
1©2008 Bernd Brügge Software Engineering WS 2008-9

Software Engineering I:
Software Technology

WS 2008/09

Object Design:
Interface Specification and OCL

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

2©2008 Bernd Brügge Software Engineering WS 2008-9

Outline of the Lecture

•  Object Design: Interface Specification Activities
•  Visibilities
•  Information Hiding
•  OO-Contracts
•  OCL: A language for expressing OO-Contracts

3©2008 Bernd Brügge Software Engineering WS 2008-9

Object Design vs Requirements Analysis

•  Requirements Analysis: The functional model
and the dynamic model deliver operations for
the object model

•  Object Design:
•  The object designer decides where to put these

operations in the object model
•  The object designer can choose among different ways

to implement the analysis model

•  Thus Object design is the process of
•  adding details to the requirements analysis
•  making implementation decisions

•  Object design serves as the basis of
implementation

4©2008 Bernd Brügge Software Engineering WS 2008-9

Developers play different Roles during Object
Design

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

5©2008 Bernd Brügge Software Engineering WS 2008-9

Class user versus Class Extender

Game

TicTacToe Chess

League

Tournament

1

*

Developers responsible for
the implementation of League are

class users of Game

The developer responsible for
the implementation of TicTacToe

is a class extender of Game

Developers responsible for
the implementation of Game are

class implementors

6©2008 Bernd Brügge Software Engineering WS 2008-9

Object Design consists of 4 Activities

 1. Reuse: Identification of existing solutions
•  Use of inheritance
•  Off-the-shelf components and

additional solution objects
•  Design patterns

 2. Interface specification
•  Describes precisely each class interface

3. Object model restructuring
•  Transforms the object design model to

improve its understandability and extensibility

4. Object model optimization
•  Transforms the object design model to address

performance criteria such as response
time or memory utilization.

7©2008 Bernd Brügge Software Engineering WS 2008-9

Interface Specification Activities

•  Interface Specification during Object Design
consists of 3 Activities:
•  Add visibility information
•  Add type signature information
•  Add contracts.

8©2008 Bernd Brügge Software Engineering WS 2008-9

Implementation of UML Visibility in Java

 public Tournament(League l, int maxNumPlayers)
 public int getMaxNumPlayers() {…};
 public List getPlayers() {…};
 public void acceptPlayer(Player p) {…};
 public void removePlayer(Player p) {…};
 public boolean isPlayerAccepted(Player p) {…};

Tournament

- maxNumPlayers: int

+ acceptPlayer(p:Player)
+ removePlayer(p:Player)

+ getMaxNumPlayers():int
+ getPlayers(): List

+ isPlayerAccepted(p:Player):boolean

public class Tournament {
 private int maxNumPlayers;

9©2008 Bernd Brügge Software Engineering WS 2008-9

Add Visibility Information

+ Public => Class user
•  Public attributes/operation can be accessed by any class.

- Private => Class implementor
•  Private attributes and operations can be accessed only by

the class in which they are defined.
•  They cannot be accessed by subclasses or other classes.

Protected => Class extender
•  Protected attributes/operations can be accessed by the

class in which they are defined and by any descendent of
the class.

Developer

Call Class

Class Extender

Class Implementor

Class User

Realize Class

Refine Class

10©2008 Bernd Brügge Software Engineering WS 2008-9

Information Hiding Heuristics

•  Carefully define the public interface for classes
as well as subsystems
•  For subsystems use a façade if possible

•  Always apply the “Need to know” principle
•  Only if somebody needs to access the information,

make it publicly possible,
•  But only through well defined channels, so you

always know the access

•  The fewer details class users need to know
•  the less likely they will be affected by any changes
•  the easier the class can be changed

•  Trade-off: Information hiding vs efficiency
•  Accessing a private attribute might be too slow.

11©2008 Bernd Brügge Software Engineering WS 2008-9

Information Hiding Design Principles

•  Only the operations of a class are allowed to
manipulate its attributes
•  Access attributes only via operations

•  Hide external objects at subsystem boundary
•  Define abstract class interfaces which mediate between

the system and the external world as well as between
subsystems

•  Do not apply an operation to the result of
another operation.
•  Write a new operation that combines the two

operations.

12©2008 Bernd Brügge Software Engineering WS 2008-9

Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int

Attributes and operations
without type information

are acceptable during analysis

During object design, we
decide that this table can
handle any type of keys,

not only Strings.

