Software Project Management Part 1: Organization

Introduction into Software Engineering Lecture 19

Bernd Bruegge Applied Software Engineering Technische Universitaet Muenchen

© 2007 Bernd Bruegge

ntroduction into Software Engineering Summer 2007

Software Engineering is Problem Solving

- Analysis: Understand the nature of the problem and break the problem into pieces
- Synthesis: Put the pieces together into a large structure that prepares for the solution
- Technical aspects of the problem solving process:
 - Techniques
 - Methodologies
 - Tools
- Where does project management come in?
 - When the available resources to solve the problem are limited (time, people, budget), or
 - When we allow the problem to change.

Software Engineering: Definition

- Software Engineering is a collection of techniques, methodologies and tools that support the development of a high quality software system
 - within a given budget
 - before a given deadline
 - while change occurs.

Example: Running a rapid

A quiet river

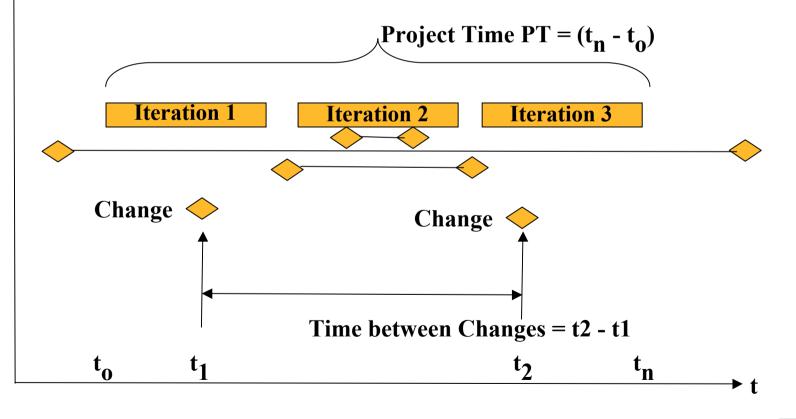
We are on our way... Then suddenly

How could this happen to us?

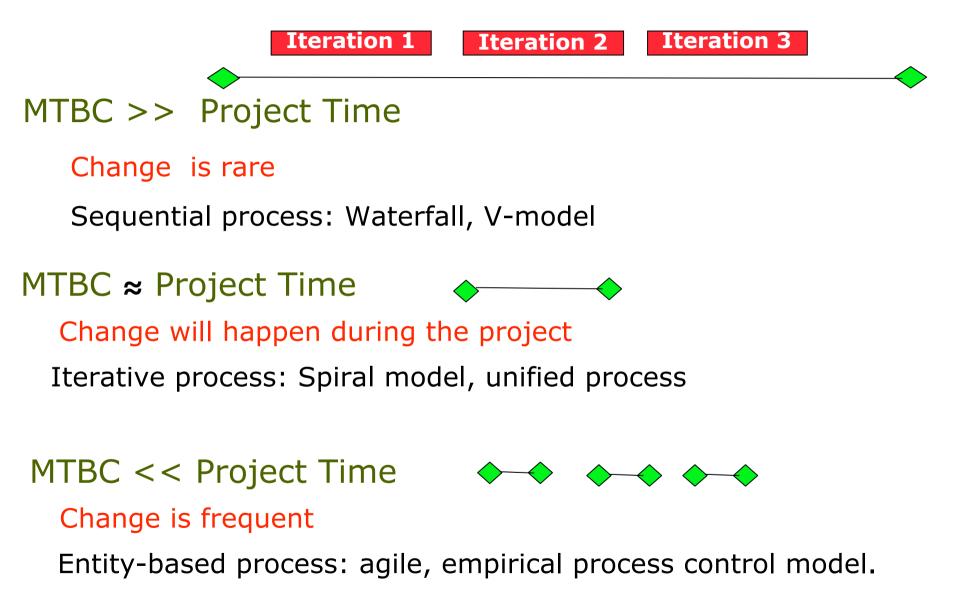
Change

- Something becomes clear ("it crystalizes")
- Something new appears ("technology enabler")
- Something becomes important ("change of requirements")
- A process can also change ("process change")
 - Examples:
 - Developers have the power to make decisions ("agile teams")
 - Work is performed where it makes sense: ("outsourcing").

Change can happen fast


- Most of the important changes are unexpected
 - Frederick Brooks, The Mythical Man Month.
- Manager must anticipate and react to unusual technology happenings
 - Wayne Gretzky: "I go where the puck is going to be, not where it is"
 - Hammer (Reengineering): "Change is the only thing that is constant".

Changes in the Business of Software Development


- Combination of several jobs into one job
- Developers have the power to make decisions
- Processes have multiple versions
- Checks and controls reduced
- Work performed where it makes sense
 - Outsourcing.

Project Duration vs. Rate of Change

- **PT** = Project Time
- **TBC** = Time Between Changes (Requirements, Technology)
- **MTBC** = Mean Time Between Changes

