
1© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Design:
Interface Specification

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Introduction into Software Engineering
Lecture 15

2© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Lecture Plan
• Specifying Interfaces (Chapter 9)

• Object Design Activities Visibilities and Information
Hiding, Contracts

• Mapping Models to Java Code (Chapter 10)
• Optimizations to address performance requirements
• Implementation of class model components

• Realization of associations
• Realization of contracts

• Mapping Models to Relational Schema (Ch 10.4.4)
• Realizing entity objects
• Mapping the object model to a storage schema
• Mapping class diagrams to tables.

3© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of Today’s Lecture

• Object Design Activities
• Visibilities
• Information Hiding
• Contracts

4© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements Analysis vs. Object Design

• Requirements Analysis: The functional model
and the dynamic model deliver operations for
the object model

• Object Design: Decide where to put these
operations in the object model
• Object design is the process of

• adding details to the requirements analysis
• making implementation decisions

• Thus, object design serves as the basis of
implementation
• The object designer can choose among different ways

to implement the system model obtained during
requirements analysis.

5© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object Design: Closing the Final Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requirements gap

6© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Developers play 3 different Roles during
Object Design of a Class

Developer Class Implementor

Class User

Class Extender

Call the Class

Realize the Class
(Implement it)

Refine the Class
(Implement a
 subclass)

7© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Class user versus Class Extender

Game

TicTacToe Chess

League

Tournament

1

*

The developer responsible
for the implementation of

League is a class user of Game

The developer responsible for
the implementation of TicTacToe

is a class extender of Game

The Developer responsible
for the implementation of

Game is a class implementor

8© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Specifying Interfaces

• Requirements analysis activities
• Identify attributes and operations without specifying

their types or their parameters

• Object design activities
• Add visibility information
• Add type signature information
• Add contracts.

9© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Add Visibility Information

Class user (“Public”): +
• Public attributes/operation can be accessed by any class

Class implementor (“Private”): -
• Private attributes and operations can be accessed only by

the class in which they are defined
• They cannot be accessed by subclasses or other classes

Class extender (“Protected”): #
• Protected attributes/operations can be accessed by the

class in which they are defined and by any descendent of
the class.

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

10© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Implementation of UML Visibility in Java

public Tournament(League l, int maxNumPlayers)
public int getMaxNumPlayers() {…};
public List getPlayers() {…};
public void acceptPlayer(Player p) {…};
public void removePlayer(Player p) {…};
public boolean isPlayerAccepted(Player p) {…};

Tournament

- maxNumPlayers: int

+ acceptPlayer(p:Player)
+ removePlayer(p:Player)

+ getMaxNumPlayers():int
+ getPlayers(): List

+ isPlayerAccepted(p:Player):boolean

public class Tournament {
private int maxNumPlayers;

11© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Information Hiding Heuristics

• Carefully define the public interface for classes
as well as subsystems
• For subsystems use a façade design pattern if possible

• Always apply the “Need to know” principle:
• Only if somebody needs to access the information,

make it publicly possible
• Provide only well defined channels, so you always

know the access

• The fewer details a class user has to know
• the easier the class can be changed
• the less likely they will be affected by any changes in

the class implementation

• Trade-off: Information hiding vs. efficiency
• Accessing a private attribute might be too slow.

12© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Information Hiding Design Principles

• Only the operations of a class are allowed to
manipulate its attributes
• Access attributes only via operations

• Hide external objects at subsystem boundary
• Define abstract class interfaces which mediate between

the external world and the system as well as between
subsystems

• Do not apply an operation to the result of
another operation
• Write a new operation that combines the two

operations.

13© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

put()
get()
remove()
containsKey()
size()

numElements:int

Attributes and operations
without visibility and

type information are ok during
requirementsanalysis

During object design, we
decide that the hash table

can handle any type of
keys, not only Strings.

14© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Outline of Today’s Lecture

• Object Design Activities
• Visibilities
• Information Hiding
• Contracts

15© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Modeling Constraints with Contracts

• Example of constraints in Arena:
• An already registered player cannot be registered

again
• The number of players in a tournament should not be

more than maxNumPlayers
• One can only remove players that have been registered

• These constraints cannot be modeled in UML
• We model them with contracts
• Contracts can be written in OCL.

16© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Contract

• Contract: A lawful agreement between two parties
in which both parties accept obligations and on
which both parties can found their rights
• The remedy for breach of a contract is usually an award of

money to the injured party

• Object-oriented contract: Describes the services
that are provided by an object if certain conditions
are fulfilled
• services = “obligations”, conditions = “rights”
• The remedy for breach of an OO-contract is the generation

of an exception.

17© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object-Oriented Contract

• An object-oriented contract describes the
services that are provided by an object. For each
service, it specifically describes two things:
• The conditions under which the service will be provided
• A specification of the result of the service

• Examples:
• A letter posted before 18:00 will be delivered on the next

working day to any address in Germany
• For the price of 4 Euros a letter with a maximum weight

of 80 grams will be delivered anywhere in the USA within
4 hours of pickup.

18© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Object-Oriented Contract

• An object-oriented contract describes the
services that are provided by an object. For
each service, it specifically describes two things:
• The conditions under which the service will be provided
• A specification of the result of the service that is

provided.

• Examples:
• A letter posted before 18:00 will be delivered on the

next working day to any address in Germany.
• For the price of 4 Euros a letter with a maximum

weight of 80 grams will be delivered anywhere in
Germany within 4 hours of pickup.

19© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Modeling OO-Contracts

• Natural Language
• Mathematical Notation
• Models and contracts:

• A language for the formulation of constraints with the
formal strength of the mathematical notation and the
easiness of natural language:

 ⇒ UML + OCL (Object Constraint Language)
• Uses the abstractions of the UML model
• OCL is based on predicate calculus

20© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Contracts and Formal Specification
• Contracts enable the caller and the provider to

share the same assumptions about the class
• A contract is an exact specification of the interface

of an object
• A contract include three types of constraints:

• Invariant:
• A predicate that is always true for all instances of a

class
• Precondition (“rights”):

• Must be true before an operation is invoked
• Postcondition (“obligation”):

• Must be true after an operation is invoked.

21© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Formal Specification

• A contract is called a formal specification, if the
invariants, rights and obligations in the contract
are unambiguous.

22© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Expressing Constraints in UML Models

• A constraint can also be depicted as a note
attached to the constrained UML element by a
dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

<<invariant>>
numElements >= 0<<precondition>>

!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
!containsKey(key)

<<postcondition>>
get(key) == entry

23© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Why not use Contracts already in
Requirements Analysis?

• Many constraints represent domain level
information

• Why not use them in requirements analysis?
• Constraints increase the precision of requirements
• Constraints can yield more questions for the end user
• Constraints can clarify the relationships among several

objects

• Constraints are sometimes used during
requirements analysis, however there are trade
offs

24© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

Requirements vs. Object Design Trade-offs

• Communication among stakeholders
• Can the client understand formal constraints?

• Level of detail vs. rate of requirements change
• Is it worth precisely specifying a concept

that will change?

• Level of detail vs. elicitation effort
• Is it worth the time interviewing the end user
• Will these constraints be discovered during object

design anyway?

• Testing constraints
• If tests are generated early, do they require this level

of precision?

25© 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

To be continued in Lecture on OCL