13©2008 Bernd Brügge Software Engineering WS 2008-9

Add Contracts

•  Example of constraints (taken from Arena, see
Bruegge&Dutoit, Chapter 9):
•  An already registered player cannot be registered again
•  The number of players in a tournament should not be

more than maxNumPlayers
•  One can only remove players that have been registered

•  These constraints cannot be modeled in UML
•  We model them with contracts in OCL.

14©2008 Bernd Brügge Software Engineering WS 2008-9

Contract

•  Contract: A lawful agreement between two parties
in which both parties accept obligations and on
which both parties can found their rights
•  The remedy for breach of contract is usually an award of

money to the injured party

•  Object-oriented Contract: Describes the services
that are provided by an object if certain conditions
are fulfilled
•  Services = “Obligations”
•  Conditions = “Rights”
•  The remedy for breach of OO-contracts is the generation of

an exception.

15©2008 Bernd Brügge Software Engineering WS 2008-9

Object-Oriented Contract

•  An object-oriented contract describes the
services that are provided by an object. For each
service, it specifically describes two things:
•  The conditions under which the service will be provided
•  A specification of the result of the service that is

provided.

•  Examples:
•  A letter posted before 18:00 will be delivered on the

next working day to any address in Germany.
•  For the price of 4 Euros a letter with a maximum

weight of 80 grams will be delivered anywhere in
Germany within 4 hours of pickup.

16©2008 Bernd Brügge Software Engineering WS 2008-9

Modeling OO-Contracts
•  Natural Language:

•  Advantage: Contract partners already know the language
•  Disadvantage: When using natural language, one often

makes implicit assumptions about the rights and obligations
of the contract partners

•  Mathematical Notation:
•  Advantage: Contract can be precisely and uniquely specified
•  Disadvantage: Normal customers are not mathematicians

•  Models and contracts:
•  A language for the formulation of constraints with the

formal strength of the mathematical notation and the
easiness of natural language:

 ⇒ UML + OCL (Object Constraint Language)
•  Uses the abstractions of the UML model
•  OCL is based on predicate calculus.

17©2008 Bernd Brügge Software Engineering WS 2008-9

Contracts and Formal Specification
•  Contracts enable the caller and the provider to

share the same assumptions about the class
•  A contract is an exact specification of the interface

of an object
•  A contract includes three types of constraints:

•  Invariant:
•  A predicate that is always true for all instances of a

class
•  Precondition (“rights”):

•  Must be true before an operation is invoked
•  Postcondition (“obligation”):

•  Must be true after an operation is invoked.

18©2008 Bernd Brügge Software Engineering WS 2008-9

Formal Specification

•  Definition: A contract is called a formal
specification, if the invariants, rights and
obligations in the contract are unambigious.

19©2008 Bernd Brügge Software Engineering WS 2008-9

Expressing Constraints in UML Models

•  A constraint can also be depicted as a note
attached to the constrained UML element by a
dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

<<invariant>>
numElements >= 0<<precondition>>

!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
!containsKey(key)

<<postcondition>>
get(key) == entry

20©2008 Bernd Brügge Software Engineering WS 2008-9

Why not use Contracts already in
Requirements Analysis?

•  Many constraints represent domain level
information

•  So, why not use them in requirements analysis?
•  Constraints increase the precision of requirements
•  Constraints can yield more questions for the end user
•  Constraints can clarify the relationships among several

objects

•  Constraints are sometimes used during
requirements analysis, however there are trade
offs

21©2008 Bernd Brügge Software Engineering WS 2008-9

Requirements vs. Object Design Trade-offs

•  Communication among stakeholders
•  Can the client understand formal constraints?

•  Level of detail vs. rate of requirements change
•  Is it worth precisely specifying a concept

that will change several times?

•  Level of detail vs. elicitation effort
•  Is it worth the time interviewing the end user
•  Will these constraints be discovered during object

design anyway?

•  Testing constraints
•  If tests are generated early, do theyrequire this level of

precision?