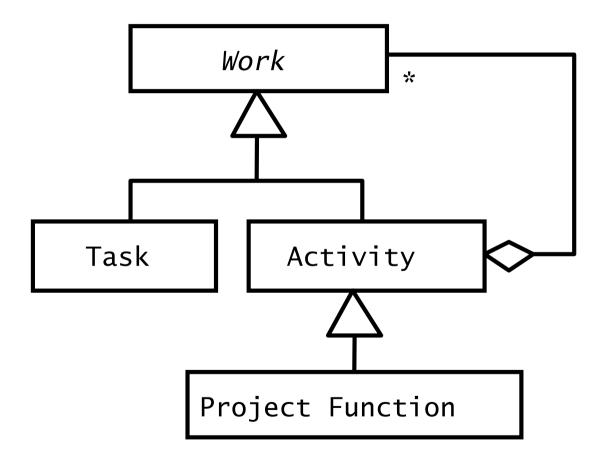
Rate of Change determines the Process

Management vs. Project Management

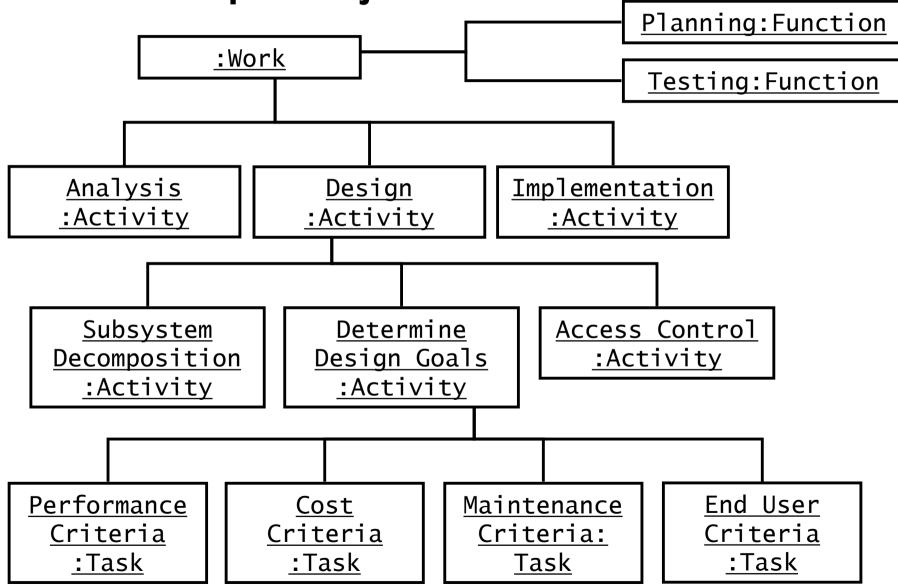
Management: Getting a task done through people Management is usually defined in terms of functions:

- Planning, organizing, directing, controlling and communicating are typical management functions
- No specific context (going on vacation, flying a plane)
- Project management: Activities in the context of a project
 - Project management tries to accomplish a specific task within a time frame and limited resources
- Software project management: Activities in the context of a software project
 - Activities to develop a software system within a given time frame and with limited resources.

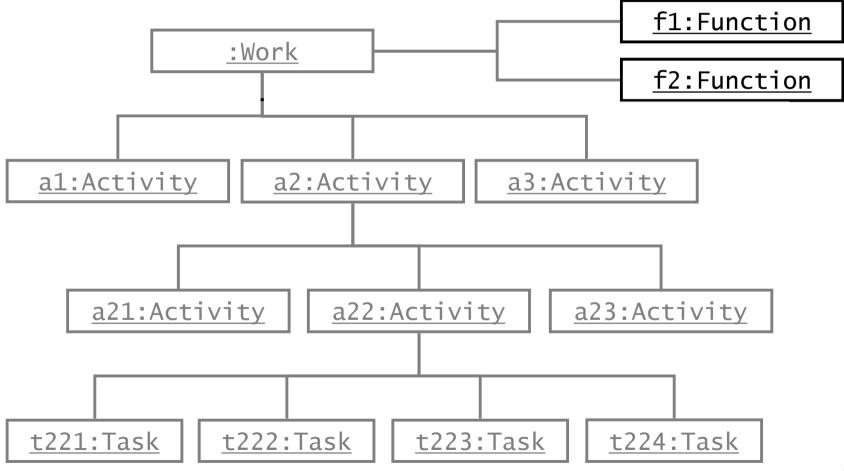
Outline of the lecture 7 04 2007


- Basic definitions: Project, Project Plan
- Status of a Project
- Software Project Management Plan
 - Project Organization
 - Managerial Processes
 - Technical Processes
 - Work Packages
- Typical Project Management Problems.

Basic Definitions


- Software Project:
 - All technical and managerial activities required to produce a set of deliverables for a client
 - A software project has a specific duration, consumes resources and produces work products
 - Management categories to produce work products in a software project:
 - Tasks, Activities, Project Functions
- Software Project Management Plan (SPMP):
 - The controlling document for a software project
 - Specifies the technical and managerial approaches to develop the software product
 - Companion document to requirements analysis document
 - Changes in either may imply changes in the other document.

Work Categories in a Software Project: Functions, Activities and Tasks

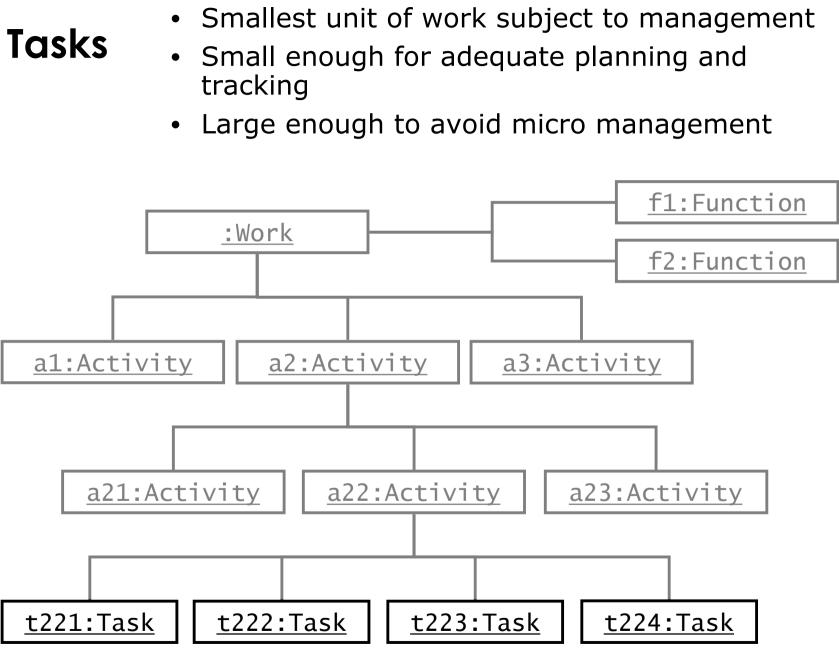


Instance Diagram for Work in an Example Project

Project Function

• **Definition** Project Function: An activity or set of activities that span the duration of the project

