
1© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I:
Software Technology

WS 2008/09

Unit Testing

2© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Outline

This lecture

• Terminology
• Testing Activities
• Unit testing

Next lecture

• Integration testing
• Testing strategies

• System testing
• Function testing
• Structure testing
• Acceptance testing.

3© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Terminology

• Failure: Any deviation of the observed behavior
from the specified behavior

• Erroneous state (error): The system is in a state
such that further processing by the system can
lead to a failure

• Fault: The mechanical or algorithmic cause of an
error (“bug”)

• Validation: Activity of checking for deviations
between the observed behavior of a system and
its specification.

4© 2008 Bernd Bruegge Software Engineering WS 2008/2009

F-16 Bug

• What´s the failure?
• What´s the error?
• What´s the fault?

• Bad use of implementation
inheritance

• A Plane is not a rocket.

Rocket

Plane

5© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Examples of Faults and Errors

• Faults in the Interface
specification

• Mismatch between
what the client needs
and what the server
offers

• Mismatch between
requirements and
implementation

• Algorithmic Faults
• Missing initialization
• Incorrect branching

condition
• Missing test for null

• Mechanical Faults
(very hard to find)

• Operating temperature
outside of equipment
specification

• Errors
• Null reference errors
• Concurrency errors
• Exceptions.

6© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Another View on How to Deal with Faults

• Fault avoidance
• Use methodology to reduce complexity
• Use configuration management to prevent inconsistency
• Apply verification to prevent algorithmic faults
• Use Reviews

• Fault detection
• Testing: Activity to provoke failures in a planned way
• Debugging: Find and remove the cause (Faults) of an

observed failure
• Monitoring: Deliver information about state => Used

during debugging

• Fault tolerance
• Exception handling
• Modular redundancy.

7© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Taxonomy for Fault Handling Techniques

Fault Handling

Fault
Avoidance

Fault
Detection

Fault
Tolerance

Verification

Configuration
ManagementMethodoloy Atomic

Transactions
Modular

Redundancy

System
Testing

Integration
Testing

Unit
Testing

Testing Debugging

8© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Observations

• It is impossible to completely test any nontrivial
module or system

• Practical limitations: Complete testing is prohibitive in
time and cost

• Theoretical limitations: e.g. Halting problem

• “Testing can only show the presence of bugs,
not their absence” (Dijkstra).

• Testing is not for free

=> Define your goals and priorities

9© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Testing takes creativity

• To develop an effective test, one must have:
• Detailed understanding of the system
• Application and solution domain knowledge
• Knowledge of the testing techniques
• Skill to apply these techniques

• Testing is done best by independent testers
• We often develop a certain mental attitude that the

program should in a certain way when in fact it does
not

• Programmers often stick to the data set that makes
the program work

• A program often does not work when tried by
somebody else.

behave

10© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Testing Activities

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

Requirements
Analysis

Document

Client
Expectation

System
Design

Document

Object
Design

Document

Developer Client

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

11© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Types of Testing

• Unit Testing
• Individual component (class or subsystem)
• Carried out by developers
• Goal: Confirm that the component or subsystem is

correctly coded and carries out the intended
functionality

• Integration Testing
• Groups of subsystems (collection of subsystems) and

eventually the entire system
• Carried out by developers
• Goal: Test the interfaces among the subsystems.

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

12© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Types of Testing continued...

• System Testing
• The entire system
• Carried out by developers
• Goal: Determine if the system meets the requirements

(functional and nonfunctional)

• Acceptance Testing
• Evaluates the system delivered by developers
• Carried out by the client. May involve executing typical

transactions on site on a trial basis
• Goal: Demonstrate that the system meets the

requirements and is ready to use.

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

13© 2008 Bernd Bruegge Software Engineering WS 2008/2009

When should you write a test?

• Traditionally after the source code to be tested

• In XP before the source code to be tested
• Test-Driven Development Cycle

• Add a test
• Run the automated tests

=> see the new one fail
• Write some code
• Run the automated tests

=> see them succeed
• Refactor code.

14© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Unit Testing

• Static Testing (at compile time)
• Static Analysis
• Review

• Walk-through (informal)
• Code inspection (formal)

• Dynamic Testing (at run time)
• Black-box testing
• White-box testing.

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

15© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Static Analysis with Eclipse

• Compiler Warnings and Errors
• Possibly uninitialized Variable
• Undocumented empty block
• Assignment has no effect

• Checkstyle
• Check for code guideline violations
• http://checkstyle.sourceforge.net

• FindBugs
• Check for code anomalies
• http://findbugs.sourceforge.net

• Metrics
• Check for structural anomalies
• http://metrics.sourceforge.net

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

16© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Black-box testing

• Focus: I/O behavior
• If for any given input, we can predict the output, then

the component passes the test
• Requires test oracle

• Goal: Reduce number of test cases by
equivalence partitioning:

• Divide input conditions into equivalence classes
• Choose test cases for each equivalence class.

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

17© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Black-box testing: Test case selection

a) Input is valid across range of values
• Developer selects test cases from 3 equivalence classes:

• Below the range
• Within the range
• Above the range

b) Input is only valid, if it is a member of a
discrete set

• Developer selects test cases from 2 equivalence classes:
• Valid discrete values
• Invalid discrete values

• No rules, only guidelines.

18© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Status: Where are we now?

• Terminology
• Testing Activities
• Unit testing

• Static Testing
• Dynamic Testing

• Blackbox Testing
• Example...

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

19© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Black box testing: An example

public class MyCalendar {

public int getNumDaysInMonth(int month, int year)
throws InvalidMonthException

{ … }
}

Representation for month:
1: January, 2: February, …., 12: December

Representation for year:
1904, … 1999, 2000,…, 2006, …

How many test cases do we need for the black box testing of
getNumDaysInMonth()?

20© 2008 Bernd Bruegge Software Engineering WS 2008/2009

White-box testing overview

• Code coverage

• Branch coverage

• Condition coverage

• Path coverage

=> Details in the exercise session about testing

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

21© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Unit Testing Heuristics

1. Create unit tests when
object design is completed

• Black-box test: Test the
functional model

• White-box test: Test the
dynamic model

2. Develop the test cases
• Goal: Find effective num-

ber of test cases
3. Cross-check the test cases

to eliminate duplicates
• Don't waste your time!

4. Desk check your source code
• Sometimes reduces testing

time
5. Create a test harness

• Test drivers and test stubs
are needed for integration
testing

6. Describe the test oracle
• Often the result of the first

successfully executed test
7. Execute the test cases

• Re-execute test whenever
a change is made
(“regression testing”)

8. Compare the results of the
test with the test oracle

• Automate this if possible.

22© 2008 Bernd Bruegge Software Engineering WS 2008/2009

JUnit: Overview
• A Java framework for writing and running unit tests

• Test cases and fixtures
• Test suites
• Test runner

• Written by Kent Beck and Erich Gamma
• Written with “test first” and pattern-based development in

mind
• Tests written before code
• Allows for regression testing
• Facilitates refactoring

• JUnit is Open Source
• www.junit.org
• JUnit Version 4, released Mar 2006

Unit
Testing

Acceptance
Testing

Integration
Testing

System
Testing

23© 2008 Bernd Bruegge Software Engineering WS 2008/2009

*

JUnit Classes

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

UnitToBeTested

Methods under Test

24© 2008 Bernd Bruegge Software Engineering WS 2008/2009

An example: Testing MyList

• Unit to be tested
• MyList

• Methods under test
• add()
• remove()
• contains()
• size()

• Concrete Test case
• MyListTestCase

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

26© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Writing TestCases in JUnit
public class MyListTestCase extends TestCase {

public MyListTestCase(String name) {
super(name);

}
public void testAdd() {
 // Set up the test

List aList = new MyList();
String anElement = “a string”;

 // Perform the test
aList.add(anElement);

 // Check if test succeeded
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}
protected void runTest() {

testAdd();
}
}

Test

run(TestResult)

MyListTestCase

setUp()
tearDown()
runTest()
testAdd()
testRemove()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

MyList

add()
remove()
contains()
size()

*

27© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Writing Fixtures and Test Cases
public class MyListTestCase extends TestCase {
// …
private MyList aList;
private String anElement;
public void setUp() {

aList = new MyList();
anElement = “a string”;

}

public void testAdd() {
aList.add(anElement);
assertTrue(aList.size() == 1);
assertTrue(aList.contains(anElement));

}

public void testRemove() {
aList.add(anElement);
aList.remove(anElement);
assertTrue(aList.size() == 0);
assertFalse(aList.contains(anElement));

}

Test Fixture

Test Case

Test Case

28© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Collecting TestCases into TestSuites

public static Test suite() {
TestSuite suite = new TestSuite();
suite.addTest(new MyListTest(“testAdd”));
suite.addTest(new MyListTest(“testRemove”));
return suite;

}

Test

run(TestResult)

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Composite Pattern!

*

29© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Design patterns in JUnit

Test

run(TestResult)

ConcreteTestCase

setUp()
tearDown()
runTest()

TestResult

TestCase

run(TestResult)
setUp()
tearDown()

testName:String

runTest()

TestSuite

run(TestResult)
addTest()

Command Pattern

Composite
Pattern

Adapter
Pattern

Template Method
Pattern

TestedUnit

*

30© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Other JUnit features

• Textual and GUI interface
• Displays status of tests
• Displays stack trace when tests fail

• Integrated with Maven and Continuous Integration
• http://maven.apache.org

• Build and Release Management Tool
• http://Maven.apache.org/continuum

• Continous integration server for Java programs
• All tests are run before release (regression tests)
• Test results are advertised as a project report

• Many specialized variants
• Unit testing of web applications
• J2EE applications

31© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Exam Questions

32© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Sudoku Example

• Consider a Sudoku puzzle application.
• A standard Sudoku puzzle consists of 9 Boxes, which in

turn contain 9 fields. A Field has a number whose value
may range from 1 to 9.

• Describe the system model with the following three class
diagrams:

• Analysis object model
• System design object model (use MVC)
• Object design model

• Assume that you have changed the constraints of the
standard puzzle: The Sudoku now consists of a 16x16
board and the set of possible values for a field now
contains 1-digit hexadecimal values.

• How does the model change?

33© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Sudoku Analysis Object Model

34© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Sudoku System Object Model

35© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Sudoku Object Design Model

36© 2008 Bernd Bruegge Software Engineering WS 2008/2009

16 x 16 Sudoku

• The multiplicities change as well as the definition of the
SudokuNumber enumeration. If OCL constraints have
been specified they will change as well.

37© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Intelligent House

• A house consists of several rooms. A room can have
lights, blinds and doors. A door is equipped with a lock.
Some lights are dimmable.

• Create an analysis object model of the house using Abbot’s
technique.

• The house can be equipped with device families (blinds, door
locks and lights) from different vendors. Vendor A provides the A
product family that consists of the EternalDarkness blinds, the
DiscoMood lights and ThumbUp door locks. Vendor B provides
the B product family of FastUp blinds, SilentDimmer lights and
HighSec door locks. Draw an object design model that has the
property to allow the use of different product families. How do you
ensure your design is reusable?

38© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Intelligent House Analysis Object Model

39© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Intelligent House AbstractFactory

40© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Mapping Models into Code

41© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Class A

public class A {
protected int id;

public int getId() {
return id;

}

public void clearId() {
id = null;

}
}

42© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Class B

public class B extends A {
private boolean colored;
Collection<C> refC;

public boolean isColored() {
return colored;

}

public void setId(int id) {
this.id=id;

}
}

43© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Class C

public class C extends A {
private boolean locked;
private int number;

public boolean isLocked() {
return locked;

}

public void lock() {
locked = true;

}

public int getNumber() {
return number;

}
}

44© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Methodologies

• What is the difference between Techniques,
Methodologies and Tools:

• Techniques: Formal procedures for producing
results using some well-defined notation.

• Methodologies: Collection of techniques applied
across software development and unified by a
philosophical approach.

• Tools: Instruments or automated systems to
accomplish a technique.

45© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Unit Testing Whitebox Test

46© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Whitebox Testing Solution

 A, B, C, D, G, B, C, E, F, G B, H

47© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Pizza Service

• Ordering a pizza
• Consider the process of ordering a pizza by phone. Draw an

activity diagram representing each step of the process, from the
moment you pick up the phone to the point when you start eating
the pizza. Do not represent any exceptions. Include activities that
others need to perform.

• Exceptions
• Add exception handling to the activity diagram you developed.

Consider at least three exceptions (e.g., operator wrote down
wrong address, delivery man delivers wrong pizza, store is out of
anchovies).

48© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Ordering a Pizza
Call

Pizza Shop

Ask for
pizza size

Client

Ask for
toppings

Ask for
pizza type

Ask for
address&phone

Wait for
pizza

Prepare
pizza

Deliver
pizza

Receive
pizza

Pay

Eat

Pizza Shop

49© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Exceptions Call
Pizza Shop

Ask for
pizza size

Client

Ask for
toppings

Ask for
pizza type

Ask for
address&phone

Wait for
pizza

Prepare
pizza

Deliver
pizza

Receive
pizza

Pay

Eat

Pizza Shop

Ask correct
address

Take
loss

[wrong address]

[wrong address]

Deliver to
new address

[wrong pizza]

[no anchovies]

Revise
topping

[cancel order]

[proceed with order]

