
Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

How do Practitioners Capture and Utilize User
Feedback during Continuous Software Engineering?

Jan Ole Johanssen∗, Anja Kleebaum†, Bernd Bruegge∗, and Barbara Paech†

∗Technical University of Munich, Department of Informatics,
Garching bei München, Germany, {jan.johanssen, bruegge}@in.tum.de

†Heidelberg University, Institute of Computer Science,
Heidelberg, Germany, {kleebaum, paech}@informatik.uni-heidelberg.de

Abstract—Continuous software engineering (CSE) evolved as
a process for rapid software evolution. Continuous delivery
enables developers to frequently retrieve user feedback on the
latest software increment. Developers use these insights for
requirements validation and verification. Despite the importance
of users, reports about user feedback in CSE practice are sparse.
We conducted 20 interviews with practitioners from 17 companies
that apply CSE. We asked practitioners how they capture and
utilize user feedback. In this paper, we detail the practition-
ers’ answers by posing three research questions. To improve
continuous user feedback capture and utilization with respect
to requirements engineering, we derived five recommendations:
First, internal sources should be approached, as they provide a
rich source of user feedback; second, existing tool support should
be adapted and extended to automate user feedback processing;
third, a concept of reference points should be established to
relate user feedback to requirements; fourth, the utilization of
user feedback for requirements validation should be increased;
and last, the interaction with user feedback should be enabled
and supported by increasing developer–user communication. We
conclude that a continuous user understanding activity can
improve requirements engineering by contributing to both the
completeness and correctness of requirements.

Index Terms—user feedback, usage monitoring, usage data,
continuous software engineering, interview study.

I. INTRODUCTION

The rapid development of software known as continuous
software engineering (CSE) [1], [2] has become an established
process for software evolution. CSE has enabled new capa-
bilities to capture insights, for instance regarding decisions
[3] or user involvement: Continuous delivery promotes user
feedback on the latest changes to a software increment [4], [5].
While user feedback can be collected in an explicit form, such
as written reviews, the monitoring of implicit user feedback
improves understanding the need for new requirements [6].
CSE forms the basis for continuous experimentation, e.g.,
selecting the appropriate user audience for a feature, which
opens new possibilities for requirements engineering [7].

Reports on current practices of how user feedback is
captured and utilized in industry are sparse. While many
practices, such as continuous integration [8], [9], continuous
delivery [10], [11], or their combination [12], [13] have been
extensively researched, the interaction with users in CSE
environments is less understood. Rodrı́guez et al. identified a
research gap for mechanisms that make use of feedback [14].

We conducted a semi-structured study by interviewing 24
practitioners at 17 companies during 20 interviews over the
course of six months in 2017. Using their answers, we
already investigated the state-of-the-practice of CSE [15] and
evaluated our vision of improved integration of multiple types
of knowledge into CSE [16]. To this end, we specifically asked
practitioners about their use of decision knowledge during
CSE [17] and their practices regarding user feedback. The
results for the latter are presented in this paper.

We designed three research questions (RQs) to investigate
user feedback in CSE. First, which user feedback do prac-
titioners consider for CSE? This RQ investigates the types
of user feedback on which the practitioners rely, as well as
to which artifacts they relate the user feedback. The answers
form the basis for the following RQs, as both of them affect
how user feedback is captured and utilized. Second, how
do practitioners capture user feedback in CSE? This RQ
investigates how often practitioners capture user feedback,
which tools they use, the sources on which they rely, and
whether they capture the context of user feedback. Third,
how do practitioners utilize user feedback in CSE? This
RQ investigates the reasons why practitioners capture user
feedback, whether they exploit changes over time, and whether
they combine different user feedback types.

Based on the practitioners’ answers to the RQs, we de-
rived five recommendations that can guide improvement of
continuous user feedback capture and utilization. We propose
to establish a continuous user understanding activity that
encompasses practices and tool support to gain insights from
user feedback for requirements engineering.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of RQs and their respective
coding. Section III summarizes methodological aspects, i.e.,
the coding procedure and threats to validity of the interview
study. Section IV provides brief descriptive data about the
companies, the practitioners, and the projects. Section V
details the practitioners’ answers using quantitative analyses
and qualitative explanations. Section VI discusses the results
by combining results among RQs, summarizing observations,
and deriving recommendations for requirements engineering.
Section VII presents similar studies that address user feedback.
Section VIII presents our conclusions.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

mailto:jan.johanssen@in.tum.de
mailto:bruegge@in.tum.de
mailto:kleebaum@informatik.uni-heidelberg.de
mailto:paech@informatik.uni-heidelberg.de
https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

TABLE I
OVERVIEW OF THE MAIN AND SUB-RESEARCH QUESTIONS FOLLOWED BY THEIR CODING AND SECTION THAT COVERS RESPECTIVE RESULTS.

Research Questions Coding Section

RQ 1 Which user feedback do practitioners consider for CSE?

RQ 1.1 What types of user feedback do practitioners collect? Explicit Implicit V-A1

RQ 1.2 Which artifacts do practitioners relate user feedback to? Application Feature V-A2

RQ 2 How do practitioners capture user feedback in CSE?

RQ 2.1 How often do practitioners capture user feedback? Event-based Periodic Continuous V-B1

RQ 2.2 Do practitioners rely on tool support to capture user feedback? Tool support Manual capture V-B2

RQ 2.3 What are practitioners’ sources for user feedback? Internal External V-B3

RQ 2.4 Do practitioners capture the context of user feedback? Capture context Omit context V-B4

RQ 3 How do practitioners utilize user feedback in CSE?

RQ 3.1 Why do practitioners capture user feedback? Planning Support Improvement V-C1

RQ 3.2 Do practitioners exploit the change of user feedback over time? Exploitation of change over time No exploitation V-C2

RQ 3.3 Do practitioners combine different user feedback types? Pragmatic combination No combination V-C3

II. RESEARCH QUESTIONS

Table I lists RQs and respective sub-RQs. The coding
was developed during data analysis. Answers to some sub-
RQs qualify for more than one coding. In the following, we
summarize the motivation and goals of the sub-RQs.