© 2007 Bernd Bruegge


Introduction into Software Engineering Summer 2007

Examples of Project Functions

- Project function is the official name in the IEEE 1058 standard.Different names:
 - Integral processes (in the IEEE 1074 standard)
 - Sometimes also called cross-development processes.
- Examples:
 - Configuration Management
 - Documentation
 - Quality Control (V&V: Verification and validation)
 - Training
 - Testing
 - Project management activities

Slide 48-49 Examples of Management activities

© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

Tasks

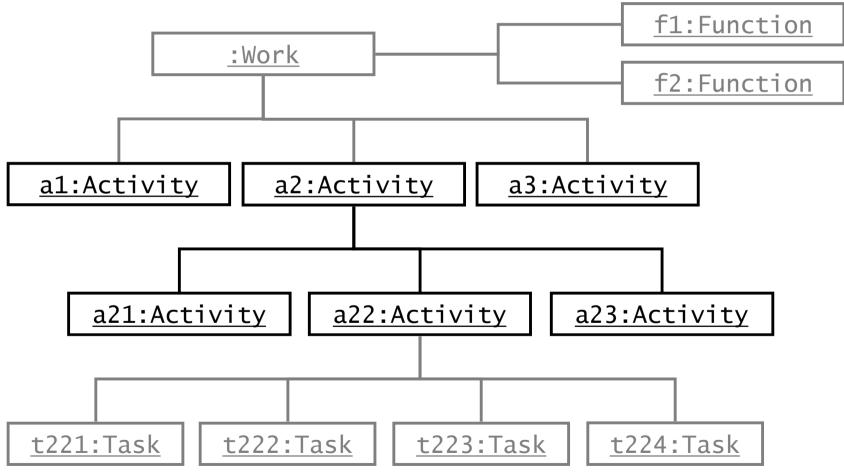
- Smallest unit of management accountability
 - Atomic unit of planning and tracking
 - Tasks have finite duration, need resources, produce tangible result (documents, code)
- Specification of a task: Work package
 - Name, description of work to be done
 - Preconditions for starting, duration, required resources
 - Work product to be produced, acceptance criteria for it
 - Risk involved
- Completion criteria
 - Includes the acceptance criteria for the work products (deliverables) produced by the task.

Determining Task Sizes

- Finding the appropriate task size is difficult:
 - During initial planning a task is necessarily large
 - You may not know how to decompose the problem into tasks at first
 - Each software development activity identifies more tasks and modifies existing ones
 - ©Reuse Todo lists from previous projects

- Tasks must be decomposed into sizes that allow monitoring
 - Decomposition depends on nature of work and how well the task is understood.
 - Should correspond to a well defined work assignment for one participant for a week

≻ Action item.


Action Item

- Definition Action Item: A task assigned to a person to be done by a certain time
 - What?, Who?, When?
 - Heuristics for duration: One week
- Definition Todo: An action item that is missing either the person or the deadline
- Examples of Todos:
 - Unit test class Foo, develop project plan
- Example of Action Items:
 - Bob posts the next agenda for the context team meeting before Sep 10, 12 noon
 - The testing team develops the test plan by Oct 21.

Activities • Major unit of work with precise dates

- Consists of smaller activities or tasks
- Culminates in project milestone.

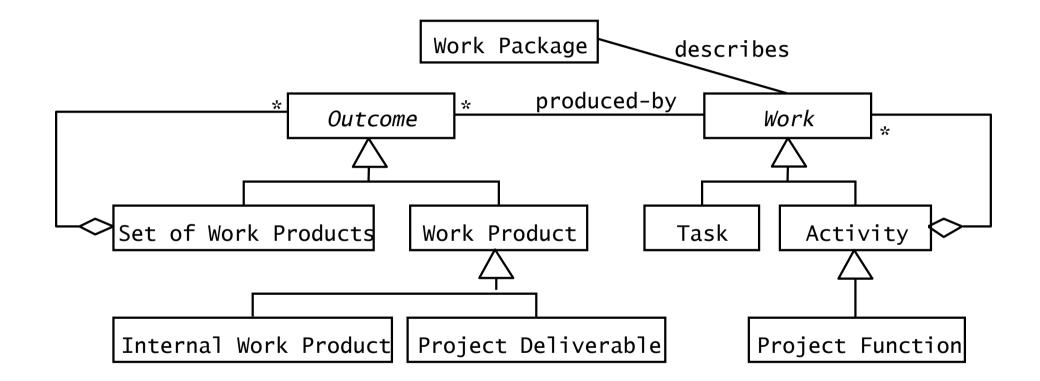
© 2007 Bernd Bruegge

Introduction into Software Engineering Summer 2007

Activities

- Major unit of work
- Culminates in major project milestone:
 - Internal checkpoint should not be externally visible
 - Scheduled event used to measure progress
- Milestone often produces project baselines:
 - formally reviewed work product
 - under change control (change requires formal procedures)

- Activities may be grouped into larger activities:
 - Establishes hierarchical structure for project (phase, step, ...)
 - Allows separation of concerns
 - Precedence relations often exist among activities.