22©2008 Bernd Brügge Software Engineering WS 2008-9

Outline of the Lecture

 Object Design Activities
 Visibilities
 Information Hiding
 OO-Contracts
 OCL: A language for expressing OO-Contracts

23©2008 Bernd Brügge Software Engineering WS 2008-9

OCL: A language for expressing OO-
Contracts

•  Basic Concepts
•  Simple predicates
•  Preconditions
•  Postconditions
•  Contracts
•  Sets, Bags, and Sequences

UML Models used in this Lecture:
ARENA (Chapter 9, Bruegge & Dutoit, 2003)

TournamentControl

Player
players *

Tournament

1

1

+applyForTournament()

Match

+playMove(p,m)
+getScore():Map

matches *
+start:Date
+status:MatchStatus

-maxNumPlayers:String
-start:Date
-end:Date

1
1

*

matches *

TournamentForm

*

*

+acceptPlayer(p:Player)
+removePlayer(p:Player)

+getMaxNumPlayers():int
+getPlayers():List

+isPlayerAccepted(p:Player):boolean

+getNumPlayers():int Advertiser

sponsors
*

*

*

*

*

+selectSponsors(advertisers):List
+advertizeTournament()
+acceptPlayer(p)
+announceTournament()
+isPlayerOverbooked():boolean

25©2008 Bernd Brügge Software Engineering WS 2008-9

Bonus Program (Warmer and Kleppe, 2003)
[Warmer], pp. 12

register(k:Customer)

BonusProgram

Nr Customers:Integer
ProgramPartner since: :Datum

interruption: Datum
invalidate()
notify()

Membership

name:
title:String
age: Integer
birthday: Datum
getAge():Integer

Customer

valid:Boolean
validSince:Datum
expirationDate:Datum
color:enum{silver,

gold}
printedName:String

CustomerCard

condition:Boolean
pointsEarned: Integer
pointsPaid: Integer
description: String

Service
name:String

Level

points:Integer
earn(i: Integer)
eintauschen(i:Integer)
isEmpty():Boolean

Bonus Account

points:Integer
date: Datum
program(): BonusProgram

Transaction

Earn Purchase
now:Datum
isBefore(t:Datum):Boolean
isAfter(t:Datum):Boolean
=(t:Datum):Boolean

Datum

1..n

1..n

owner
card

card
0..1

partner

Available
Services

transactions
*

*transactions
*

card

1..n{ordered}
aktuelle
Ebene

program

transactions

*

offered
Services *

*

*

*

26©2008 Bernd Brügge Software Engineering WS 2008-9

OCL: Object Constraint Language

•  Formal language for expressing constraints over
a set of objects and their attributes

•  Part of the UML standard
•  Used to write constraints that cannot otherwise

be expressed in a diagram
•  Declarative

•  No side effects
•  No control flow

•  Based on Sets and Multi Sets

27©2008 Bernd Brügge Software Engineering WS 2008-9

OCL Expressions and OCL Data Types
•  Constraints are written as OCL expressions
•  Operands in OCL expressions are objects and

properties (attributed and operations).
•  Each OCL object has an OCL type, which defines

the operations that can be called on this object
•  OCL Types:

•  Predefined Types:
•  Base types: Integer, Real, String and Boolean
•  Collection types: Collection, Set, Bag and Sequence

•  User-defined OCL Types:
•  All Classes in the system model, that is all classes in

the UML diagrams are automatically OCL types.

28©2008 Bernd Brügge Software Engineering WS 2008-9

OCL Basic Concepts

•  OCL expressions
•  Return True or False
•  Are evaluated in a specified context, either in the

context of a class or in the context of an operation
•  All constraints apply to all instances.

29©2008 Bernd Brügge Software Engineering WS 2008-9

OCL Type Boolean
•  The truth values are written in OCL as true and
false. All the standard operators known from
boolean algebra are defined in OCL:

Not: ¬
And: ∧
Or: ∨
Implication: ⇒
Equality: =
Unequality: ≠

Boolean Operator OCL Operator

not
and
or
implies
equals
xor

30©2008 Bernd Brügge Software Engineering WS 2008-9

OCL Expression of Type Boolean

•  Example:
•  Problem statement: “Customers can earn points on a

service only, if they have not obtained this service by
purchasing it with points“

•  Alternative formulation: „A customer cannot earn
points with services, if these services have been paid
with points"

•  OCL Expression:
context Service inv:
(pointsEarned > 0) implies (pointsPaid = 0)

An OCL Invariant

English (Problem Statement):
“The maximum number of

players in any tournament
should be a positive number.”

OCL:
context Tournament inv:
self.getMaxNumPlayers() > 0
Notes:

•  “self” denotes all instances of “Tournament”
•  OCL uses the same dot notation as Java.

Tournament

-maxNumPlayers:String
+start:Date
+end:Date
+acceptPlayer(p)

+getMaxNumPlayers()
+removePlayer(p)

32©2008 Bernd Brügge Software Engineering WS 2008-9

Pre and Post Conditions

•  The context of a pre/post condition is the UML
operation of a class (called the context
operation)

•  Generic Form of a Pre- and Post condition:
context Complete signature of the context
operation

pre: OCL Expression
post: OCL Expression

•  pre and post are OCL keywords
•  The signature is taken from the class operation

in object design model
•  Formal parameters in the signature can be used

in the formulation of the OCL expressions.

33©2008 Bernd Brügge Software Engineering WS 2008-9

Example of a
Precondition in OCL

English:
“The acceptPlayer(p) operation can only be invoked

if player p has not yet been accepted in the
tournament.”

OCL:
 context Tournament::acceptPlayer(p)
 pre: not isPlayerAccepted(p)
Note:

•  The context of a precondition is always an operation.

Tournament
-maxNumPlayers:String
-start:Date
-end:Date

+acceptPlayer(p:Player)
+removePlayer(p:Player)

+getMaxNumPlayers():int
+getPlayers():List

+isPlayerAccepted(p:Player):boolean

+getNumPlayers():int

34©2008 Bernd Brügge Software Engineering WS 2008-9

Post Conditions can describe Temporal
Aspects

•  We use two OCL keywords to model temporal
aspects in post conditions

id@pre
 Represents the value of an attribute id before the
execution of the operation

   Example: customer@pre denotes the set of all customers
before the execution of the operation

result
The result of the operation immediately after the
execution.

Example of a
OCL Postcondition

English:
 “The number of accepted players in

a tournament increases by one after the completion of
acceptPlayer()”

OCL:
 context Tournament::acceptPlayer(p)
 post: self.getNumPlayers() =  

 self@pre.getNumPlayers() + 1
Notes:

•  self@pre denotes the state of the tournament before the
invocation of the operation.

•  self denotes the state of the tournament after the
completion of the operation.

Tournament
-maxNumPlayers:String
-start:Date
-end:Date

+acceptPlayer(p:Player)
+removePlayer(p:Player)

+getMaxNumPlayers():int
+getPlayers():List

+isPlayerAccepted(p:Player):boolean

+getNumPlayers():int

36©2008 Bernd Brügge Software Engineering WS 2008-9

Contract4J:
Design by Contract ® for Java

•  Contract4J is a tool that supports Design by Contract
•  Contract4J uses Java 5 annotations to define OCL

expressions
•  Annotations have several advantages over JavaDoc-

style tags
•  the JVM can be made aware of the annotations at

runtime
•  In this case the OCL expressions can be evaluated

at runtime and handle failures
•  They can be included in the generated JavaDocs.

•  Contract4J Tutorial-Example:
•  http://www.contract4j.org/contract4j/example

Constraints can involve more than one
class

How do we specify constraints on
on a group of classes?

1.  Start from a specific class in the UML class diagram (i.e.
select the context)

2.  Follow a direct association from that class (context) to
to another class (target class)

3.  If the association end has a name, use it in the OCL
expression, otherwise use the lower-case name of the
target class

4.  Refer to its attributes and operations or follow an
association from that class to another class.

38©2008 Bernd Brügge Software Engineering WS 2008-9

ARENA: League, Tournament and Player

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments *

Constraints:
1.  A Tournament’s planned

duration must be under one
week.

2.  Players can be accepted in a
Tournament only if they are
already registered with the
corresponding League.

3.  The number of active
Players in a League are
those that have taken part
in at least one Tournament
of the League.

39©2008 Bernd Brügge Software Engineering WS 2008-9

Instance Diagram: 2 Leagues

tttExpert:League chessNovice:League

alice:Player

bob:Player

marc:Player

joe:Player

zoe:Player

winter:Tournament

start=Jan 12
end= Jan 14

Xmas:Tournament

start=Dec 23
end= Dec 25

, 5 Players,
2 Tournaments

40©2008 Bernd Brügge Software Engineering WS 2008-9

3 Types of Navigation through a Class
Diagram

1. Local attribute 2. Directly related class 3. Indirectly related class

Tournament

League

*

*

Player
*

League

Player
*

*
Tournament
start:Date
end:Date

Any constraint for an arbitrary UML class diagram can
be specified using only a combination of these

3 navigation types!