RQ 1.1 asks about the types of user feedback considered
by practitioners. User feedback can be explicit or implicit, as
described by Maalej et al. [6]: Explicit user feedback refers
to any feedback the user is actively providing, such as an app
review. Implicit user feedback is produced by users interacting
with the artifact, such as a click on a button.

RQ 1.2 asks for artifacts to which practitioners relate user
feedback. This can be either to the entire application or to a
specific feature. The difference in this granularity indicates the
maturity of the user feedback capture process, because feature-
specific user feedback requires more processing efforts.

RQ 2.1 asks for the frequency with which practitioners
capture user feedback. As the study investigates user feedback
within the context of CSE, the results support an understanding
whether practitioners also applying a continuous approach for
the capture of user feedback during CSE.

RQ 2.2 asks about the tools used by practitioners. The cap-
ture of user feedback results in large amounts of unstructured
data that needs to be processed to derive useful insights. This
can be done either manually or with tool support.

RQ 2.3 asks about practitioners’ sources of user feedback,
i.e., from whom they capture user feedback. While we assume
that practitioners rely on user- or developer-triggered explicit

feedback or implicit feedback from monitored usage data, the
intend of this question is to reveal more about the feedback
provider, which may be a group of individuals.

RQ 2.4 asks about the capture of the context for the user
feedback. In the human–computer–interaction domain, context
is defined as any kind of information that is used to character-
ize an entity [18], [19]. For user feedback, this may be the time
or location of the user when they are using the application.

RQ 3.1 asks about practitioners’ reasons for the capture of
user feedback. We are interested why they capture the user
feedback and what it is used for with respect to the artifact.

RQ 3.2 asks about the exploitation of changes in the user
feedback over time. Investigating the evolution of user feed-
back can support the practitioners in revealing trends in how
feature increments are applied and perceived by users.

RQ 3.3 asks about the combination of two or more types of
user feedback to derive new insights. An example may be a
written review, i.e., explicit feedback, that is augmented with
a usage log, i.e., implicit feedback, from the same user.

III. RESEARCH METHOD

We outline the interview study with practitioners and discuss
its threats to validity. More details are provided in [15], [16].

A. Interview Study
We conducted a semi-structured interview study [20], [21],

as a means to study phenomena, actors, and their behavior
in their natural context [22]. We structured the study into the
phases design and planning, data collection, and data analysis.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

1) Design and Planning: We created a questionnaire to
acquire descriptive data (see Section IV) and interview ques-
tions that are similar to the sub-RQs presented in Table I. For
reproduction of this study, we advise to use the sub-RQs as
interview questions to maintain comparability with our results.
We also compiled a list of companies that apply CSE.

2) Data Collection: Between April and September 2017,
we conducted 20 interviews. In four interviews, two prac-
titioners participated. We recorded the interviews with the
practitioners’ permission and transcribed the audio recordings.
Transcripts were reviewed by the practitioners to ensure cor-
rectness. We guaranteed anonymity and aggregated results in
case individual characteristics would otherwise have stood out.

3) Data Analysis: We analyzed the transcripts with the help
of qualitative data analysis software [23]. In a first stage, we
allocated practitioners’ answers to RQs. This was necessary
if a practitioner returned to a previous question after they
provided an answer. In a second stage, we applied the coding
listed in Table I. We derived the coding from related work
on the capture and utilization of user feedback as well as
emerging topics that we identified while analyzing answers.
We analyzed the results quantitatively and qualitatively. We
consolidated practitioners’ responses as single answer in case
an interview was attended by two practitioners.

B. Threats to Validity

We strived to combine and summarize answers from multi-
ple practitioners on how they capture and utilize user feedback.
As a result, our interview study may have several limitations
[22]. Therefore, we discuss the four criteria for validity as
they apply to empirical research in which researchers follow
a positivist stance [21], [24].

1) Construct Validity: This criterion concerns the question
of whether theoretical constructs were measured and inter-
preted correctly. The practitioners might have had a different
understanding of the questions than what we had intended. We
tried to minimize this aspect by encouraging the practitioners
to ask questions at all time. Moreover, we conducted two
interviews with experienced colleagues and discussed these
interviews afterwards to reveal potential misinterpretations. We
used open-ended questions to allow practitioners to provide
extensive answers, which increases the amount of detail.

2) Internal Validity: This criterion concerns the conclusions
that were drawn actually follow from the data, e.g., whether
there are confounding factors that influenced the results. The
practitioners might have answered questions in a way that does
not reflect their daily practices, because they knew that the
results would be published. We tried to mediate this possibility
by ensuring the anonymity of interviewees and companies at
any time. The practitioners’ roles and the associated projects
are context factors that influence their answers. We tried to
address heterogeneity by describing observations instead of
facts and deriving recommendations from them. The analysis
of practitioners’ answers might have been affected by the
authors’ a priori expectations and impressions. We addressed
this threat by jointly discussing the coding of the transcripts.

3) External Validity: This criterion concerns the generaliz-
ability of the study. We contacted companies that we knew
from other projects as there exists no central register of
companies that apply CSE [25]. This might have resulted in
a sampling bias in a way that the practitioners represent only
a subgroup of the actual target population. We reduced this
threat by relying on the industrial contacts of authors from
two different universities. The interviews reflected subjective
impressions, as they rely on practitioners’ statements. We
conducted 20 interviews to retrieve a broad spectrum of
opinions. The number of answers varied for most of the
interview questions; we indicate this in the figure captions. In
some interviews, we skipped interview questions, either due
to practitioners’ time constraints or because they provided an-
swers that made it clear that they cannot answer a subsequent
question. However, we think that the diversity of projects and
participants supports the generalizability of the answers.