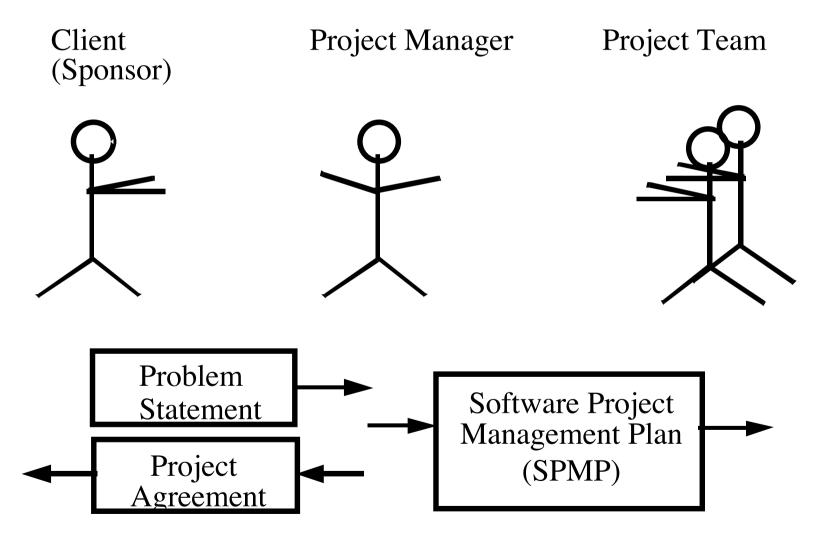
Work package, Product, Deliverable, Baseline

- Work Package:
 - A description (specification) for the work to be accomplished in an activity or task
- Work Product:
 - Any tangible item that results from a project function, activity or task.
- Deliverable:
 - A work product to be delivered to the customer
- Baseline:
 - A work product that has been formally reviewed and agreed upon
 - A project baseline can only be changed through a change request and a formal change procedure.

Work package, Product, Deliverable

Project Agreement

- Project Agreement: Document written for a client that defines:
 - the scope, duration, cost and deliverables for the project
 - the exact items, quantities, delivery dates, delivery location.
- The form of a project agreement can be a contract, a statement of work, a business plan, or a project charter.



Software Project Management Plan (SPMP)

- IEEE Std 1058
- What it does:
 - Specifies the format and contents of software project management plans
 - Provides a standard set of abstractions for a project manager or a whole organization for developing software project management plans
 - Abstractions: Project, Function, Activities, Tasks
- What it does not do:
 - It does not specify the procedures or techniques to be used in the development of the plan.

Problem Statement, SPMP, Project Agreement

Software Project Management Plan

- 0. Front Matter
- 1. Introduction
- 2. Project Organization
- 3. Managerial Process
- 4. Technical Process
- 5. Work Elements, Schedule, Budget

Optional Inclusions

SPMP Part 0: Front Matter

- Title Page
- Revision sheet (update history)
- Preface: Scope and purpose
- Tables of contents, figures, tables

SPMP Part 1: Introduction

- 1.1 Project Overview
 - Executive summary: description of project, product summary
- **1.2 Project Deliverables**
 - All items to be delivered, including delivery dates and location
- 1.3 Evolution of the SPMP
 - Plans for anticipated and unanticipated change
- **1.4 Reference Materials**
 - Complete list of materials referenced in SPMP
- **1.5 Definitions and Acronyms**

SPMP Part 2: Project Organization

2.1 Process Model

- Relationships among project elements
- 2.2 Organizational Structure
 - Internal management, organization chart s
- 2.3 Organizational Interfaces
 - Relations with other entities (subcontractors, commercial software)
- 2.4 Project Responsibilities
 - Description of major functions and activities; nature of each; who's in charge
 - Matrix of project functions/activities vs. responsible individuals.

Example Slide 61

> Example Slide 52

SPMP Part 3: Managerial Process

- 3.1 Management Objectives and Priorities
 - Describes management philosophy, priorities among requirements, schedule and budget
- 3.2 Assumptions, Dependencies and Constraints
 - External events the project depends on, constraints under which the project is to be conducted
- 3.3 Risk Management
 - Identification and assessment of risk factors, mechanism for tracking risks, implementation of contingency plans
 Examples
 Examples
- 3.4 Monitoring and Controlling Mechanisms
 - Frequency and mechanisms for reporting
- 3.5 Staffing Plan
 - Number and types of personnel required for the project

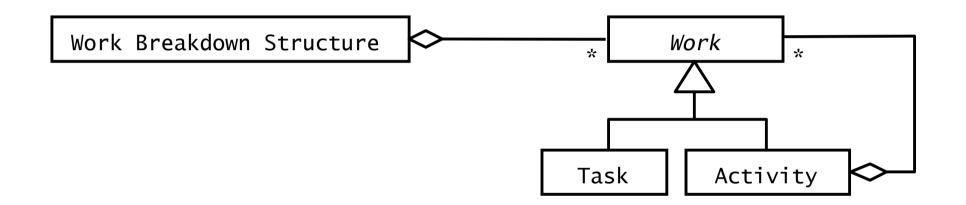
SPMP Part 4: Technical Process

2.1 Methods, Tools and Techniques

- Specify the methods, tools and techniques to be used on the project
- 2.2 Software Documentation
 - Describe the documentation plan
- 2.3 Project Support Functions
 - Plans for (at least) the following project support functions.
 - Quality assurance
 - Configuration management (IEEE Std 1042)
 - Verification and validation
 - The plans can be included in this section or there is a reference to a separate document.

