
1© 2007 Bernd Bruegge Software Engineering Summer 2007

Modeling with UML:
Basic Notations

Prof. Bernd Bruegge, Ph.D.
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I
Lecture 2

18 April 2007

2© 2007 Bernd Bruegge Software Engineering Summer 2007

Odds and Ends (1)

• Registration for the Exercises
• Started yesterday
• Any problems?

• Deadline for registration
• Friday, April 20 at 12:00

• First group meeting:
• Monday, April 23 at 10:00

3© 2007 Bernd Bruegge Software Engineering Summer 2007

Odds and Ends (2)

• Reading for this Week:
• Chapter 1 and 2, Bruegge&Dutoit, Object-Oriented
Software Engineering

• Software Engineering I Portal
• http://wwwbruegge.in.tum.de/twiki/bin/view/Lehrstuhl

/SoftwareEngineeringSoSe2007

• Lectures Slides:
• Will be posted after each lecture.

4© 2007 Bernd Bruegge Software Engineering Summer 2007

Overview for the Lecture

5© 2007 Bernd Bruegge Software Engineering Summer 2007

Overview for the Lecture

• Three ways to deal with complexity
• Abstraction and Modeling
• Decomposition
• Hierarchy

• Introduction into the UML notation
• First pass on:

• Use case diagrams
• Class diagrams
• Sequence diagrams
• Statechart diagrams
• Activity diagrams

6© 2007 Bernd Bruegge Software Engineering Summer 2007

Abstraction
• Complex systems are hard to understand

• The 7 +- 2 phenomena
• Our short term memory cannot store more than 7+-2

pieces at the same time -> limitation of the brain
• TUM Phone Number: 498928918204

7© 2007 Bernd Bruegge Software Engineering Summer 2007

Abstraction

• Chunking:
• Group collection of objects to reduce complexity
• 4 chunks:

• State-code, city-code, TUM-code, Office-Part

• Complex systems are hard to understand
• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• TUM Phone Number: 498928918204

8© 2007 Bernd Bruegge Software Engineering Summer 2007

Abstraction

TUM Phone Number

State-Code City-Code TUM-code Office-Part

• Chunking:
• Group collection of objects to reduce complexity
• State-code, city-code, TUM-code, Office-Part

• Complex systems are hard to understand
• The 7 +- 2 phenomena

• Our short term memory cannot store more than 7+-2
pieces at the same time -> limitation of the brain

• TUM Phone Number: 498928918204

9© 2007 Bernd Bruegge Software Engineering Summer 2007

Abstraction

• Abstraction allows us to ignore unessential details
• Two definitions for abstraction:

• Abstraction is a thought process where ideas are
distanced from objects

• Abstraction as activity
• Abstraction is the resulting idea of a thought process

where an idea has been distanced from an object
• Abstraction as entity

• Ideas can be expressed by models

10© 2007 Bernd Bruegge Software Engineering Summer 2007

Model

• A model is an abstraction of a
system

• A system that no longer exists
• An existing system
• A future system to be built.

11© 2007 Bernd Bruegge Software Engineering Summer 2007

We use Models to describe Software
Systems

• Object model: What is the structure of
the system?

• Functional model: What are the
functions of the system?

• Dynamic model: How does the system
react to external events?

• System Model: Object model +
functional model + dynamic model

12© 2007 Bernd Bruegge Software Engineering Summer 2007

Other models used to describe
Software System Development
• Task Model:

• PERT Chart: What are the dependencies
between tasks?

• Schedule: How can this be done within the
time limit?

• Organization Chart: What are the roles in the
project?

• Issues Model:
• What are the open and closed issues?

• What blocks me from continuing?
• What constraints were imposed by the client?
• What resolutions were made?

• These lead to action items

13© 2007 Bernd Bruegge Software Engineering Summer 2007

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

14© 2007 Bernd Bruegge Software Engineering Summer 2007

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

15© 2007 Bernd Bruegge Software Engineering Summer 2007

Issue-Modeling
Issue:

What is the
Center of the

Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Resolution (1998):
The church declares

proposal 1 was wrong

Proposal3:
 Neither!