41©2008 Bernd Brügge Software Engineering WS 2008-9

Specifying the Model Constraints in OCL

Local attribute navigation

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments *

Directly related class navigation

context Tournament inv:
 end - start <= 7

 context
 Tournament::acceptPlayer(p)

pre:
league.players->includes(p)

42©2008 Bernd Brügge Software Engineering WS 2008-9

OCL Sets, Bags and Sequences

•  Sets, Bags and Sequences are predefined in OCL and
subtypes of Collection. OCL offers a large number of
predefined operations on collections. They are all of the
form:

 collection->operation(arguments)

The OCL-Type Collection is the generic superclass
of a collection of objects of Type T

43©2008 Bernd Brügge Software Engineering WS 2008-9

OCL-Collection

•  Subclasses of Collection are
•  Set: Set in the mathematical sense. Every element
 can appear only once

•  Bag: A collection, in which elements can appear more
than once (also called multiset)

•  Sequence: A multiset, in which the elements are
ordered

•  Example for Collections:
•  Set(Integer): a set of integer numbers
•  Bag(Person): a multiset of persons
•  Sequence(Customer): a sequence of customers

Evaluating OCL Expressions
The value of an OCL expression is an object or a

collection of objects

•  Multiplicity of the association-end is 1
•  The value of the OCL expression is a single object

•  Multiplicity is 0..1
•  The result is an empty set if there is no object, otherwise a

single object

•  Multiplicity of the association-end is *
•  The result is a collection of objects

•  By default, the navigation result is a Set
•  When the association is {ordered}, the navigation results

in a Sequence
•  Navigation through multiple “1-Many” associations results

in a Bag.

45©2008 Bernd Brügge Software Engineering WS 2008-9

OCL-Operations for Collections (1)
size: Integer

Number of elements in the collection

includes(o:OclAny): Boolean
True, if the element o is in the collection

count(o:OclAny): Integer
Counts how many times an element is contained in the
collection

isEmpty: Boolean
True, if the collection is empty

notEmpty: Boolean
 True, if the collection is not empty

The OCL-Type OclAny is the most general OCL-Type

46©2008 Bernd Brügge Software Engineering WS 2008-9

OCL-Operations for OCL-Collections(2)
OCT operations for the generation of new

collections:
union(c1:Collection)

Union with collection c1

intersection(c2:Collection)
Intersection with Collection c2 (contains only elements,
which appear in the collection as well as in collection c2
auftreten)

including(o:OclAny)
Collection containing all elements of the Collection and
element o

select(expr:OclExpression)
Subset of all elements of the collection, for which the OCL-
expression expr is true

47©2008 Bernd Brügge Software Engineering WS 2008-9

Modeling with „includes“ and „including“
Problem statement: „A new customer who is registering for the

bonus program, is not allowed to be a member of this program.
After the registration, the customer is a member of the bonus
program."

context
BonusProgram::register(k:Customer)
pre: not (customer->includes(k))
post: customer = customer@pre->including(k)

This constraint can be formulated as a pre and post condition for the context
operation register()in the class BonusProgram

register(k:Customer)

BonusProgram
program

name:String
title:String
age: Integer
birthday: Datum
getAge(): Integer

Customer

 *

48©2008 Bernd Brügge Software Engineering WS 2008-9

How do we get OCL Collections?

1.  A collection can be generated by explicitly
enumerating the elements

2.  A collection can be generated by navigating
along one or more 1 to many associations
•  Navigation along a single 1 to many association yields

a Set

•  Navigation along a couple of 1 to many associations
yields a Bag (Multiset)

•  Navigation along a single 1 to many association labeled
with the constraint {ordered} yields a Sequence

3.  By calling an OCL collection operation, which
results in another OCL collection.

49©2008 Bernd Brügge Software Engineering WS 2008-9

Calling an OCL Operation: „Arrow-Notation“
•  The call of an collection operation consists of the

concatenation of
•  the collection identifier (e.g. partner)

•  the arrow “->”

•  the name of the operation (e.g. size)

•  Example: „A bonus program must always have exactly 4
program partners“

OCL Invariant (the role name partner is the
collection identifier):

context BonusProgram inv:
partner->size = 4

Register (c:Customer

BonusProgramm

NrCustomers:Integer
ProgrammPartner

1..n

1..n

partner

50©2008 Bernd Brügge Software Engineering WS 2008-9

Navigation through several 1 to Many
Associations

Example:
context programPartner inv:
nrcustomer = bonusprogram.customer->size

nrcustomer: Integer
programPartner

name:String
titel:String
age: Integer
birthday: Datum
getage(): Integer

Customer

1..*

1..*
register(k:Customer)

Bonusprogram
program
 *

 .*

customer denotes a
multiset of Customer

bonusprogram
denotes a set of

Bonusprograms

51©2008 Bernd Brügge Software Engineering WS 2008-9

Conversion between OCL-Collections

•  OCL offers operations to convert OCL-Collections:

asSet
Transforms a multiset into a set

asBag
transforms a set into a multiset

asSequence
transforms a set or multiset into a sequence.