SPMP Part 5: Description of Work Packages

- 5.1 Work Breakdown Structure (WBS)
 - Hierarchical decomposition of the project into activities and tasks
- 5.2 Dependencies between tasks
 - Temporal relationship between tasks: "must be preceded by"
 - Structural relationships
- A dependency graph visualizes the temporal dependencies
 - Nodes are activities



Examp

Lines represent temporal dependencies

Work Breakdown Structure

Work Breakdown Structure: The aggregation of all the work to be performed in a project.

© 2007 Bernd Bruegge

Time estimates for establishing a WBS

- Establishing an WBS in terms of percentage of total effort:
 - Small project (7 person-month): at least 7% or 0.5
 Person Months (PM)
 - Medium project (300 person-month): at least 1% or 3 PMs
 - Large project (7000 person-month): at least 0.2 % or 15 PMs

Source: Barry Boehm, Software Economics.

Creating Work Breakdown Structures

- Two major approaches
 - Activity-oriented decomposition ("functional decomposition")
 - Write the book, get it reviewed, do the suggested changes, get it published
 - Result-oriented decomposition ("Object-oriented decomposition")
 - Chapter 1, Chapter 2, Chapter 3
- Which one is better? Depends on project type:
 - Development of a prototype
 - Development of a product
 - Project team consist mostly of inexperienced beginners
 - Project team consists of experienced developers

Should you mix the WBS Approaches?

- Consider a WBS for the activity "Prepare report"
- Activity-oriented approach:
 - Write draft report (Joe)
 - Review draft report (Ann)
 - Write final report (Joe)
- Result-oriented approach:
 - Chapter 1 (Joe)
 - Chapter 2 (Ann)
- Mixed approach
 - Chapter 1 (Joe)
 - Chapter 2 (Ann)

© 2007 Bernd Bruegge

- Review draft report (Ann)
- Write final report (Joe)

Why is

this bad?

"Write the final version of Chapter 2"

can be included Ann's task:

"Chapter 2" or in Joe's task

"Write final report".

SPMP 5: Description of Work Packages (cont'd)

5.3 Resource Requirements

- Estimates of the resources required to complete the project
 - Numbers and types of personnel
 - Computers, office and laboratory facilities, travel
- Maintenance and training requirements
- 5.4 Budget

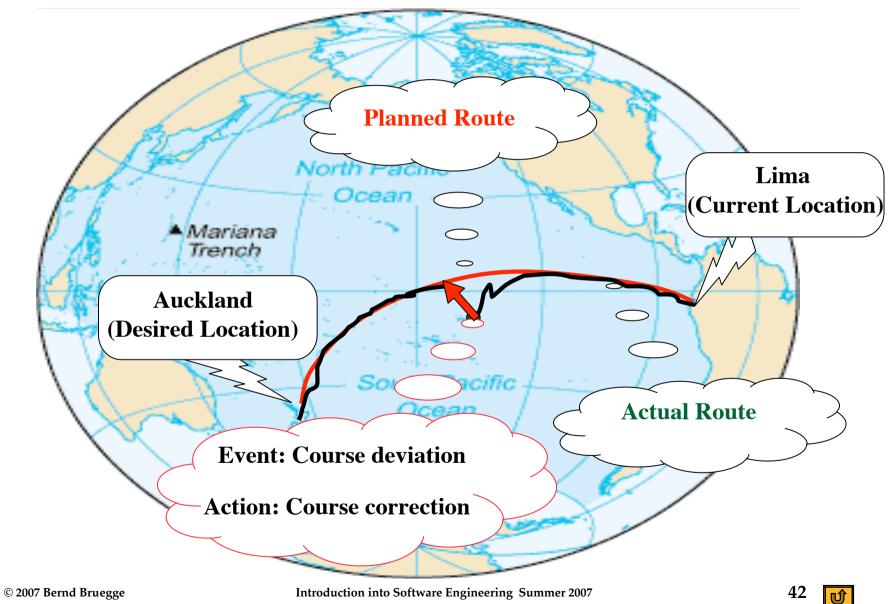
5.5 Schedule

- Estimates the duration of each task
- Often used notation: PERT Chart (<u>Performance Evaluation</u> <u>Review Technique</u>, invented in 1958 for managing the development of the Polaris rocket) <u>Example Slide 61</u>
 - Dependency graph labeled with time estimates
 - Allows computation of critical paths.

How much planning should you do?

- Two styles of navigation [Gladwin 1964]
 - "European navigation"
 - Current Location and Desired Location
 - Planned Route
 - Route Deviation and Route Correction
 - "Polynesian navigation"
 - Goal
 - Reaction to unexpected: Change the route

The main difference is the reaction to events This leads us to the notion of situated action


Situated action [Suchman 1990]

- Situation Action: Selection of action depends on type of event, situation and skill of developer
 - Events: Course deviation, Birds seen, Clouds seen
- European Navigation is context independent:
 - Event: "Course deviation in the morning"
 Action: "Course correction towards plann
 - => Action: "Course correction towards planned route"
 - Event: "Course deviation in the evening"
 - => Action: "Course correction towards planned route"
- Polynesian Navigation is context dependent:
 - Event: "Birds seen", Context: It is morning
 - => Action: "Sail opposite to the direction the birds are
 flying"
 - Event: "Birds seen", Context: It is evening

=> Action: "Sail in the direction the birds are flying. © 2007 Bernd Bruegge Introduction into Software Engineering Summer 2007

"European Navigation"

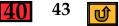
Auckland Project Plan (European Navigation)

