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

36© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implementation Inheritance and
Specification Inheritance

• Implementation inheritance
• Also called class inheritance
• Goal:

• Extend an applications’ functionality by reusing
functionality from the super class

• Inherit from an existing class with some or all
operations already implemented

• Specification Inheritance
• Also called subtyping
• Goal:

• Inherit from a specification
• The specification is an abstract class with all

operations specified, but not yet implemented.

37© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implementation Inheritance vs.
Specification Inheritance

• Implementation Inheritance: The combination of
inheritance and implementation

• The Interface of the superclass is completely inherited
• Implementations of methods in the superclass

("Reference implementations") are inherited by any
subclass

• Specification Inheritance: The combination of
inheritance and specification

• The Interface of the superclass is completely inherited
• Implementations of the superclass (if there are any)

are not inherited.

 Problem with implementation inheritance:
• The inherited operations might exhibit unwanted behavior.
• Example: What happens if the Stack user calls Remove()

instead of Pop()?

Example:
 • I have a List class, I need a

Stack class
 • How about subclassing the

Stack class from the List
class and implementing
Push(), Pop(), Top() with
Add() and Remove()?

Add()
Remove()

List

Push()
Pop()

Stack

Top()

“Already
 implemented”

Example for Implementation Inheritance

• A very similar class is already implemented that
does almost the same as the desired class
implementation

39© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Better Code Reuse: Delegation

• Implementation-Inheritance: Using the
implementation of super class operations

• Delegation: Catching an operation and sending it
to another object that implements the operation

+Add()
+Remove()

List

Stack

+Push()
+Pop()
+Top()

+Push()
+Pop()
+Top()

Stack

Add()
Remove()

List

40© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

delegates to Client Receiver Delegate
calls

Delegation

• Delegation is a way of making composition as
powerful for reuse as inheritance

• In delegation two objects are involved in
handling a request from a Client

•The Receiver object delegates operations to
the Delegate object
•The Receiver object makes sure, that the
Client does not misuse the Delegate object.

41© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Comparison: Delegation v. Inheritance

• Code-Reuse can be done by delegation as well
as inheritance

• Delegation
• Flexibility: Any object can be replaced at run time by

another one
• Inefficiency: Objects are encapsulated

• Inheritance
• Straightforward to use
• Supported by many programming languages
• Easy to implement new functionality
• Exposes a subclass to details of its super class
• Change in the parent class requires recompilation of

the subclass.

42© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object
Design

Mapping
Models to

 Code

Object Design Activities

1. Reuse: Identification of existing solutions
• Use of inheritance
• Off-the-shelf components and

additional solution objects
• Design patterns

2. Interface specification
• Describes precisely each class interface

3. Object model restructuring
• Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
• Transforms the object design model to address

performance criteria such as response
time or memory utilization.

43© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Recall: Implementation Inheritance v.
Specification-Inheritance

• Implementation Inheritance: The combination of
inheritance and implementation

• The Interface of the super class is completely inherited
• Implementations of methods in the super class

("Reference implementations") are inherited by any
subclass

• Specification Inheritance: The combination of
inheritance and specification

• The super class is an abstract class
• Implementations of the super class (if there are

any) are not inherited
• The Interface of the super class is completely inherited

44© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of Today
Reuse examples

Reuse of code, interfaces and existing classes

White box and black box reuse
Object design leads to new classes
The use of inheritance
 Implementation vs. specification inheritance
Delegation vs. Inheritance
• Abstract classes and abstract methods

• Overwriting methods

• Contraction: Bad example of inheritance
• Meta model for inheritance
• Frameworks and components
• Documenting the object design.

45© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Abstract Methods and Abstract Classes

• Abstract method:
• A method with a signature but without an

implementation (also called abstract operation)

• Abstract class:
• A class which contains at least one abstract method is

called abstract class

• Interface: An abstract class which has only
abstract methods

• An interface is primarily used for the specification
of a system or subsystem. The implementation is
provided by a subclass or by other mechanisms.

46© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example of an Abstract Method

totalReceipts
collectMoney()
makeChange()
dispenseItem()

VendingMaschine

numberOfCups
coffeeMix
heatWater()
addSugar()
addCreamer()
dispenseItem()

CoffeeMachine

cansOfBeer
cansOfCola
chill()
dispenseItem()

SodaMachine

bagsofChips
numberOfCandyBars
dispenseItem()

CandyMachine

dispenseItem()

dispenseItem() must be
implemented in each subclass.
We do this by specifying the
operation as abstract. Abstract
operations are written in UML
in italics.

47© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Rewriteable Methods and Strict Inheritance

• Rewriteable Method: A method which allow a
reimplementation.

• In Java methods are rewriteable by default, i.e. there
is no special keyword.

• Strict inheritance
• The subclass can only add new methods to the

superclass, it cannot over write them
• If a method cannot be overwritten in a Java program,

it must be prefixed with the keyword final.

48© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Strict Inheritance
Superclass:

drive()
brake()
accelerate()

Car

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

LuxuryCar
Subclass:
public class LuxuryCar extends Car
{
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

public class Car {
 public final void drive() {…}
 public final void brake() {…}
 public final void accelerate()
{…}
}

49© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: Strict Inheritance and
Rewriteable Methods

Original Java-Code:
class Device {
 int serialnr;
 public final void help() {….}
 public void setSerialNr(int n) {
 serialnr = n;
}
}
class Valve extends Device {
 Position s;
 public void on() {
 ….
 }
}

help() not
overwritable

setSerialNr()
overwritable

50© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: Overwriting a Method

Original Java-Code:
class Device {
 int serialnr;
 public final void help() {….}
 public void setSerialNr(int n) {
 serialnr = n;
}
}
class Valve extends Device {
 Position s;
 public void on() {
 ….
 }
}

New Java-Code :
class Device {
 int serialnr;
 public final void help() {….}
 public void setSerialNr(int n) {
 serialnr = n;
}
}

class Valve extends Device {
 Position s;
 public void on() {
 …
 }
 public void setSerialNr(int n) {
 serialnr = n + s.serialnr;
 }
} // class Valve

51© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

UML Class Diagram

Device
- int serialnr

+void setSerialnr(int n)

Valve

Position s

+void on()

Device
- int serialnr

+void setSerialNr(int n)

Valve

-Position s

+ void on()
+ void setSerialNr()

52© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Rewriteable Methods:
Usually implemented with Empty Body

class Device {
 int serialnr;
 public void setSerialNr(int n) {}
}
class Valve extends Device {
 Position s;
 public void on() {
 …..
 }
 public void setSerialNr(int n) {
 seriennr = n + s.serialnr;
 }
} // class Valve

I expect, that the method
setSerialNr()will be
overwritten. I only write an

empty body

Overwriting of the method
setSerialNr() of Class

Device

53© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bad Use of Overwriting Methods

One can overwrite the operations of a superclass with
completely new meanings.

Example:
Public class SuperClass {
 public int add (int a, int b) { return a+b; }
 public int subtract (int a, int b) { return a-b; }
}
Public class SubClass extends SuperClass {
 public int add (int a, int b) { return a-b; }
 public int subtract (int a, int b) { return a+b; }
}

• We have redefined addition as subtraction and subtraction
as addition!!

54© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Bad Use of Implementation Inheritance
• We have delivered a car with software that allows to

operate an on-board stereo system
• A customer wants to have software for a cheap stereo

system to be sold by a discount store chain

• Dialog between project manager and developer:
• Project Manager:

• „Reuse the existing car software. Don‘t change this
software, make sure there are no hidden surprises. There
is no additional budget, deliver tomorrow!“

• Developer:
• „OK, we can easily create a subclass BoomBox inheriting

the operations from the existing Car software“
• „And we overwrite all method implementations from Car

that have nothing to do with playing music with empty
bodies!“

55© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

What we have and what we want

musicSystem

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox

engine
windows
musicSystem

brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

New Abstraction!

56© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Existing Class:
public class Auto {
 public void drive() {…}
 public void brake() {…}
 public void accelerate() {…}
 public void playMusic() {…}
 public void ejectCD() {…}
 public void resumeMusic() {…}
 public void pauseMusic() {…}
}

Boombox:
public class Boombox
extends Auto {
 public void drive() {};
 public void brake() {};
 public void accelerate()
{};
}

What we do to save money and time

engine
windows
musicSystem

brake()
accelerate()
playMusic()
ejectCD()
resumeMusic()
pauseMusic()

Auto

musicSystem

playMusic()
ejectCD()
resumeMusic()
pauseMusic()

BoomBox

57© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Contraction

• Contraction: Implementations of methods in
the super class are overwritten with empty
bodies in the subclass to make the super class
operations “invisible“

• Contraction is a special type of inheritance
• It should be avoided at all costs, but is used

often.

58© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Contraction must be avoided by all Means

A contracted subclass delivers the desired
functionality expected by the client, but:

• The interface contains operations that make no sense
for this class

• What is the meaning of the operation brake() for a
BoomBox?

The subclass does not fit into the taxonomy
A BoomBox ist not a special form of Auto

• The subclass violates Liskov's Substitution
Principle:

• I cannot replace Auto with BoomBox to drive to work.

59© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Revised Metamodel for Inheritance

Inheritance

Specification
Inheritance

Implementation
Inheritance

Inheritance
for ReuseTaxonomy

Inheritance
detected by

generalization

Inheritance
detected by

specialization

Analysis
activity

Object
Design

Strict
Inheritance Contraction

60© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Frameworks

• A framework is a reusable partial application
that can be specialized to produce custom
applications.

• The key benefits of frameworks are reusability
and extensibility:

• Reusability leverages of the application domain
knowledge and prior effort of experienced developers

• Extensibility is provided by hook methods, which are
overwritten by the application to extend the
framework.

61© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Classification of Frameworks

• Frameworks can be classified by their position in
the software development process:

• Infrastructure frameworks
• Middleware frameworks

• Frameworks can also be classified by the
techniques used to extend them:

• Whitebox frameworks
• Blackbox frameworks

62© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Frameworks in the Development Process

• Infrastructure frameworks aim to simplify the
software development process

• Used internally, usually not delivered to a client.

• Middleware frameworks are used to integrate
existing distributed applications

• Examples: MFC, DCOM, Java RMI, WebObjects,
WebSphere, WebLogic Enterprise Application [BEA].

• Enterprise application frameworks are
application specific and focus on domains

• Example of application domains: telecommunications,
avionics, environmental modeling, manufacturing,
financial engineering, enterprise business activities.

63© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

White-box and Black-box Frameworks

• White-box frameworks:
• Extensibility achieved through inheritance and dynamic

binding.
• Existing functionality is extended by subclassing

framework base classes and overriding specific
methods (so-called hook methods)

• Black-box frameworks:
• Extensibility achieved by defining interfaces for

components that can be plugged into the framework.
• Existing functionality is reused by defining components

that conform to a particular interface
• These components are integrated with the framework

via delegation.

64© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Class libraries vs. Frameworks

• Class Library:
• Provide a smaller scope of reuse
• Less domain specific
• Class libraries are passive; no constraint on the flow of

control

• Framework:
• Classes cooperate for a family of related applications.
• Frameworks are active; they affect the flow of control.

65© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Components vs. Frameworks

• Components:
• Self-contained instances of classes
• Plugged together to form complete applications
• Can even be reused on the binary code level

• The advantage is that applications do not have to be
recompiled when components change

• Framework:
• Often used to develop components
• Components are often plugged into blackbox

frameworks.

66© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Documenting the Object Design

• Object design document (ODD)
= The Requirements Analysis Document (RAD) plus...

… additions to object, functional and dynamic
 models (from the solution domain)

… navigational map for object model
… Specification for all classes (use Javadoc)

67© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Documenting Object Design: ODD
Conventions

• Each subsystem in a system provides a service
• Describes the set of operations provided by the

subsystem

• Specification of the service operations
• Signature: Name of operation, fully typed parameter

list and return type
• Abstract: Describes the operation
• Pre: Precondition for calling the operation
• Post: Postcondition describing important state after the

execution of the operation

• Use JavaDoc and Contracts for the specification
of service operations

• Contracts are covered in the next lecture.

68© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Summary

• Object design closes the gap between the
requirements and the machine.

• Object design adds details to the requirements
analysis and makes implementation decisions

• Object design activities include:
• Identification of Reuse
• Identification of interface and implementation

inheritance
• Identification of opportunities for delegation
• Abstract operations and overwriting of methods.

69© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Example: Framework for Building Web
Applications

WebBrowser

RelationalDatabase

StaticHTML

WOAdaptor
WebServer

WoRequest Template

WebObjectsApplication

WORequest

EOF

WebObjects