4) Reliability Validity: This criterion concerns the study’s
dependency on specific researchers. We performed coding
training and assessed the intercoder reliability. Then, two
authors individually coded the transcripts, which might have
affected the results. We mediated this threat by discussing
questions during coding, especially in case of ambiguity. Also,
the interview coding was supervised by a third author.

IV. DESCRIPTIVE DATA

We compiled descriptive data regarding the companies,
practitioners, and projects. The following summarizes the in-
formation; more details and graphical data representations are
provided in [15], [16]. We interviewed 24 individual practition-
ers during 20 interviews. The practitioners are affiliated with
17 companies. One company was interviewed twice; another
one three times. We aimed for a high diversity of interviews
by approaching companies of different size, practitioners with
different backgrounds, and projects in different domains.

We categorized four companies that have a maximum staff
headcount of 250 as small and medium-sized enterprises
(SME). We refer to the remaining companies as corpora-
tions; eight employ up to 2,000, two around 50,000, and
three 100,000 or more employees. Seven of the companies
offer consultancy services. The remaining companies develop
software products for consumer and business markets.

We used the practitioners’ role descriptions to group them:
five CSE specialists, e.g., a continuous deployment manager or
a DevOps engineer, six developers, six project managers, six
technical leaders, and one executive director. On average, the
practitioners have spent 2 years in their respective roles, have
10 years’ experience in information-technology (IT) projects,
and have participated in 19 IT projects.

We asked the practitioners to relate their answers to a
particular CSE project. On average, 20 employees are involved
in such a project, with an average of 10 in projects at SMEs
and 23 in corporations. All SME practitioners stated that
their projects are cross-functional. Of the 20 practitioners, 15
reported to solely develop custom software, 3 focus on off-
the-shelf products, and 2 develop both software types.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

V. RESULTS

For each sub-RQ, we present the practitioners’ answers as a
bar chart and detail them in an explanation. All charts extend
to 20 interviews to enable direct visual comparisons among
them. If an answer for a sub-RQ received two or more codings,
we visualize the count as a grey bar and do not reduce it from
the individual coding to maintain their expressiveness. In such
cases, we add the number of answers that were exclusively
(excl.) applied to a coding inside their respective bar.

A. Which User Feedback do Practitioners Consider for CSE?

This RQ investigates which user feedback types practition-
ers rely on for the capture and utilization as well as to which
artifacts they relate the user feedback.

1) Types of User Feedback: Figure 1 visualizes the practi-
tioners’ answers.

12 excl. Explicit

Implicit0 excl.

Both types

0 8 20

Fig. 1. Number of interviews in which practitioners addressed user feedback
types. No practitioner reported to rely solely on implicit user feedback.

All 20 practitioners reported that they rely on explicit user
feedback. Four practitioners did not further specify the kind
of feedback. Five practitioners detailed how the explicit user
feedback is produced, which allows conclusions about its kind.
They described personal meetings in the form of presentations
or design thinking workshops, in which they showed the user
the latest version of the application. They collected either
written or verbal feedback, using questionnaires or manually
noting down how the users interact with the application. Three
practitioners relied on explicit user feedback that is provided in
the form of issue tickets. In some cases, the issue management
system is publicly available. Then, the users themselves can
create feature requests and bug reports that are directly passed
to the developers. In other cases, the issues are reported by an
intermediate layer such as first-level support.

None of the practitioners stated that they rely solely on
implicit feedback; however, eight practitioners described the
use of both types, partly depending on when and from whom
they capture the user feedback. The practitioners start with
the capture of explicit user feedback at an early stage. This
may include video recordings, surveys, user interaction with
prototypes in a controlled environment, i.e., applying obser-
vation techniques, as well as email and textual feedback that
can be enriched with screenshots to receive qualitative, i.e.,
explicit, user feedback. After reaching a certain maturity level,
they transition to collecting implicit user feedback and apply
quantitative methods: the practitioners have mentioned A/B
tests and the collection of usage statistics and analytics data.

One practitioner mentioned that they enrich the frequent
implicit feedback by acquiring explicit user feedback through
channels such as service hotlines or events such as exhibitions.
Another practitioner mentioned primarily focusing on implicit
user feedback, which allows them to gather information on
how and when a user interacted with the application.

2) Artifacts for User Feedback Relationship: Figure 2 vi-
sualizes the practitioners’ answers.

Application

Feature

0 6 8 20

Fig. 2. Number of interviews in which practitioners addressed artifacts to
which they relate user feedback. In six interviews, no answers were provided.

Six practitioners stated that they relate user feedback to
the application itself, which serves as a high-level reference
point. Two practitioners relate user feedback to operational or
technical aspects of the application; they are only interested
in the outcomes, i.e., what the application was used for. Two
other practitioners stated that individual features are not of
interest to them, that they instead are interested in the overall
acceptance of the application. For individual feature aspects,
they stated that there are always formal specifications that
they fulfill and guarantee, such as by using test cases There-
fore, they do not require additional verification through user
feedback. This perspective is continued by one practitioner
who emphasized that they are interested in finding situations
in which users behave differently from what was expected—
which could occur at any time while using the application. One
other practitioner follows a similar approach, but is driven by
the question of how the overall application could be improved.

Eight practitioners stated that they collect user feedback
with a focus on the feature that is currently under development.
Following an example by the practitioners, that may be a
user feedback on how a new menu navigation is adapted by
users. Five of them detailed how they establish the relationship
between user feedback and the feature under development:
One practitioner pointed out that this can be achieved by
explicitly asking for feedback in a survey that allows users
to describe the feature, which requires them to verbally
relate their feedback. Another approach is having the user
add reference points that guide developers to the feature in
question; for example by attaching screenshots to the pro-
vided feedback. The practitioners explained that without such
guidance, reproduction of the feedback and its understanding
are difficult. To relate implicit user feedback to a feature,
one practitioner reported that they create dedicated profiles
for individual users to map a change in the feedback to the
increment. One practitioner noted that they consider feature-
specific user feedback, but only in an isolated surrounding
which is meant to qualitatively improve a particular feature,
rather than comparing it with an alternative implementation.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

Another practitioner explained that their features correlate with
services their company provides. Based on this relationship,
they conclude that—if users activated a service—they also
made use of a particular feature. This enables a high-level
assessment if and how many users interact with a feature.