Project Goal: Auckland

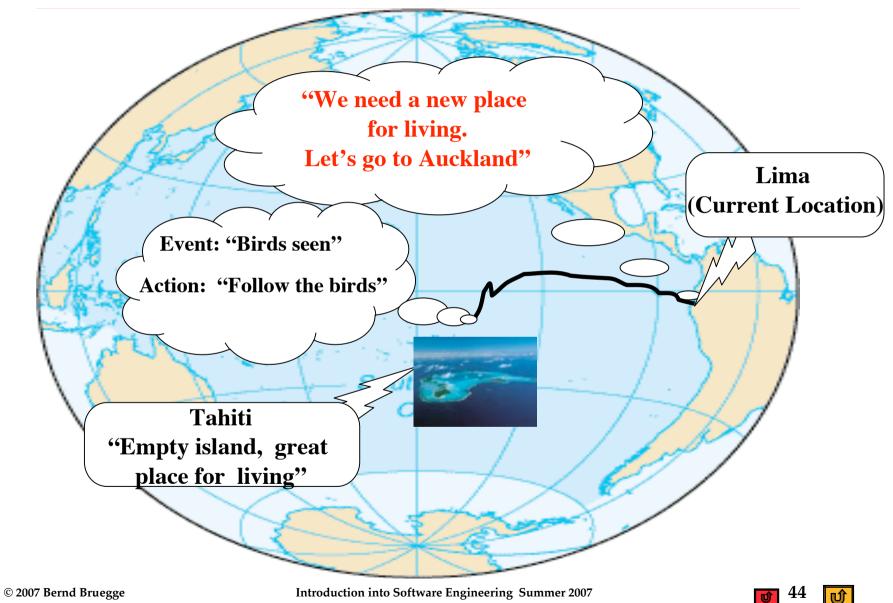
Team: Captain and 50 sailors

Desired Outcome: Auckland is found

Organization: Flat hierarchy


Tools: Compass, speed meter, map

Methods: Determine course and write it before departure. Example: Start Lima. Sail West, keep the compass constantly at 97 degrees, stay at latitude 20 degrees


Work breakdown structure:

- Task T1 (Check direction): Determine current direction of ship
- Task T2 (Compute deviation): Determine deviation from plan
- Task T3 (Course Correction): Bring ship back on course

Process: Execute T1 and T2 hourly. If there is a deviation, execute T3 to bring the ship back on the planned course.Schedule: With good wind 50 days; with doldrums 85 days.

Polynesian Navigation

Auckland Project Plan (Polynesian Navigation)

Project Goal: Auckland Desired Outcome: A new place
Team: Captain and 50 sailors Organization: Flat hierarchy
Tools: Stars for navigation, hand for measuring temperature
Methods: A set of event-action rules. When an event occurs, determine action in the current context.

Work breakdown structure:

- Task T1 (Set direction): Determine new course for ship
- Task T2 (Check Clouds): Look for clouds in the distance
- Task T3 (Check Birds): Look for birds, determine their direction
- Task T4 (Change course): Change direction to follow new course

Process:

 Start with T1 and T4. Then execute T2 and T3 regularly. Interpret task results (cloud detected, birds detected) in the current context. If the interpretation makes a new course more promising, execute tasks T1 and T4.

Schedule: None

© 2007 Bernd Bruegge

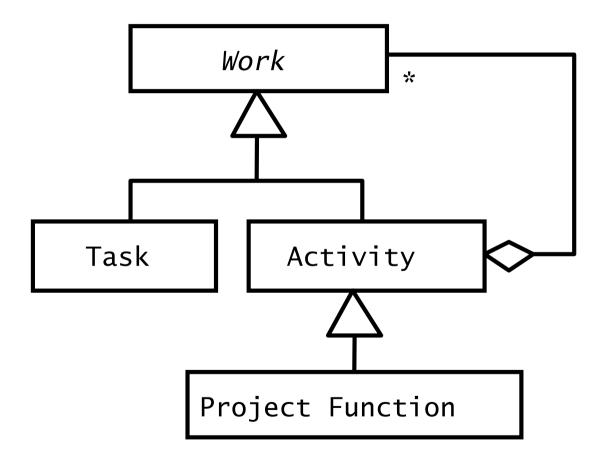
Pros and Cons of Project Plans

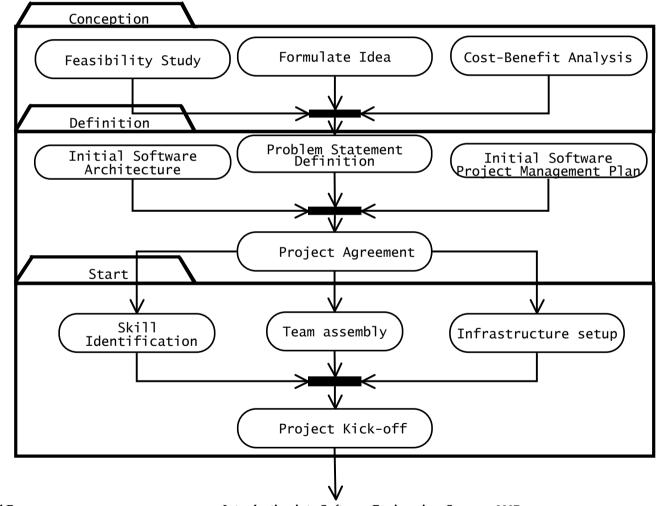
- Advantages:
 - Very useful to kick off a software project (establish goals, organize teams, and start with development)
 - Also useful if the outcome is predictable or if no major change occurs
- Disadvantages:
 - Of limited value
 - when outcome is unpredictable
 - when events occur that change the project context
- Examples of unexpected events:
 - Appearance of new technology during the project
 - A visionary scenario turns out to be not implementable
 - Change of requirements
- Lecture on Agile Methods.

