
1
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Software Engineering I:  
Software Technology 

WS 2008/9 

Methodologies 

Prof. Bernd Bruegge, Ph.D. 
Applied Software Engineering 

Technische Universitaet Muenchen 



2
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Outline 

•  A mountaineering example 
•  Project context 

•  Goals, client types 
•  Environment, methods, tools, methodology 

•  Methodology spectrum 
•  Planning, design reuse, modeling, process,

 control&monitoring, redefinition 

•  Different types of planning 
•  Different ways to use models 
•  Use of processes in software development 



Key Decisions in an Expedition 

•  A leader must answer several key 
questions to create a successful expedition 

•  What mountain should be climbed? 
•  What types of tools should be used? 
•  Who should be member of the team? 
•  Does the expedition need a leader? 

•  Different answers to these questions  
lead to different styles: 

Fixed-rope  Siege style Free Solo Alpine style 



4
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Key Parameters in a Software Project 

•  Project goals 
•  Schedule 
•  Cost 
•  Project organization 
•  Software life cycle model 
•  Tools 
•  Methods 
•  Team members and organization 

     Influenced by Methodology 



5
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Methodology 
Definition: Software  engineering methodology  

•  Collection of methods and tools for  
   developing and managing a software system  
   to achieve a specific goal in a given project environment  

   Project environment  
•  Defined by the client and current state of the development

 organization. Constrains the project manager  
(Example: Hierarchical or project-based organization) 

   Methods  
•  Techniques to choose from in a given project environment

 (Example:Object-Oriented Analysis, waterfall model) 

   Tools  
•  Devices or programs that support the development and

 management activities (Example: CASE Tool, IDE ) 
A methodology specifies for a specific project environment 
1) when methods or tools should be used and when not  

2) what to do when unexpected events occur. 




6
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Key Parameters in a Project Environment 

•  Participants’ expertise 
•  Beginner, expert, slow learner, fast learner 

•  Type of Client  
•  Domain knowledge, decision power 

•  End user access 
•  No end user available, end user participates in

 requirements elicitation, end user participates in
 usability tests 

•  Technological climate (“technology enablers”) 
•  Geographical distribution 
•  Project duration  
•  Rate of change 

Prof. Bernd Bruegge, Ph.D. 
Applied Software Engineering 

Technische Universitaet Muenchen 



7
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Client Type 

No Client Proxy Client Low 

Pseudo Client Local King Client High 

Low High 
Domain Knowledge 

Decision Power 



8
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Key Parameters in a Project Environment 

•  Participants’ expertise 
•  Beginner, expert, slow learner, fast learner 

•  Type of Client  
•  Domain knowledge, decision power 

•  End user access 
•  No end user available, end user participates in

 requirements elicitation, end user participates in
 usability tests 

•  Technological climate (“technology enablers”) 
•  Geographical distribution 
•  Project duration  
•  Rate of change 

Prof. Bernd Bruegge, Ph.D. 
Applied Software Engineering 

Technische Universitaet Muenchen 



9
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


End User Access 

•  Clients and end users usually do not  have the
 same interests  

•  Clients are interested in 
•  an early delivery date 
•  as much functionality as possible 
•  low cost  

•  End users are interested in 
•  a familiar user interface  
•  an easy to learn user interface 
•  a system that supports their specific task well 

•  If the project success depends on the usability
 of the product, then 

•  end users should be included in the project  
•  usability tests should be conducted with the end users. 



10
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Project Environment 

•  Participants’ expertise 
•  Beginner, expert, slow learner, fast learner 

•  Type of Client  
•  Domain knowledge, decision power 

•  End user access 
•  No end user available, end user participates in

 requirements elicitation, end user participates in
 usability tests 

•  Technological climate (“technology enablers”) 
•  Geographical distribution 
•  Project duration  
•  Rate of change 



11
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Technological climate 

•  Depending on the requirements expressed by
 the client, a project may be constrained in the
 technological components it has to use.
 Examples:  

•  A project needs to improve a legacy system  
•  It deals with well-known and mature technology  

 but the technology might be out of date 
•  A project develops a first-of-a-kind prototype  

•  based on a new technology enabler  
•  Usually has to deal with preliminary versions of

 components and immature technology. 