B. How do Practitioners Capture User Feedback in CSE?
This RQ investigates the frequency of user feedback cap-

ture, practitioners’ use of tool support, feedback sources, and
whether they capture the context of user feedback.

1) Frequency of User Feedback Capture: Figure 3 visual-
izes the practitioners’ answers.

Event-based

Periodic

Continuous

0 5 6 20

Fig. 3. Number of interviews in which practitioners addressed how often they
capture user feedback. In three interviews, no answers were provided.

Six practitioners reported to capture user feedback event-
based, which is reflected in a sporadic or unscheduled process.
Three practitioners stated to capture the feedback ad-hoc or on-
demand. This applies when they initiate the capture process
on their own in case they require more insights. Likewise,
two other practitioners mentioned making the capture process
dependent on when the user provides explicit feedback after
using the application. One practitioner described events that
relate to a well-defined point in time, such as the beginning or
end of the application development. This could also include
the capture of user feedback that is triggered by external
changes, such as updates of the operating system of the device
running the application. Another practitioner highlighted that
the capture of user feedback comes down to individual, rare,
and irregular personal meetings.

Six practitioners collect user feedback in a periodic manner.
They mentioned periods with a minimum length of two days;
to one, two, and three weeks; up to a month. One practi-
tioner criticized the testers always lagging behind the latest
development, which leads to a time delay between feature
development and the capture of user feedback. For this reason,
the practitioner referred to the capture process as semi-agile.
Another practitioner reported pilot phases that are dedicated
to the capture and understanding of user feedback.

Five practitioners stated that they continuously capture user
feedback. Only one of them continuously collects explicit user
feedback, in the form of frequent meetings, phone calls, and
video conferences with the users. All of the other practitioners
rely on implicit user feedback during their continuous capture
process. Notably, the five practitioners spoke with one voice
in concluding that—while the user feedback is continuously
captured—this does not imply that it is assessed or utilized;
nor is it used to augment decisions or derive new insights.

2) Tool Support for User Feedback Capture: Figure 4
visualizes the practitioners’ answers.

Tool support6 excl.

Manual capture5 excl.

Both procedures

0 7 12 13 20

Fig. 4. Number of interviews in which practitioners addressed tool support
to capture user feedback. In two interviews, no answers were provided.

We define tool support as a system designed to capture user
feedback in the first place. In seven interviews, practitioners
stated to use both tool support and manual capture approaches.

Overall, 13 practitioners rely on tool support to capture
user feedback. All of them reported using standard tools;
they listed various tools that are known for their analytics
and experience analysis capability, of which are prominent
products from the following companies: Google (4 mentions),
Adobe (3 mentions), and Microsoft (2 mentions). Four other
practitioners listed tools such as Atlassian JIRA or Redmine
to capture explicit user feedback reports. On the one hand, it
enables them to directly utilize the feedback for prioritization
of requirements and development tasks. On the other hand, it
helps them in finding major problems at times of peak activity.
One practitioner stated that, while the possibility to use a
particular tool exists, it is not being used. Besides standard
software, 5 of the 13 practitioners additionally rely on custom
software, i.e., tools that they developed for the sole purpose
of capturing user feedback while their particular application
is in use. This enables them to track individual features, as
well as other aspects, such as monitor the system’s run-time
behavior. This may be the intensity of the workload that is
managed by server-side components of the application. This
helps practitioners make decisions on how to proceed with
development. Practitioners also create custom scripts to track
and understand users’ adaption of their features.

We categorized 12 responses as manual capture, in which
practitioners described procedures that require no software at
all, or only tools that are not primarily designed for the capture
of user feedback. This includes practitioners’ relying on pen
and paper, on meetings or workshops that allow verbal ex-
change with respect to a prototype, or on indirect contact with
end users via a product owner who serves as a proxy. Likewise,
explicit user feedback capture via Skype or video recordings
were mentioned by two practitioners. Two other practitioners
stated to manually capture and externalize observations in wiki
pages that are used for knowledge management, such as on
Atlassian Confluence. Three practitioners highlighted that they
rely on intensive email interactions to capture user feedback.
Finally, two practitioners rely on online tools, such as Google
Forms, that allow them to conduct surveys to capture user
feedback and initiate interviews.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

3) Sources for User Feedback: Figure 5 visualizes the
practitioners’ answers.

Internal3 excl.

External12 excl.

Both sources

0 3 6 15 20

Fig. 5. Number of interviews in which practitioners addressed sources for
user feedback. In two interviews, no answers were provided.

We distinguish between internal and external sources of
feedback. The developers themselves or team members are
internal sources, whereas external sources encompass stake-
holders, i.e., customers or end users. We describe the answers
in the respective explanations if they address both sources.

Six practitioners mentioned user feedback capture from
internal sources. One practitioner explicitly highlighted user
feedback capture from other departments as a key factor
for successful implementation. In their case, their marketing
department always uses the latest version of the application
under development and thereby becomes an internal customer.
This also allows them to directly discuss the feedback in
case something is unclear, either via instant messaging or
direct “water cooler talk”, mostly on a sporadic basis. One
practitioner emphasized the trusted relationship with fellow
colleagues that allows exchange of honest feedback.

Three practitioners stated that they rely on multiple ex-
tensions of the development team, which include dedicated
teams that focus on testing, providing feedback, and suggest-
ing improvements. One of those practitioners noted that the
decoupling of requirements implementation and testing results
in a waterfall-like, non-agile procedure, which, however, might
also be related to their product context. The two others
described user interface-focused teams that are generally able
to provide instant feedback. However, dependent on the extent
of the changes, they may not be able to keep pace with the
development process and therefore lag behind. The developers
consequently receive delayed user feedback, which tends to
increase their workload. In the worst case, new feature im-
provements build upon features that have not yet been tested
or validated by user feedback.

Fifteen practitioners addressed user feedback capture from
external sources. For three practitioners, this means sitting
down with the customer and presenting the latest changes to
the application under development. According to them, this
requires tool support and typically results in high capture and
assessment efforts. However, through the personal contact,
the customer directly provides feedback to the developer in
charge. The interpersonal aspect, i.e., an increased sense of
responsibility by the developer and a high appreciation by the
customer, was rated as important by the practitioners, as it
contributes to the quality of feedback.

Four practitioners noted that the way they deal with user
feedback depends on the reporting source. While they review
user feedback from time to time, they continuously capture it
from external sources without a particular goal in order to be
ready to provide on-demand insights when requested. Three
practitioners noted to capture user feedback from sources de-
pending on their current development progress. For them this
means to start with paper prototypes and collect explicit user
feedback in the beginning and transition to more elaborate cap-
turing of implicit user feedback as the product matures. Two
other practitioners described a phase-driven capture process,
whereby a limited number of users, or the customers them-
selves, are actively using the latest version of the application,
in what is called a beta or pilot phase, while the practitioners
are capturing user feedback. Two practitioners reported to
focus their user feedback capture process on clearly defining a
test scenario which they use to investigate a particular aspect
of the feature under development. Three practitioners stated
that they follow the provided specification and rely on user
feedback that is handed to them by the customer or the product
owner and thereby externalize the capture process to another
stakeholder. Finally, three practitioners introduced a follow-
up approach to capture user feedback; after they implement
a change, they actively request feedback from sources they
expect to be future users or who have requested a similar
functionality before. They inform them in case something is
changed on the basis of their feedback.

4) Context of User Feedback: Figure 6 visualizes the
practitioners’ answers.

Capture context

Omit context

0 2 6 20

Fig. 6. Number of interviews in which practitioners addressed context of user
feedback. In 12 interviews, no answers were provided.

In total, six practitioners stated to capture context of user
feedback. One technical leader described their option to in-
spect the environment in which the users interact within the
application. Another project leader, who pointed out a less
technical, yet marketing-related view of the users’ context,
described that insights such as a users’ purchase history allows
them to get a deeper understanding of possible needs and the
user environment. A developer noted that context information
that allows them to derive helpful insights may be as simple as
the local time, indicating whether the application is used dur-
ing lunch break or typical working hours. Another practitioner
reported that the time may also be used to systematically seg-
ment user feedback. This supports user feedback comparison,
as detailed in Section V-C2. Another practitioner stated that
the captured context is similar to a snapshot, rather than a
comprehensive user profile. Two practitioners acknowledged
to capture, but do not use context information.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

While two other practitioners stated that they consciously
omit context capture, only one of them provided a reason: They
primarily rely on user feedback from fellow team members
and colleagues; formal regulations and company guidelines
apply legal limits to what information they may capture. In
particular, monitoring additional data to capture the context
could reveal personal data, such as individual preferences.

C. How do Practitioners Utilize User Feedback in CSE?

This RQ investigates reasons why practitioners capture
user feedback, their ability to exploit changes over time, and
whether they combine different types of user feedback.

1) Reasons for User Feedback Capture: Figure 7 visualizes
the practitioners’ answers.

Planning4 excl.

Support2 excl.

Improvement1 excl.

Multiple reasons

0 5 6 7 20

Fig. 7. Number of interviews in which practitioners addressed why they
capture user feedback. In eight interviews, no answers were provided.

In seven interviews, practitioners provided answers that
are linked to planning activities during different phases of
an application development cycle. Two practitioners noted to
capture user feedback with the goal of performing business
modeling, e.g., exploring new technologies, and defer other
utilization of the user feedback, such as usability engineering.
One of them added that, while there is a need to draw con-
clusions from user feedback particularly during early phases
of product development, the overall goal should be diversifi-
cation based on user feedback, which is provided for different
reasons. As a result, user feedback should be considered but
not necessarily cause fundamental changes to the project. Four
practitioners stated that they utilize user feedback to prioritize
features. For two of them, this primarily means deciding which
feature needs to be implemented first or with a higher urgency,
while two others use this insight to remove old features.
Notably, one practitioner indicated the possibility to also detect
the need for new features. One practitioner emphasized the
possibility of assessing the acceptance of a feature from a
marketing perspective. This allows conclusions to be drawn
regarding business-focused metrics, such as answering the
question of whether invested efforts were worth it.

Six practitioners reported a use of user feedback with a
main focus on support activities, such as bug fixing. One of
them called this a customer-centered view. Four practitioners
outlined that, when user feedback is used to identify bugs,
it helps them to draw conclusions about the problem, e.g., by
extracting and reconstructing the flow of the events that caused
an error. One lead developer emphasized that implicit user

feedback in particular is used to ensure that the application
and its functionality are working as intended.

Five practitioners described user feedback utilization with
the goal of improving the quality of a feature and as a decision-
support for doing so. For another practitioner, this means to
continuously monitor and observe the way the changes are
adapted by users, which helps to develop a gut feeling of how
the software is performing. Another practitioner observed a
change in how they utilize user feedback; they are currently
transitioning from a focus on reconstructing errors toward
developing an understanding of how the users use the applica-
tion. This will help them to assess whether the users are using
the feature as intended. Two other practitioners continued
this idea and stated that sometimes the wrong requirements
are used for implementation of a feature—based on incorrect
assumptions made previously. In that case, user feedback is
the key for adapting requirements and improving the feature.