Additional Readings

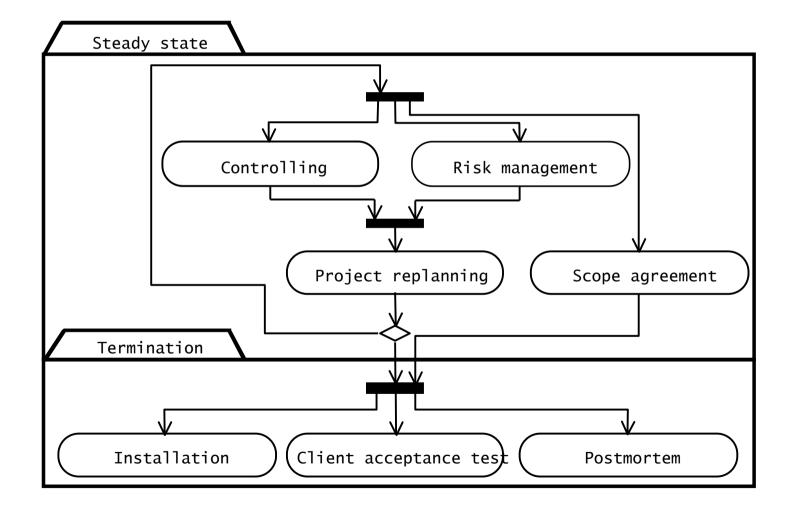
- [IEEE Std 1058]
 - Standard for Software Project Management Plans
- Frederick Brooks
 - No Silver Bullet, IEEE Computer, 20, 4 10-19, April 1987
- L.A. Suchman
 - Plans and Situated Actions: The Problem of Human Machine Communication, Cambridge University Press, 1990.
- Barry W. Boehm
 - Software Engineering Economics, Prentice Hall, 1981.
- T. Gladwin
 - "Culture and logical process", in W. Goodenough (ed), Explorations in Cultural Anthropology: Essays Presented to George Peter Murdock, McGraw-Hill, New York, 1964.

Summary


- Software engineering is a problem solving activity
 - Developing quality software for a complex problem within a limited time while things are changing
- The system models addresses the technical aspects:
 - Object model, functional model, dynamic model
- Other models address the management aspects
 - SPMP, WBS, Schedule are examples
 - Other models: Issue models, Cost models
- Technical terms introduced in this lecture:
 - Project, Activity, Function, Task, WBS, SPMP.

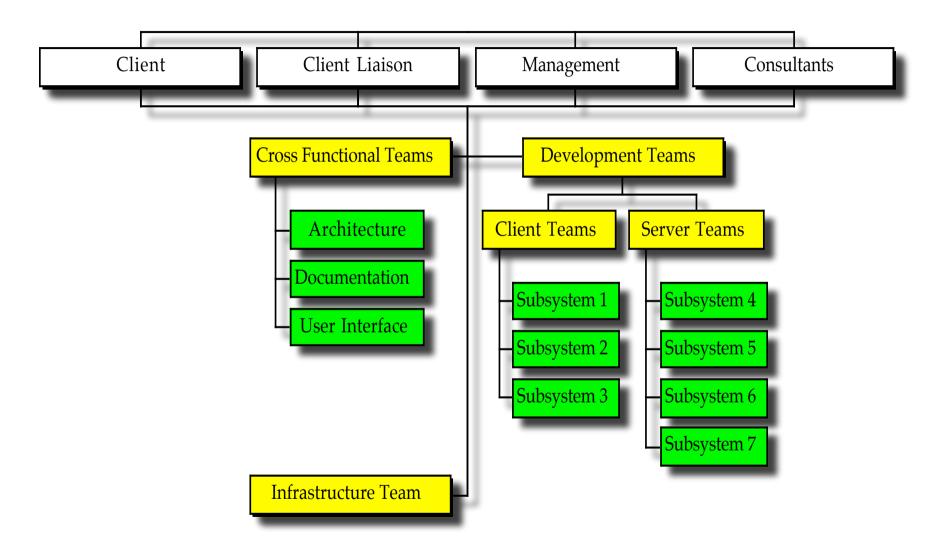


Tasks, Activities and Project Functions (UML Class Diagram)



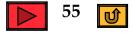
Project Management Activities in a Software Project

Management activities in a software project (cont'd)



"Laws" of Project Management

- Projects progress quickly until they are 90% complete. Then they remain at 90% complete forever.
- When things are going well, something will go wrong.
- When things just can't get worse, they will.
- When things appear to be going better, you have overlooked something.
- If project content is allowed to change freely, the rate of change will exceed the rate of progress.
- Project teams detest progress reporting because it manifests their lack of progress.


Organizational Structure Example

Examples of Risk Factors

- Contractual risks
 - What do you do if the customer becomes bankrupt?
- Size of the project
 - What do you do if you feel the project is too large?
- Complexity of the project
 - What do you do if the requirements are multiplying during analysis? ("requirements creep")
- Personal fluctuation
 - How do you hire people? Is there a danger of people leaving the project?
- Customer acceptance
 - What do you do, if the customer does not like the developed prototype?