12
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Geographical  Distribution 
•  “Single room” projects: Participants in a single room 
•  Reasons for distributed projects:  

•  Organization may have resulted from the merger 
•  Organization is a consortium, located in different

 geographical locations  
•  Part of the organization must be collocated with client  

•  Geographical distribution has pros and cons:  
 Increases the availability of skill  
  May take advantage of different time zones  
  Slows down communication and decision making 
  Lowers awareness among teams 
  Leads to loss of information between sites 
  High communication cost 
?   Promise of low cost labor (Originally the reason for  many

 offshoring projects). 



13
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Terminology (Shoring and Sourcing) 
•  Off-shoring 

•  Originally used in the design of oil platforms 
•  Offshoring describes the relocation of business processes

 from one country to another. This includes any business
 process such as production, manufacturing, or services. 

•  Outsourcing 
•  The practice of hiring an external organization to perform

 functions in a country other than where the functions
 are developed. 

•  Nearshoring 
•  Outsourcing services to a lower-wage country that is

 relatively close in distance or time zone (or both). 

•  Downsizing, ….. 
•  Check Wikipedia for these definitions  
•  Dumbsizing? 



14
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Methodology Issues 10 14 2008 

•  Methodologies provide general principles and
 strategies for selecting methods and tools in a
 given project environment 

•  Key questions for which methodologies provide
 guidance:  

•  How much involvement of the customer?  
•  How much planning?  
•  How much reuse?  
•  How much modeling before coding? 
•  How much process? 
•  How much control and monitoring?  



15
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


How much Planning?  

•  Two styles of navigation [Gladwin 1964] 
•  European navigation: 

•  Current Location  and Desired Location 
•  Planned Route 
•  Route Deviation and Route Correction 

•  “Polynesian navigation” 



16
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


“European Navigation” (Plan-based) 

Event: Course deviation.


Auckland

(Desired Location)


Lima 

(Current Location)


Planned Route


Actual Route


Action: Course correction




17
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Polynesian Navigation (Situation-based) 

Event: “Birds seen”


Lima 

(Current location)


“We need a new place 

for living.


 Let’s go to Auckland” 


Tahiti

(Empty island,  great 


place for  Living)


Action:  “Follow the birds”




18
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Situated action 
•  Context-dependent action [Suchman 1990] 

•  Selection of action depends on the  type of event, the
 situation and the skill of the developer  

•  European Navigation is context independent 
•  Event: “Course deviation in the morning” 

•  Action: “Course correction towards planned route” 
•  Event: “Course deviation in the evening” 

•  Action: “Course correction towards planned route” 

•  Polynesian Navigation is context dependent 
•  Event: “Birds seen”, Context: Morning 

•  Action:  “Sail opposite to the direction of the birds  
•  Event: “Birds seen”, Context: Evening 

•  Action: “Sail in the direction of the birds”. 



19
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Pros and Cons of Software Project Plans 

•  Plus 
•  Very useful to kick off a software project  
•  Useful also if  the outcome is predictable or if no major

 change occurs  

•  Con: 
•  Of limited value to control the project when  

•  the outcome is unpredictable  
•  when unexpected events occur that change the

 project environment, tools or methods  

•  Examples of unexpected events:  
•  Appearance of new technology unknown at project start  
•  A visionary scenario turns out to be unimplementable 
•  Company is merged with another one during the project. 



20
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


How much Modeling? 

•  Advantages of modeling: 
•  Modeling enables developers to deal with complexity 
•  Modeling makes implicit knowledge about the system

 explicit 
•  Modeling formalizes knowledge so that a number of

 participants can share it  

•  Problem with modeling: 
•  If one is not careful, models can become as complex as

 the system being modeled.  



21
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Managerial Challenges of Modeling 

•  Formalizing knowledge is expensive 
•  Takes time and effort from developers 
•  Requires validation and consensus 

•  Models introduce redundancy  
•  If the system is changed, the models must be changed 
•  If several models depict the same aspects of the

 system, all of them must be updated 
•  If one model becomes out of sync, it loses its value  

•  Models become complex 
•  As the model complexity becomes similar to the

 complexity of the system, the benefit of having a
 model is reduced significantly. 



22
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Model of a Software Project 

*
*
*


Project


Work Product
 Schedule
 Task
 Participant




23
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Models can become complex 

Participant

Schedule

Task
Work 

Product

Project

Set of Work

*

Products

*
Outcome

*

Activity

con-
sumes

Structure

*

depends

Work

Work 
Breakdown

*


Fund


Equipment


Facility


*


Staff


Work


respon-


Package


Role


*


des-


*


cribes


sible
 plays
for


Organi-

zation


*

Organizational


Unit


Resource


How many objects are there if you instantiate this class diagram?

Simon says 1

Thomas says 6

Oscar says 10




24
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Use Patterns to Reduce Complexity 

Composite Patterns


Taxonomies

Basic Abstractions


*


Resource


Participant


Fund


Equipment


Schedule


Task


*


Activity


con-


Facility


*


Staff


Department
 Team


produces


Work 
Set of Work


*


Product
Products


*


Internal
 Project


Work


respon-


sumes


Package


Role


*


des-


*


cribes


Deliverable


sible
 plays
for


Organi-

zation


Structure


*
*


depends


Work Product
 Project Function


Project


Outcome
 Work

Organizational


Unit


Work 

Breakdown




25
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Reducing the Complexity of Models 

•  To reduce the complexity of large model we use
 navigation and abstraction 

•  Start with a simplified model and then decorate
 it incrementally 

•  Start with key abstractions (use animation) 
•  Then decorate the model with the additional classes 

•  To reduce the complexity of the model even
 further 

•  Use inheritance (taxonomies, design patterns) 
•  If the model is still too complex, show the subclasses

 on a separate page 



26
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Where do we need Models? 

•  Models support three different types of
 activities: 

•  Communication: The model provides a common
 vocabulary. An informal model is often used to
 communicate an idea 

•  Analysis/Design: Models enable developers to reason
 about the future system 

•  Archival: Compact representation for storing the design
 and rationale of an existing system. 



27
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Models to support Communication 

•  Also called conceptual models 
•  Most often used in the early phases of a project

 and during informal communications.  
•  The model does not have to be consistent or complete 
•  The notation does not even have to be correct 

•  The model is used only to communicate an idea
 to a person  

•  If the idea is understood, the model has served its
 purpose  

•  UML is our preferred notation for models to
 support communication 

•  Communication Media: 
•  A Whiteboard, a slide or even a napkin. 



28
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


“Napkin Design” 



29
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Models to support Analysis and Design 

•  Also called specification models 

•  The model provides a representation that
 enables developers to reason about the system 

•  The model is used to communicate the idea to a 
 computer 

•  The model needs to be made consistent and complete 
•  The notation must be correct so the model can be

 entered into a CASE tool  

•  UML is our preferred notation for models to
 models that support analysis and design.  



30
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Methodology Issues 

•  Methodologies provide guidance, general
 principles and strategies for selecting methods
 and tools in a given project environment.  

•  Key questions for which methodologies provide
 guidance:  

•  How much involvement of the customer  
 How much planning?  
•  How much reuse?  
 How much modeling? 
•  How much process? 
•  How much control and monitoring?  



31
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Problems with linear Models


Requirements

Process


System

Allocation

Process


Concept

Exploration

Process


Design

Process


Implementation

Process


Installation

Process


Operation &

Support Process


Verification

& Validation


Process


Each edge describes 2 types of
 dependencies 
•  Temporal dependency:  

„must be finished before“ 
•  Logical dependency 

„The API depends on the
 subsystem decomposition“




32
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


The Waterfall Model is a Dinosaur 

Waterfall Modell


Requirements

Process


System

Allocation

Process


Concept

Exploration

Process


Design

Process


Implementation

Process


Installation

Process


Operation &

Support Process


Verification

& Validation


Process


Each edge describes 2 types of
 dependencies 
•  Temporal dependency:  

„must be finished before“ 
•  Logical dependency 

„The API depends on the
 subsystem decomposition“




33
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


red

yellow

green

blue

red


blue

yellow

green

blue




34
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


red

yellow

green

blue

red


blue

yellow

green

blue




35
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Problem: Controlling Software
 Development with a Process  

•  How do we control  software development? 
•  Two opinions: Maturity vs agility  
•  Through organizational maturity (SEI, Humphrey) 

•  Repeatable process, Capability Maturity Model (CMM) 

•  Through agility (Takeuchi, Nonaki, Schwaber):  
•  Large parts of software development is empirical in nature;

 cannot be modeled with a defined process 
•  There is a difference between defined and empirical process 

•  How can software development better be described? 
•  with a defined process control model 
•  with an empirical process control model. 



36
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Defined Process Control Model 

•  Requires that every piece of work is completely
 understood 

•  Deviations are seen as errors that need to be
 corrected 

•  Given a well-defined set of inputs, the same
 outputs are generated every time 

•  Precondition to apply this model:  
•  All the activities and tasks are well defined to provide

 repeatability and predictability  

•  If the preconditions are not satisfied:  
•  Lot of surprises, loss of control, incomplete or wrong

 work products. 



37
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Empirical Process Control Model 

•  The process is imperfectly defined, not all pieces
 of work are completely understood 

•  Deviations are seen as opportunities that need
 to be investigated 

•  The empirical process “expects the unexpected” 

•  Control is exercised through frequent inspection  
•  Conditions when to apply this model:  

•  Frequent change, unpredictable and unrepeatable
 outputs.  



38
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Ways to React to Complexity and Change  

Heavy 

Hierarchical organization 
Iterative process 

(Royce) 

Nonhierarchical 
 organization  

(Scrum) 

Nonlinear  
process (XP) 

Chaos 
Order 

Linear process 
(Waterfall) 

Individuals and
 Interactions
 Processes and Tools


Working

Software


Comprehensive
 Documentation


Customer

Collaboration
 Contract Negotiation


Responding to
 Change
 Following a Plan


Light 



39
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Additional References 
•  Hirotaka Takeuchi Ikujiro Nonaka („Rugby

 Methodology“) 
•  The New New Product Development Game, Harvard

 Business Review, 1985 

•  Watts Humphrey (Capability Maturity Model, CMM):  
•  Managing the Software Process, Addison-Wesley,  Reading

 Massachusetts, 1989 

•  Ken Schwaber, Mike Beedle (Scrum)  
•  Agile Software Development with Scrum, Prentice Hall,

 Upper Saddle River, NJ, 2001 

•  A lot of ongoing discussion on the internet (blogs).
 Find your way via Google and Wikipedia. Example:  

•  Development: Empirical or Planned?  
 www.controlchaos.com/old-site/debate.htm 

. 



40
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Summary 

•  A project has many contexts 
•  Goals, client types 
•  Environment, methods, tools, methodology 

•  Methodology issues 
•  Planning, design reuse, modeling, process,

 control&monitoring, redefinition 

•  Different types of planning 
•  European vs. Polynesian navigation 

•  Different types of models  
•  For communication, specification and archival 

•  Different ways to control processes 
•  Defined vs empirical process control models. 



41
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Backup Slides 



42
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Local King Client 

High Domain Knowledge, High Decision Power 
•  Can answer developer questions and make

 decisions without having to ask anybody else 
•  Has deep knowledge of the application domain

 (and/or the solution domain)  
•  Usually collocated with the project 
•  Does not have to report to anybody else  

•  Can effectively collaborate with the project manager
 and often even with the developers. 



43
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Proxy Client 

High Domain Knowledge, Low Decision Power  
•  Proxy clients are sent for the “real client” 
   Reasons:  

•  Real client has no time 
•  Physical distance would make collaboration of the real

 client with the project organization difficult 

•  Proxy clients have sufficient knowledge of the
 application domain  

•  They can answer clarification questions from the
 developers 

•  Proxy clients do not have sufficient power  
•  They cannot make major decisions, they have to ask

 somebody else => time delay! 



44
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


Pseudo Client 

Low Domain Knowledge, High Decision Power  
•  The pseudo client is a member of the

 development organization  
•  Often even developers act as pseudo clients  
•  If the system is targeted at a new market segment, the

 pseudo client often comes from marketing 

•  Pseudo clients can make decisions within a short
 time 

•  Pseudo clients have a limited knowledge of the
 application domain.  



45
©  2008 Bernd Bruegge                                                       Software Engineering SS 2008


“No Client” 

•  A project can start without a client 
•  Example: A visionary product is developed before a

 market segment is opened 

•  In these cases the project  manager should still
 select a client, usually a pseudo client who acts
 as an end user 

•  The stakes of the developers can be balanced against
 the stakes of the future user. 