2) Change of User Feedback Over Time: Figure 8 visual-
izes the practitioners’ answers.

Exploitation of change over time

No exploitation

0 1 8 20

Fig. 8. Number of interviews in which practitioners addressed change of user
feedback over time. In 11 interviews, no answers were provided.

Only one practitioner reported to actively exploit changes in
user feedback. However, this ability is highly correlated to the
fact that they are using the data to understand and optimize
the business value that the application is offering to its users.

Eight practitioners reported that they do not exploit changes
in user feedback, while three practitioners elaborated that they
are generally able to do that kind of investigations but have
not yet done so. One practitioner stated that they have not yet
encountered a situation in which an analysis over time would
have been beneficial but sees that it could be useful in case
of major changes in the user interfaces. Another practitioner
shared similar thoughts and added that one always needs to
consider the cost effectiveness, as this kind of analysis is
something that could require major effort but yield only minor
benefit. While stating that their tool probably allows for such
a comparison over time, yet another practitioner indicated
that they already struggle to cope with most of the basic
functionality offered by the tool.

Out of those same eight practitioners, five responded that
they lack the technical ability to exploit user feedback over
time, but their general impression is that they would like to
have such a functionality in place. For example, one prac-
titioner supposed coarse-grained feedback at an early stage,
while, after some iterations, they expected more fine-grained
feedback to be provided by the user. An increase of the amount
of user feedback may support understanding urgent feedback.
This enables the detection of user feedback change events.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

3) Combination of User Feedback Types: Figure 9 visual-
izes the practitioners’ answers.

Pragmatic combination

No combination

0 4 20

Fig. 9. Number of interviews in which practitioners addressed combination
of user feedback types. In 12 interviews, no answers were provided.

Four practitioners described pragmatic combination prac-
tices regarding user feedback. One practitioner reported being
able to combine user profiles with written reviews, such as
ones that originate from emails. Another practitioner stated
that, while user feedback types are usually handled separately,
different types of internal data can be combined. However, it is
not being used for feature development. Two other practition-
ers emphasized that their starting point for the combination of
different types of user feedback would be explicit feedback: if
they observe peaks in email responses, they initiate a deeper
investigation and include other user feedback sources.

Four practitioners indicated that they do not combine differ-
ent user feedback types during development. However, while
one practitioner did not see a benefit herein, two are interested
in the ability to combine user feedback. Reasons why they do
not combine feedback sources are a low complexity level of
the application and limited availability of feedback.

VI. DISCUSSION

This section discusses results from Section V by combining
practitioners’ answers among RQs and relating them to prior-
published research. We summarize our interpretation of results
in observations that form the basis for recommendations, in
which we reflect on either promising practices that are applied
by a few practitioners but should be investigated in more detail,
or challenges and untapped potential that were addressed in
answers from multiple practitioners. The recommendations
guide future work toward continuous capture and utilization
of user feedback to benefit requirements engineering.

A. Continuous User Feedback Capture
More than a quarter of the practitioners rely on colleagues

and team members in close proximity to retrieve an initial
set of user feedback (Figure 5). While reports identified
gaps in the requirements communication between departments
[26], we found that the practitioners in our study drew
positive conclusion regarding collaboration. They highlighted
the benefits of direct contact that result in honest and instant
responses. Fellow team members are more likely to provide
detailed and structured feedback, as they have an intrinsic
motivation to contribute to producing and maintaining high-
quality software. Feedback from colleagues from outside their
project is particularly welcomed too, as they provide new
perspectives. The close proximity to team members allows for
frequent explicit user feedback capture with almost no delay.

Observation: Practitioners gain many insights by retriev-
ing user feedback frequently from internal sources, such as
fellow team members or colleagues from other teams.

Recommendation: Continuous user feedback capture from
internal sources should be expanded, as it provides honest
responses and leads to diversified requirements.

The recommendation is an extension to the theory that
testing with five users in multiple, consecutive, yet small
experiments is most efficient to identify problems regarding
requirements such as usability [27]. However, this is clearly
insufficient: Feedback must also be captured from external
sources, as relying on a selected user group over a long period
increases the chances of bias [28]. A challenge remains in
the transition from qualitative, low-quantity feedback from the
limited scope of “users” in close proximity toward the high-
quantity capture of user feedback from a large audience.

This challenge becomes apparent in the light of Figure 1,
which reveals that the majority of user feedback is explicit.
The practitioners praised the value of face-to-face interactions
and the richness of explicit user feedback. It comes as no
surprise that explicit user feedback is preferred, as it allows
practitioners to capture expressive insights with a high level
of detail [28]. This is further emphasized by the high number
of manual capture practices (Figure 4). Even during rapid
development practices, practitioners rely heavily on manual
approaches to capture user feedback, such as collecting user
feedback from emails, questionnaires, or video recordings.
However, as one practitioner pointed out, such user feedback
capture and processing result in a non-agile procedure that
slows down overall development and puts the feature’s quality
at risk. This is also reflected in the frequency with which
practitioners capture user feedback. As depicted in Figure 3,
only one quarter of practitioners continuously capture user
feedback, while more than half rely on event-based and
periodic approaches.

Reducing manual steps in favor of (semi-)automated pro-
cesses may be one way of dealing with this issue. Specifically,
this could be achieved by extending tool support, which
has already been adopted by the requirements engineering
community. For example, there are approaches that enable
continuous context-aware user feedback [6], [29]. In addition,
with respect to the combination of types of user feedback,
FAME is an approach that combines explicit user feedback
and usage monitoring to continuously elicit requirements [30].

Observation: Practitioners rely on explicit over implicit
user feedback and manual capture of the former reduces
the efficiency of an ongoing development process.

Recommendation: Continuous user feedback capture
should adapt and extend tool support, e.g., by increasing
the use of automatization for processing, to ensure high-
quality and expressive requirements in a timely manner.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

B. Continuous User Feedback Utilization

Practitioners reported the utilization of different types of
user feedback, while their process on how to derive high-
level and actionable insights is unsystematic: On the one
hand, as visualized in Figure 2, many practitioners reported
to relate user feedback to the entire application, leaving
the feedback scattered across multiple features and thereby
reducing its value for individual requirements. On the other
hand, multiple practitioners indicated that they strive for a
feature relationship while capturing user feedback, such as
through directly asking the user, or relying on user profiles and
feature isolation. However, following the terminology defined
in [31], we assess the practitioners’ perceived ease of use of
such approaches as low, which may be why many practitioners
refrain from applying them in practice. It remains a challenge
for developers to relate captured user feedback to a feature.

The Quamoco approach addresses the systematic mapping
of quality metrics and abstract quality criteria [32], but only re-
cently usage data-driven approaches are proposed [33]. Durán-
Sáez et al. approached the challenge of relating requirements
to fine-grained user events by logging them to derive implicit
user feedback for various criteria [34]. For explicit user
feedback, Guzman and Maalej developed a natural language
processing technique that identifies an application feature from
reviews and that allows attaching sentiments to it [35].

The users’ context may provide additional support when
relating user feedback to a feature under development. Knauss
acknowledged that there is no specific definition of context
in requirements engineering [36], which may explain the low
number of responses in Figure 6. However, she went on to say
that context is important to consider for requirements elicita-
tion [36]. For example, increasing the availability of context
information could further contribute to the extraction of tacit
requirements [37], a challenge that developers face when users
assume that their needs are obvious [38]. Generally, as one
practitioner remarked, trivial context information, such as data
points in the form of time stamps, already can significantly
contribute to an increase in the value of user feedback.

Observation: Practitioners’ use of tool support for user
feedback capture is limited, as they struggle to employ
specific user feedback for the feature under development.

Recommendation: Continuous user feedback utilization
should offer a lightweight concept for creating reference
points to relate user feedback to requirements at hand.

User feedback is necessary for both the validation and
verification of requirements [39]. Requirements validation is
concerned with making sure that the specified requirements
correctly represent the users’ needs, i.e., that the elicited
requirements are correct and complete. Requirements verifica-
tion ensures that the design and implementation of a require-
ment correctly represent its specification. Agile development
processes reportedly have a stronger focus on requirements
validation than on their verification [40].

From the practitioners answers we cannot derive a unique
reason why they capture user feedback, as many provided
more than one reason (Figure 7). The answers for the two
prevalent codings, i.e., planning and support, suggest that
practitioners tend to capture user feedback as a means for
requirements verification. They reported to employ the user
feedback to iterate on their previous decisions, which contains
a re-prioritization of whether to remove an existing feature
or not. According to them, these are high-level decisions,
which is also reflected in the responses for Figure 2. Many
practitioners, however, stated to apply implicit user feedback
to guide support inquiries and work on bug fixes. Overall, the
utilization of user feedback for a systematic validation of re-
quirements is sparsely applied by practitioners, leaving oppor-
tunities unused. In particular the use for quality requirements
was only addressed by a few practitioners. This, however, is
a viable concept, as it has been shown by Groen et al. that
users are mentioning quality requirements, such as usability
and reliability, when providing explicit feedback [41].

Notably, one practitioner mentioned work on an application
for which neither a customer nor users yet exist, which
made it difficult to elicit concrete requirements. While they
defined the application’s functionality, their vision as to how
it was to be presented to user was still vague. This meant
that their software development was driven by understand-
ing attractive requirements as opposed to must-be or one-
dimensional requirements as defined in the Kano model [42].
As a consequence, the practitioners imagined a potential user,
put themselves in their role, and used the application to then
derive requirements for the feature.

Observation: Practitioners predominantly rely on user
feedback for requirements verification instead of validation.

Recommendation: Continuous user feedback utilization
should enable the understanding of user feedback as a
means to improve existing and to explore new requirements.

Fewer than half of the practitioners provided an answer
to the question as to whether they address change of user
feedback over time or its combination (Figure 8 and Figure 9).
Only one and four practitioners, respectively, reported that they
have a working approach. This reduces the validity of assump-
tions derived from their answers; however, it strengthens a
common theme among practitioners’ answers: While many of
them respond to be generally able to utilize user feedback,
they are not making use of this possibility. We further observe
this in answers regarding the capture of context (Figure 6).

Expanding the involvement of the users during feedback
utilization may help to improve this aspect. Stade et al.
reported how tool support helped a software company to
increase the communication with users [43]. Gómez et al.
described a next generation architecture for app stores that
enables more actionable feedback from users [44]. Maalej
et al. predicted that “[c]ommunication with users will move
from being unidirectional [...] to being bidirectional [...]” [45].

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

This vision is reflected in a few answers by practitioners
who indicated that they are moving toward a dialog-based
utilization of user feedback. For example, regardless of user
feedback sources (Figure 5), practitioners stated that the ongo-
ing and active exchange between developers and users emerges
as successful in practice. One practitioner emphasized the
value of retaining contact with active users and informing them
about new feature increments. This increases the possibility
to retrieve more feedback and serves as a way to validate the
changes to ensure that they are in line with the users’ needs.
Similarly, another practitioner described a dedicated checkbox
allowing users to request updates on the latest changes.

With respect to Figure 7 and the goal to utilize user feed-
back for feature improvement, one practitioner envisioned a
functionality that allows to define a mechanism that triggers as
soon as a user starts interacting with a feature. This mechanism
should enable developers to initiate a well-defined scenario
that guides the user throughout their exploration of a new
feature increment and to observe them while doing so. This
would help the practitioners to pinpoint the users’ attention to
a detail on which they would like to have feedback.

Observation: Most practitioners utilize user feedback indi-
vidually, however, there is a trend toward its consolidation.

Recommendation: Continuous user feedback utilization
should cover interactive practices to explore user feedback
and increase the developer–user communication to exploit
unused potential for enhancing the quality of requirements.