Example: Activities to Build a House

- Surveying
- Excavation
- Request Permits
- Buy Material
- Lay foundation
- Build Outside Wall
- Install Exterior Plumbing
- Install Exterior Electrical
- Install Interior Plumbing
- Install Interior Electrical

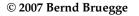
- Install Wallboard
- Paint Interior
- Install Interior Doors
- Install Floor
- Install Roof
- Install Exterior Doors
- Paint Exterior
- Install Exterior Siding

57 56

ل

34

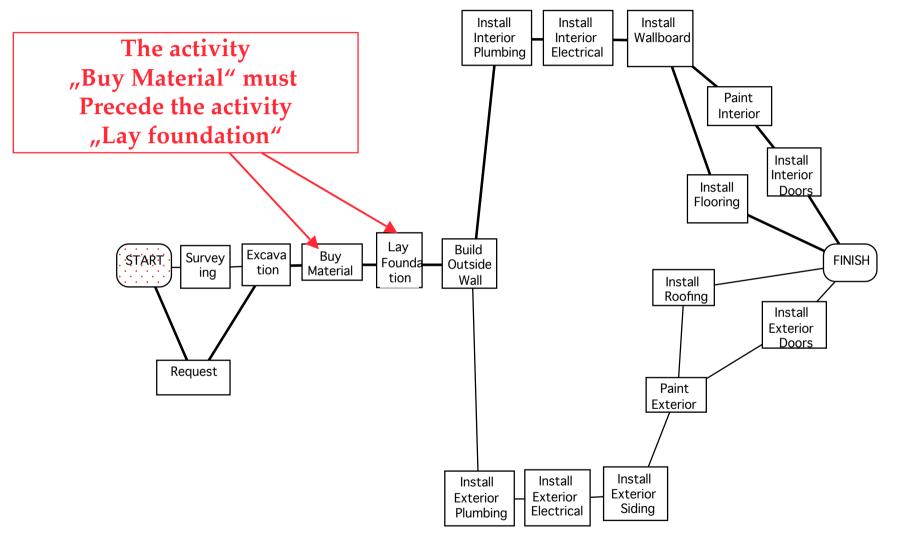
• Buy Pizza

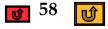

These activities are known by a good contractor

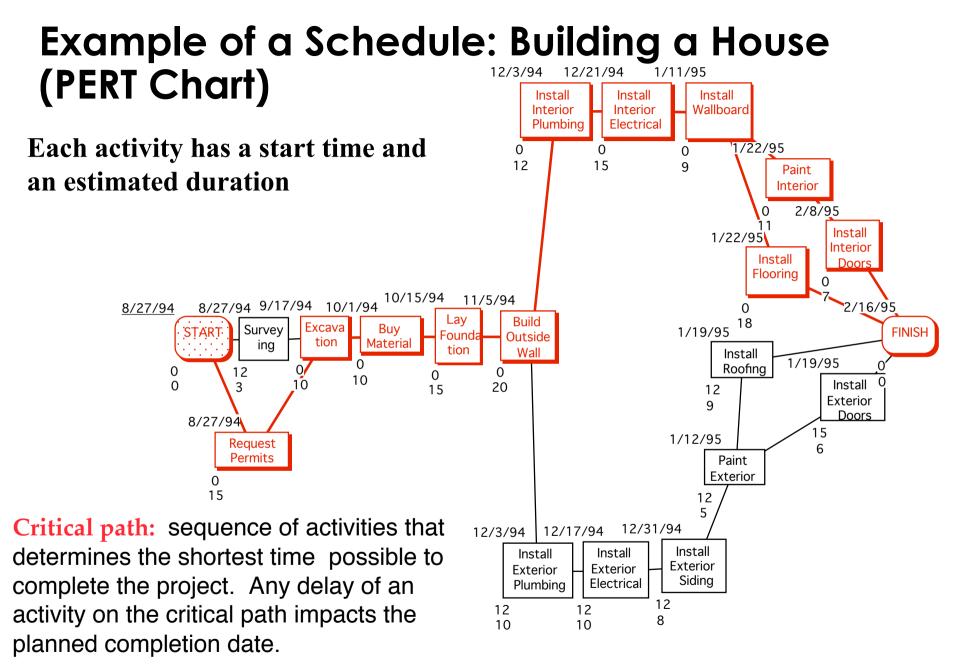
Finding these activities may also require brainstorming It then requires similar activities used during analysis (use case modeling).

© 2007 Bernd Bruegge

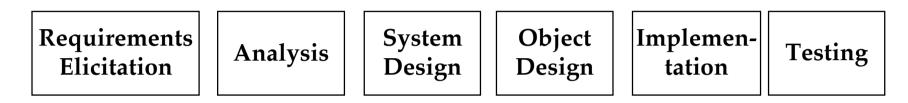
Hierarchical Organization of the Activities (Top-Level Use Cases)


- Building the house consists of
 - Prepare the building site
 - Building the Exterior
 - Building the Interior
- Preparing the building site consists of
 - Surveying
 - Excavation
 - Buying of material
 - Laying of the foundation
 - Requesting permits

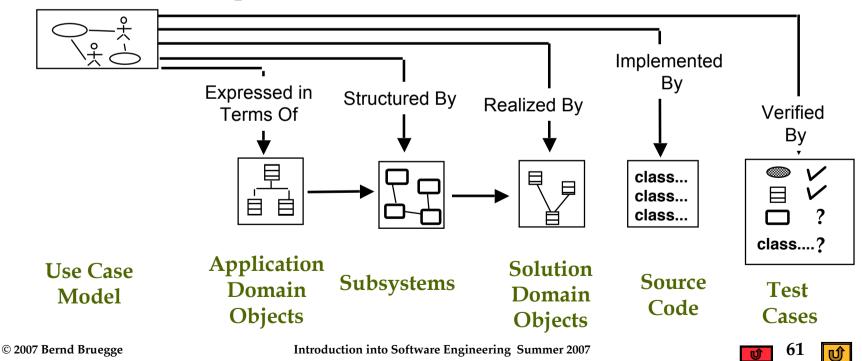




Example of a Dependency Graph: Building a House



Goals of PERT Charts


- Determination of total project time ("project duration")
- Determination of the critical path
- Determination of slack times

Software Lifecycle Activities

Structural Relationships:

