
1© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Bernd Bruegge
Applied Software Engineering

Technische Universitaet Muenchen

Software Engineering I:
Software Technology

WS 2008/09

Integration Testing and
System Testing

2© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Overview

• Integration testing techniques
• Big bang (not a technique:-)
• Bottom up testing
• Top down testing
• Sandwich testing
• Continuous integration

• System testing
• Functional testing
• Performance testing

• Acceptance testing
• Summary

3© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Odds and Ends

• This is the last lecture for this year
• No lecture on Tuesday

• Next Lecture on Friday 9 Jan 2009
• Next Exercise session 15 Jan 2009

• Continuous integration with Cruise Control

• Final exam on 5 Feb 2009
• Registration via TUMonline
• Make sure to register in time and not at the last

minute.
• If TUMonline registration is unsuccessful, then use the

registration at the Info-Point in the Magistrale.

4© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Integration Testing

• The entire system is viewed as a collection of
subsystems (sets of classes) determined during
the system and object design

• Goal: Test all interfaces between subsystems
and the interaction of subsystems

• The Integration testing strategy determines the
order in which the subsystems are selected for
testing and integration.

5© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Why do we do integration testing?

• Unit tests test units and components only in isolation

• Many failures result from faults in the interaction of
subsystems

• Off-the-shelf components cannot often not be fully unit
tested

• Without integration testing the system test can be very
time consuming and costly

• Failures discovered after the system is deployed can be very
expensive.

6© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Definition: Stubs and drivers

• Stub:
• A component, the TestedUnit

depends on which is not yet
implemented

• Usually returns the same value on each
call

• Driver:
• A component which calls the TestedUnit

• Often a replacement for a
not yet implemented user interface.

Driver

Tested
Unit

Stub

7© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Example: A 3-Layer-Design

Layer I

Layer II

Layer III

Spread
SheetView

A

Calculator

C

BinaryFile
Storage

E
XMLFile
Storage

F
Currency
DataBase

G

Currency
Converter

D
Data

Model

B

A

C

E F G

DB

Spread
SheetView

BinaryFile
Storage

Entity
Model

A

E F
Currency
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile
Storage

(Spreadsheet)

8© 2008 Bernd Bruegge Software Engineering WS 2008/2009

A

C

E F G

DB

Big-Bang Approach

Test A

Test B

Test G

Test F

Test E

Test C

Test D
Test

A, B, C, D,
E, F, G

 Very bad!
To be avoided at all cost

9© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Bottom-up Testing Strategy

1. The subsystems in the lowest layer of the call
hierarchy are tested individually

2. Collect the subsystems that call the previously
tested subsystems

3. Test the aggregated collection of these
subsystems

4. Repeat steps 2 and 3 until all subsystems are
included in the test

• Drivers are needed to do bottom-up testing.

10© 2008 Bernd Bruegge Software Engineering WS 2008/2009

A

C

E F G

DB

Bottom-up Integration A

Test
A, B, C, D,

E, F, G

E
Test E

F

Test F

B

Test B, E, F

C

Test C

D

Test D,G

G

Test G

11© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Pros and Cons of Bottom-Up Integration
Testing

• Con:
• Tests the most important subsystem (user interface)

last
• Drivers are needed

• Pro
• No stubs are needed
• Useful for integration testing of the following systems

• Systems with strict performance requirements
• Real-time systems
• Games.

12© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Top-down Testing Strategy

1. Test the top layer or the controlling subsystem
first

2. Then combine all the subsystems that are
called by the tested subsystems

3. Test this collection of subsystems
4. Repeat steps 2 and 3 until all subsystems are

incorporated into the test.

• Stubs are needed to do top-down testing.

13© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Top-down Integration

Test
A, B, C, D,

E, F, G

All LayersLayer I + II

Test A, B, C, D

Layer I

Test A

A

E F

B C D

G

14© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Pros and Cons of Top-down Integration
Testing

Pro:
• Test cases can be defined in terms of the functionality

of the system (functional requirements)
• No drivers needed

Cons:
• Writing stubs is difficult: Stubs must allow all possible

conditions to be tested.
• Large number of stubs may be required, especially if

the lowest level of the system contains many methods.
• Some interfaces are not tested separately.

15© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Sandwich Testing Strategy

• Combines top-down strategy with bottom-up
strategy

• The system is viewed as having three layers
• A target layer in the middle
• A layer above the target
• A layer below the target

• Testing converges at the target layer.

16© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Sandwich Testing Strategy

Test
A, B, C, D,

E, F, G
Test B, E, F

Test D,G

Test A

Test E

Test F

Test G

Test A,B,C, D

A

E F

B C D

G

17© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Pros and Cons of Sandwich Testing

• Top and Bottom Layer Tests can be done in
parallel

• Problem: Does not test the individual
subsystems and their interfaces thoroughly
before integration

• Solution: Modified sandwich testing strategy

18© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Modified Sandwich Testing Strategy

• Test in parallel:
• Middle layer with drivers and stubs
• Top layer with stubs
• Bottom layer with drivers

• Test in parallel:
• Top layer accessing middle layer (top layer

replaces drivers)
• Bottom accessed by middle layer (bottom

layer replaces stubs).

19© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Modified Sandwich Testing

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F

Test D,G

Test A,C

Test
A, B, C, D,

E, F, G

A

E F

B C D

G

20© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Horizontal vs vertical testing strategies

• Horizontal integration testing:
• Assumes a hierarchical design
• Focuses on testing of layers
• Adds layers incrementally to the test
• Bottom-up, Top-down and sandwich testing are

horizontal testing methods

• Vertical integration testing:
• Based on scenarios or user stories
• Takes all the components from the system model that

are needed to realize a specific scenario.

21© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Spread
SheetView

BinaryFile
Storage

Data
Model

Vertical Testing Strategy

Layer I

Layer II

Layer III

A

E F
Currency
DataBase

G

Currency
Converter

DB

Calculator

C

XMLFile
Storage

Sheet View + Cells
+ Addition + File Storage

22© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Continuous Integration
Continuous integration: A set of software

engineering practices to decrease the time needed
for integration testing. Consists of these steps:

• Define a build file (make file) as soon as the top level
design is defined

• Define and maintain a source code repository
• Check-in and check-out of components
• Perform a unit test after each change of a component
• Do regression testing of the unchanged components
• Automate the Build process:

• Build a new version of the system after successful
testing

• Make the result of the build process visible for all the
developers.

23© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Advantages of Continous Integration

• Immediate unit testing of all changes
• Constant availability of a system for a demo and

or a release
• Integration problems are detected and fixed

continuously during the duration of the project,
not at the last minute

• Early warning of incompatible interfaces
• Early warning of conflicting changes

• In short, it avoids all the problems of big bang
integration.

24© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Continuous Integration

• Continuous integration is a vertical testing
strategy:

• There is always a runnable and demonstrable version
of the system

• Based on regular builds, first used by Microsoft for the
Microsoft Office suite

• Idea extended by Martin Fowler from Thoughtworks

• Continous integration includes:
• Software configuration management
• E-mail notification
• Automated regression testing tools
• Continuous build server
• Views of previous and current builds.

25© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Continous Integration Tools

• Open Source Versions:
• Cruise Control: http://cruisecontrol.sourceforge.net

• Java based framwork for a continous build process
• CruiseControl.NET (Often called CCNET)

• .NET-based automated continuous integration server
• Apache Gump: http://gump.apache.org

• Continuous integration tool for Apache

• Commercial Versions:
• Cascade: http://www.conifersystems.com/cascade/

• Provides a "checkpointing" facility by which changes can
be built and tested before they are committed

• For more tools, see:
• http://en.wikipedia.org/wiki/Continuous_Integration

26© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Steps in Integration Testing

.

1. Based on the integration
strategy, select a
component to be tested.
Unit test all the classes in
the component.

2. Put selected component
together; do any
preliminary fix-up
necessary to make the
integration test operational
(drivers, stubs)

3. Test functional
requirements: Define test
cases that exercise all uses
cases with the selected
component

4. Test subsystem
decomposition: Define test
cases that exercise all
dependencies

5. Test non-functional
requirements: Execute
performance tests

6. Keep records of the test
cases and testing activities.

7. Repeat steps 1 to 7 until
the full system is tested.

The primary goal of integration
testing is to identify failures
with the (current)
component configuration.

27© 2008 Bernd Bruegge Software Engineering WS 2008/2009

System Testing

• Functional Testing
• Validates functional requirements

• Performance Testing
• Validates non-functional requirements

• Acceptance Testing
• Validates clients expectations

28© 2008 Bernd Bruegge Software Engineering WS 2008/2009

.

Functional Testing

Goal: Test functionality of system
• Test cases are designed from the requirements

analysis document (better: user manual) and
centered around requirements and key functions
(use cases)

• The system is treated as black box
• Unit test cases can be reused, but new test

cases have to be developed as well.

29© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Performance Testing

Goal: Try to violate non-functional requirements
• Test how the system behaves when overloaded.

• Can bottlenecks be identified? (First candidates for
redesign in the next iteration)

• Try unusual orders of execution
• Call a receive() before send()

• Check the system’s response to large volumes of
data

• If the system is supposed to handle 1000 items, try it
with 1001 items.

• What is the amount of time spent in different
use cases?

• Are typical cases executed in a timely fashion?

30© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Types of Performance Testing

• Stress Testing
• Stress limits of system

• Volume testing
• Test what happens if large

amounts of data are handled

• Configuration testing
• Test the various software and

hardware configurations

• Compatibility test
• Test backward compatibility

with existing systems

• Timing testing
• Evaluate response times and

time to perform a function

• Security testing
• Try to violate security

requirements

• Environmental test
• Test tolerances for heat,

humidity, motion

• Quality testing
• Test reliability, maintain-

ability & availability

• Recovery testing
• Test system’s response to

presence of errors or loss
of data

• Human factors testing
• Test with end users.

31© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Acceptance Testing

• Goal: Demonstrate system is
ready for operational use

• Choice of tests is made by
client

• Many tests can be taken
from integration testing

• Acceptance test is
performed by the client, not
by the developer.

• Alpha test:
• Client uses the software

at the developer’s
environment.

• Software used in a
controlled setting, with
the developer always
ready to fix bugs.

• Beta test:
• Conducted at client’s

environment (developer is
not present)

• Software gets a realistic
workout in target environ-
ment

32© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Testing has many activities

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

33© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

34© 2008 Bernd Bruegge Software Engineering WS 2008/2009

The 4 Testing Steps

1. Select what has to be tested
• Analysis: Completeness of

requirements
• Design: Cohesion
• Implementation: Source

code

2. Decide how the testing is
done

• Review or code inspection
• Proofs (Design by Contract)
• Black-box, white box,
• Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
• A test case is a set of test

data or situations that will
be used to exercise the unit
(class, subsystem, system)
being tested or about the
attribute being measured

4. Create the test oracle
• An oracle contains the

predicted results for a set of
test cases

• The test oracle has to be
written down before the
actual testing takes place.

35© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Guidance for Test Case Selection
• Use analysis knowledge

about functional
requirements (black-box
testing):

• Use cases
• Expected input data
• Invalid input data

• Use design knowledge
about system structure,
algorithms, data structures
(white-box testing):

• Control structures
• Test branches, loops,

...
• Data structures

• Test records fields,
arrays, ...

• Use implementation
knowledge about
algorithms and
datastructures:

• Force a division by zero
• If the upper bound of an

array is 10, then use 11 as
index.

36© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Summary

• Testing is still a black art, but many rules and
heuristics are available

• Testing consists of
• Unit testing
• Integration testing
• System testing

• Acceptance testing

• Design patterns can be used for integration
testing

• Testing has its own lifecycle

37© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Additional Reading

• JUnit Website www.junit.org/index.htm
• J. Thomas, M. Young, K. Brown, A. Glover, Java

Testing Patterns, Wiley, 2004
• Martin Fowler, Continous Integration, 2006

• http://martinfowler.com/articles/continuousIntegration
.html

• Original version of the article:
• http://martinfowler.com/articles/originalContinuousInt

egration.html

• D. Saff and M. D. Ernst, An experimental evaluation of
continuous testing during development Int. Symposium
on Software Testing and Analysis, Boston July 12-14,
2004, pp. 76-85

• A controlled experiment shows that developers using
continuous testing were three times more likely to complete the
task before the deadline than those without.

38© 2008 Bernd Bruegge Software Engineering WS 2008/2009

Merry Christmas and
 a Happy New Year!