Pro:
 Galaxies are moving away

From each other.

16© 2007 Bernd Bruegge Software Engineering Summer 2007

2. Technique to deal with Complexity:
Decomposition
• A technique used to master complexity

(“divide and conquer”)
• Two major types of decomposition

• Functional decomposition
• Object-oriented decomposition

• Functional decomposition
• The system is decomposed into modules
• Each module is a major function in the

application domain
• Modules can be decomposed into smaller

modules.

17© 2007 Bernd Bruegge Software Engineering Summer 2007

Decomposition (cont’d)

• Object-oriented decomposition
• The system is decomposed into classes (“objects”)
• Each class is a major entity in the application

domain
• Classes can be decomposed into smaller classes

• Object-oriented vs. functional decomposition

Which decomposition is the right one?

18© 2007 Bernd Bruegge Software Engineering Summer 2007

Functional Decomposition
Top Level functions

Level 1 functions

Level 2 functions

Machine instructions

System
Function

Load R10 Add R1, R10

Read Input Transform Produce
Output

Transform Produce
OutputRead Input

19© 2007 Bernd Bruegge Software Engineering Summer 2007

Functional Decomposition

• The functionality is spread all over the system
• Maintainer must understand the whole system to

make a single change to the system
• Consequence:

• Source code is hard to understand
• Source code is complex and impossible to maintain
• User interface is often awkward and non-intuitive.

20© 2007 Bernd Bruegge Software Engineering Summer 2007

Functional Decomposition

• The functionality is spread all over the system
• Maintainer must understand the whole system to

make a single change to the system
• Consequence:

• Source code is hard to understand
• Source code is complex and impossible to maintain
• User interface is often awkward and non-intuitive

• Example: Microsoft Powerpoint’s Autoshapes
• How do I change a square into a circle?

?

21© 2007 Bernd Bruegge Software Engineering Summer 2007

Changing a Square into a Circle

22© 2007 Bernd Bruegge Software Engineering Summer 2007

Autoshape

Functional Decomposition: Autoshape

Draw
Rectangle

Draw
Oval

Draw
Circle

Change Draw

Change
Rectangle

Change
Oval

Change
Circle

23© 2007 Bernd Bruegge Software Engineering Summer 2007

Object-Oriented View

Autoshape

Draw()
Change()

24© 2007 Bernd Bruegge Software Engineering Summer 2007

What is This?

Neck

Glove

Coat

Pocket

Cave

Ellbow

An Eskimo!

25© 2007 Bernd Bruegge Software Engineering Summer 2007

Nose
Eye

Ear

Chin
Mouth

Hair

A Face!

26© 2007 Bernd Bruegge Software Engineering Summer 2007

Nose
Eye

Ear

Chin

Mouth

Hair

Ellbow
Neck

Glove

Coat
Pocket

Cave

A Face!An Eskimo!

27© 2007 Bernd Bruegge Software Engineering Summer 2007

Class Identification

• Basic assumptions:
• We can find the classes for a new software

system: Greenfield Engineering
• We can identify the classes in an existing

system: Reengineering
• We can create a class-based interface to an

existing system: Interface Engineering

28© 2007 Bernd Bruegge Software Engineering Summer 2007

Class Identification (cont’d)

• Why can we do this?
• Philosophy, science, experimental evidence

• What are the limitations?
• Depending on the purpose of the system,

different objects might be found

• Crucial
Identify the purpose of a system

29© 2007 Bernd Bruegge Software Engineering Summer 2007

3. Hierarchy

• So far we got abstractions
• This leads us to classes and objects
• “Chunks”

• Another way to deal with complexity is to
provide relationships between these chunks

• One of the most important relationships is
hierarchy

• 2 special hierarchies
• "Part-of" hierarchy
• "Is-kind-of" hierarchy

30© 2007 Bernd Bruegge Software Engineering Summer 2007

I/O Devices CPU Memory

Part-of Hierarchy (Aggregation)

Computer

Cache ALU Program
 Counter

31© 2007 Bernd Bruegge Software Engineering Summer 2007

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

32© 2007 Bernd Bruegge Software Engineering Summer 2007

Where are we now?

• Three ways to deal with complexity:
• Abstraction, Decomposition, Hierarchy

• Object-oriented decomposition is good
• Unfortunately, depending on the purpose of the

system, different objects can be found

• How can we do it right?
• Start with a description of the functionality of a system
• Then proceed to a description of its structure

• Ordering of development activities
• Software lifecycle

33© 2007 Bernd Bruegge Software Engineering Summer 2007

Models must be falsifiable

• Karl Popper (“Objective Knowledge):
• There is no absolute truth when trying to understand reality
• One can only build theories, that are “true” until somebody

finds a counter example

• Falsification: The act of disproving a theory or hypothesis
• The truth of a theory is never certain. We must use

phrases like:
• “by our best judgement”, “using state-of-the-art knowledge”

• In software engineering any model is a theory:
• We build models and try to find counter examples by:

• Requirements validation, user interface testing, review of
the design, source code testing, system testing, etc.

• Testing: The act of disproving a model.

34© 2007 Bernd Bruegge Software Engineering Summer 2007

Concepts and Phenomena

• Phenomenon
• An object in the world of a domain as you perceive it

• Examples: This lecture on April 18 at 9:35, my black
watch

• Concept
• Describes the common properties of phenomena

• Example: All lectures on software engineering
• Example: All black watches

• A Concept is a 3-tuple:
• Name: The name distinguishes the concept from other

concepts
• Purpose: Properties that determine if a phenomenon is

a member of a concept
• Members: The set of phenomena which are part of the

concept.

35© 2007 Bernd Bruegge Software Engineering Summer 2007

Definition Abstraction:
• Classification of phenomena into concepts

Definition Modeling:
• Development of abstractions to answer specific questions

about a set of phenomena while ignoring irrelevant details.

MembersName

Watch

Purpose

A device that
measures time.

Concepts, Phenomena, Abstraction and
Modeling

36© 2007 Bernd Bruegge Software Engineering Summer 2007

Abstract Data Types & Classes

• Abstract data type
• A type whose implementation is

hidden from the rest of the system

• Class:
• An abstraction in the context of

object-oriented languages
• A class encapsulates state and

behavior
• Example: Watch

Watch

time
date

SetDate(d)

CalculatorWatch

EnterCalcMode()
InputNumber(n)

calculatorState
Unlike abstract data types, subclasses
can be defined in terms of other
classes using inheritance

State

Behavior

Inheritance

Subclass
• Example: CalculatorWatch

Superclass

37© 2007 Bernd Bruegge Software Engineering Summer 2007

Type and Instance
• Type:

• An concept in the context of programming languages
• Name: int
• Purpose: integral number
• Members: 0, -1, 1, 2, -2,…

• Instance:
• Member of a specific type

• The type of a variable represents all possible
instances of the variable

The following relationships are similar:
Type <–> Variable
Concept <–> Phenomenon
Class <-> Object

38© 2007 Bernd Bruegge Software Engineering Summer 2007

Systems

• A system is an organized set of communicating parts
• Natural system: A system whose ultimate purpose is not

known
• Engineered system: A system which is designed and built by

engineers for a specific purpose

• The parts of the system can be considered as
systems again

• In this case we call them subsystems

Examples of engineered systems:
 • Airplane, watch, GPS

Examples of subsystems:
 • Jet engine, battery, satellite.

Examples of natural systems:
 • Universe, earth, ocean

39© 2007 Bernd Bruegge Software Engineering Summer 2007

Systems, Models and Views

• A model is an abstraction describing a
system or a subsystem

System: Airplane

Models:
Flight simulator
Scale model

Views:
Blueprint of the airplane components
Electrical wiring diagram
Fuel system
Sound wave created by airplane

• A view depicts selected aspects of a model

• A notation is a set of graphical or textual
 rules for depicting models and
 views: formal notations, “napkin notations”

40© 2007 Bernd Bruegge Software Engineering Summer 2007

System
View 1

Model 2

View 2

View 3

Model 1

Aircraft
 Flightsimulator

Scale Model
Blueprints Electrical

Wiring

Fuel System

Views and models of a complex system usually overlap

(“Napkin” Notation)Systems, Models and Views

41© 2007 Bernd Bruegge Software Engineering Summer 2007

Systems, Models and Views

System View
*

Model
*

Depicted byDescribed by

Airplane:
System

Scale Model:Model Flight Simulator:Model

Fuel System:
 View

Electrical Wiring:
 View

Blueprints:
View

(UML Notation)
Class Diagram

Object Diagram

42© 2007 Bernd Bruegge Software Engineering Summer 2007

Model-Driven Development

1. Build a platform-independent model of an
applications functionality and behavior
 a) Describe model in modeling notation (UML)
 b) Convert model into platform-specific model

2. Generate executable from platform-specific
model

Advantages:
• Code is generated from model (“mostly”)
• Portability and interoperability

• Model Driven Architecture effort:
• http://www.omg.org/mda/

• OMG: Object Management Group

43© 2007 Bernd Bruegge Software Engineering Summer 2007

Reality: A stock exchange lists many companies. Each
company is identified by a ticker symbol

Analysis results in analysis object model (UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

Implementation results in source code (Java):

public class StockExchange {
 public m_Company = new Vector();
 };
public class Company {
 public int m_tickerSymbol;
 public Vector m_StockExchange = new Vector();
};

Model-driven Software Development

44© 2007 Bernd Bruegge Software Engineering Summer 2007

Application vs Solution Domain

• Application Domain (Analysis):
• The environment in which the system is operating

• Solution Domain (Design, Implementation):
• The technologies used to build the system

• Both domains contain abstractions that we can
use for the construction of the system model.

45© 2007 Bernd Bruegge Software Engineering Summer 2007

Object-oriented Modeling

Application Domain
(Phenomena)

Solution Domain
(Phenomena)

System Model (Concepts) System Model (Concepts)

Aircraft TrafficController

FlightPlanAirport

MapDisplay

FlightPlanDatabase

Summary
Display

TrafficControl

TrafficControl

UML
Package

(Analysis) (Design)

46© 2007 Bernd Bruegge Software Engineering Summer 2007

What is UML?

• UML (Unified Modeling Language)
• Nonproprietary standard for modeling software systems, OMG
• Convergence of notations used in object-oriented methods

• OMT (James Rumbaugh and collegues)
• Booch (Grady Booch)
• OOSE (Ivar Jacobson)

• Current Version 2.0
• Information at the OMG portal http://www.uml.org/

• Commercial tools: Rational (IBM),Together (Borland), Visual
Architect (business processes, BCD)

• Open Source tools: ArgoUML, StarUML, Umbrello

• Commercial and Opensource: PoseidonUML (Gentleware)

47© 2007 Bernd Bruegge Software Engineering Summer 2007

UML: First Pass

• You can model 80% of most problems by using
about 20 % UML

• We teach you those 20%

• 80-20 rule: Pareto principle
• http://www.ephorie.de/hindle_pareto-prinzip.htm

48© 2007 Bernd Bruegge Software Engineering Summer 2007

UML First Pass

• Use case diagrams
• Describe the functional behavior of the system as seen

by the user

• Class diagrams
• Describe the static structure of the system: Objects,

attributes, associations

• Sequence diagrams
• Describe the dynamic behavior between objects of the

system

• Statechart diagrams
• Describe the dynamic behavior of an individual object

• Activity diagrams
• Describe the dynamic behavior of a system, in

particular the workflow.

49© 2007 Bernd Bruegge Software Engineering Summer 2007

UML Core Conventions

• All UML Diagrams denote graphs of nodes and
edges

• Nodes are entities and drawn as rectangles or ovals
• Rectangles denote classes or instances
• Ovals denote functions

• Names of Classes are not underlined
• SimpleWatch
• Firefighter

• Names of Instances are underlined
• myWatch:SimpleWatch
• Joe:Firefighter

• An edge between two nodes denotes a
relationship between the corresponding entities

50© 2007 Bernd Bruegge Software Engineering Summer 2007

UML first pass: Use case diagrams

WatchUser

Actor

Use casePackage
 Watch

Use case diagrams represent the functionality of the system
from user’s point of view

ReadTime

SetTime

ChangeBattery

WatchRepairPerson

51© 2007 Bernd Bruegge Software Engineering Summer 2007

UML first pass: Class diagrams

Class
Association

Multiplicity

Class diagrams represent the structure of the system

2
1 1

1
1

1
1

2

SimpleWatch

Display Battery TimePushButton

52© 2007 Bernd Bruegge Software Engineering Summer 2007

UML first pass: Class diagrams

1
2

push()
release()

1

1

blinkIdx
blinkSeconds()
blinkMinutes()
blinkHours()
stopBlinking()
referesh()

LCDDisplay Battery
Load

1

2

1

Time
Now

1

Watch

Operations

state
PushButton

Attribute

Class diagrams represent the structure of the system

Class
Association

Multiplicity

53© 2007 Bernd Bruegge Software Engineering Summer 2007

Message

UML first pass: Sequence diagram

:Time :Watch:WatchUser

Object

Activation

Sequence diagrams represent the behavior of a system
as messages (“interactions”) between different objects

Actor

pressButton1()

Lifeline

blinkHours()

pressButton2()
incrementMinutes()

:LCDDisplay

pressButton1and2()
commitNewTime()

stopBlinking()

refresh()

pressButton1()
blinkMinutes()

54© 2007 Bernd Bruegge Software Engineering Summer 2007

UML first pass: Statechart diagrams

State

Initial state

Final state

Transition

Event

Represent behavior of a single object with interesting
dynamic behavior.

button1&2Pressed

button1Pressed

button2Pressed

button2Pressed

button2Pressed

button1Pressed

button1&2Pressed Increment
Minutes

Increment
Hours

Blink
Hours

Blink
Seconds

Blink
Minutes

Increment
Seconds

Stop
Blinking

55© 2007 Bernd Bruegge Software Engineering Summer 2007

Other UML Notations

UML provides many other notations

• Activity diagrams for modeling work flows
• Deployment diagrams for modeling

configurations (for testing and release
management)

56© 2007 Bernd Bruegge Software Engineering Summer 2007

What should be done first? Coding or
Modeling?

• It all depends….
• Forward Engineering

• Creation of code from a model
• Start with modeling
• Greenfield projects

• Reverse Engineering
• Creation of a model from existing code
• Interface or reengineering projects

• Roundtrip Engineering
• Move constantly between forward and reverse

engineering
• Useful when requirements, technology and schedule

are changing frequently.

57© 2007 Bernd Bruegge Software Engineering Summer 2007

UML Basic Notation Summary

• UML provides a wide variety of notations for
modeling many aspects of software systems

• For now we have concentrated on a few
notations:

• Functional model: Use case diagram
• Object model: Class diagram
• Dynamic model: Sequence diagrams, statechart

58© 2007 Bernd Bruegge Software Engineering Summer 2007

Additional References

• Martin Fowler
• UML Distilled: A Brief Guide to the Standard Object

Modeling Language, 3rd ed., Addison-Wesley, 2003.

• Grady Booch,James Rumbaugh,Ivar Jacobson
• The Unified Modeling Language User Guide, Addison

Wesley, 1999

• Commercial UML tools
• Rational Rose XDE for Java

• http://www-306.ibm.com/software/awdtools/developer/java/

• Together (Eclipse, MS Visual Studio, JBuilder)
• http://www.borland.com/us/products/together/index.html

• Open Source UML tools
• http://java-source.net/open-source/uml-modeling
• ArgoUML,UMLet,Violet, …