52©2008 Bernd Brügge Software Engineering WS 2008-9

Example of a Conversion
context ProgramPartner inv:

nrcustomer = bonusprogram.customer->size

This expression may contain Customer multiple times, we
can get the number of unique instances of Customer
as follows:

context ProgramPartner inv:
nrcustomer = bonusprogram.customer->asSet->size

nrcustomer: Integer
ProgramPartner

name:String
titel:String
age: Integer
birthday: Datum
getage(): Integer

Customer

1..*

1..*
register(k:Customer)

Bonusprogram
program
 *

 .*

53©2008 Bernd Brügge Software Engineering WS 2008-9

Turning Bags into Sets

Local attribute navigation
context Tournament inv:
 end - start <= Calendar.WEEK

Directly related class navigation
context Tournament::acceptPlayer(p)
pre:
 league.players->includes(p)

players

* tournaments
{ordered}

Tournament

+start:Date
+end:Date
+acceptPlayer(p:Player)

*
League

+start:Date
+end:Date
+getActivePlayers()

*
Player

+name:String
+email:String

* players

tournaments *
Indirectly related class navigation

context League::getActivePlayers
post:
 result=tournaments.players->asSet

X

54©2008 Bernd Brügge Software Engineering WS 2008-9

Where place OCL Models

•  OCL model: The set of all OCL expressions
connected with a UML model

•  2 possibilities to connect a OCL model with its UML
model
1. All OCL expressions are notes in the UML model
•  Advantage: Everything in one model
•  Disadvantage: The UML model becomes unreadable
2. All OCL expressions are stored in a separate text

file
•  Advantage: The UML model stays readable
•  Disadvantage: UML model and OCL model are stored in

two different files
•  Can lead to consistency problems (Name changes
in the UML model must explicitly be changed in the
OCL model and vice versa).

55©2008 Bernd Brügge Software Engineering WS 2008-9

OCL Model as part of the UML-Model

UML-Constraint

{program->size =
card->select(valid= true)->size}

UML Model

register(k:Customer)

BonusProgram

name:String
tit:leString
age: Integer
birthday: Datum
getAge: Integer

Customer

validBoolean
validSince:Datum
expires: Datum
color:enum{silver,

gold}
printedName: String

CustomerCard

owner
card *

program

*

OCL Model as separate Text

OCL Model:
context Customer inv:
  program->size =
 card->select(valid= true)->size

UML Model

register(k:Customer)

BonusProgram

name:String
tit:leString
age: Integer
birthday: Datum
getAge: Integer

Customer

validBoolean
validSince:Datum
expires: Datum
color:enum{silver,

gold}
printedName: String

CustomerCard

owner
card *

program

*

57©2008 Bernd Brügge Software Engineering WS 2008-9

Additional Readings
•  J.B. Warmer, A.G. Kleppe: The Object Constraint Language:

Getting your Models ready for MDA, Addison-Wesley, 2nd
edition, 2003

•  B. Meyer, Object-Oriented Software Construction, 2nd edition,
Prentice Hall, 1997.

•  B. Meyer, Design by Contract: The Lesson of Ariane, Computer,
IEEE, Vol. 30, No. 2, pp. 129-130, January 1997.
•  The explosion of Ariane was due to an error in a piece of the software

that was not needed during the crash.
•  http://archive.eiffel.com/doc/manuals/technology/contract/

ariane/page.html
•  C. A. R. Hoare, An axiomatic basis for computer programming

CACM, 12(10), pp 576-585, October 1969.
•  Refresher for Hoare logic: http://en.wikipedia.org/wiki/Hoare_logic

•  Contract4J: Design by Contract ® for Java
•  http://www.contract4j.org/contract4j

58©2008 Bernd Brügge Software Engineering WS 2008-9

Summary

•  Constraints are predicates (often boolean
expressions) on UML model elements

•  Contracts are constraints on a class that enable
class users, implementors and extenders to
share the same assumption about the class
(“Design by contract”)

•  OCL is the example of a formal language that
allows us to express constraints on UML models

•  Complicated constraints involving more than one
class, attribute or operation can be expressed
with 3 basic navigation types.