VII. RELATED WORK

We list empirical studies that addressed how practitioners
deal with user feedback and report results similar to ours.

Heiskari and Lehtola conducted a case study to investigate
the state of user involvement in practice [46]. They found
explicit user feedback as the most common type of insight
for development—which is supported by our results in the
Section V-A1. They identified a need to involve users in a more
organized way than in the state-of-the-practice and to establish
defined feedback processes. This is reflected in the number of
manual capture procedures described in Section V-B2.

Ko et al. performed a case study to identify constraints on
capturing and utilizing post-deployment user feedback [47].
They found the heterogeneity of intended use cases of an
application as the major constraint for the utilization of user
feedback, as it makes prioritization difficult. Similar to this
finding, the practitioners in our study noted that more context
about the user feedback, such as user profile in Section V-B4,
is needed to support the utilization of the feedback.

Stade et al. reported on a case study and online survey on
how software companies elicit end-user feedback [48]. They
found a need for more context, which again corresponds to
our results in Section V-B4. They identified feedback channels
such as hotlines or phone calls, email, and meetings being used
the most. This confirms our results in Section V-A1.

Olsson and Bosch investigated post-deployment data usage
in embedded systems during three case studies [49]. They
found that such data was neither used to acquire insights on
individual features, nor to innovate new functionality [49].
Our results in Section V-C1 support the predominant use of
user feedback for planning and bug fixing, rather than feature
improvement in the sense of innovation.

Pagano and Bruegge reported on a case study with five
companies in which they investigated how professionals deal
with “post-deployment end-user feedback” [50]. They stated
that the utilization of user feedback is mainly a manual
process, which is reflected in our results in Section V-B2. They
conclude that tool support is required to utilize user feedback
for other practices, such as for requirements engineering [50].

VIII. CONCLUSION

Continuous software engineering evolved as a process for
software evolution [1], [2]. While most of the practices, such
as continuous integration or delivery, are well-researched [8]–
[13], the use of user feedback, in particular with respect to
requirements engineering, has fallen behind [14].

We conducted 20 interviews with practitioners from 17
companies to understand the state-of-the-practice of user feed-
back capture and utilization during CSE. In this paper, we
provide results to nine areas of interest. While some of the
results appear obvious [25], we strive to provide empirical
evidence for them. All practitioners rely on explicit user
feedback. Fourteen practitioners described how they relate user
feedback to an artifact. While most practitioners rely on tool
support, the numbers for manual and non-continuous capture
of user feedback are high. Most feedback is captured from
external sources. User feedback is predominantly utilized for
requirements verification. Practitioners sparsely consider user
feedback context, exploration over time, and its combination.

From the results, we derived five recommendations, based
on either promising practices or challenges. We conclude that
continuous user feedback capture benefits from user feedback
provided by internal sources as well as by adapted and
extended tool support. Continuous user feedback utilization
can be improved through user feedback reference points. This
establishes a focus on requirements validation, which could be
further advanced by more user feedback interaction.

The recommendations guide our current and future work.
We designed a user feedback reference concept [51], devel-
oped an approach to automate user feedback capture [52],
and explored a way to validate requirements [53]. We will
consolidate the continuous user feedback capture and utiliza-
tion in a continuous user understanding activity and provide
tool support. This aims to improve requirements engineering
regarding the completeness and correctness of requirements.

ACKNOWLEDGMENT

This work was supported by the DFG (German Research
Foundation) under the Priority Programme SPP1593: Design
For Future – Managed Software Evolution (CURES project).
We thank the practitioners for their insights and the anonymous
reviewers for their valuable feedback to improve this work.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

REFERENCES

[1] J. Bosch, Continuous Software Engineering: An Introduction. Springer,
2014, pp. 3–13.

[2] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, pp.
176–189, 2017.

[3] A. Kleebaum, J. O. Johanssen, B. Paech, R. Alkadhi, and B. Bruegge,
“Decision Knowledge Triggers in Continuous Software Engineering,”
in Proceedings of the 4th International Workshop on Rapid Continuous
Software Engineering, ser. RCoSE ’18. ACM, 2018, pp. 23–26.

[4] S. Krusche and B. Bruegge, “User Feedback in Mobile Development,” in
Proceedings of the 2nd International Workshop on Mobile Development
Lifecycle, ser. MobileDeLi ’14. ACM, 2014, pp. 25–26.

[5] S. Krusche, L. Alperowitz, B. Bruegge, and M. Wagner, “Rugby: An
Agile Process Model Based on Continuous Delivery,” in Proceedings
of the 1st International Workshop on Rapid Continuous Software Engi-
neering, ser. RCoSE ’14. ACM, 2014, pp. 42–50.

[6] W. Maalej, H.-J. Happel, and A. Rashid, “When Users Become Col-
laborators: Towards Continuous and Context-Aware User Input,” in
Proceedings of the 24th Conference Companion on Object Oriented
Programming Systems Languages and Applications, ser. OOPSLA ’09.
ACM, 2009, pp. 981–990.

[7] G. Schermann, J. Cito, and P. Leitner, “Continuous Experimentation:
Challenges, Implementation Techniques, and Current Research,” IEEE
Software, vol. 35, no. 2, pp. 26–31, 2018.

[8] M. Meyer, “Continuous integration and its tools,” IEEE Software,
vol. 31, no. 3, pp. 14–16, 2014.

[9] D. Ståhl and J. Bosch, “Modeling continuous integration practice
differences in industry software development,” Journal of Systems and
Software, vol. 87, pp. 48–59, 2014.

[10] E. Laukkanen, J. Itkonen, and C. Lassenius, “Problems, causes and
solutions when adopting continuous delivery—A systematic literature
review,” Information and Software Technology, vol. 82, pp. 55–79, 2017.

[11] L. Chen, “Continuous Delivery: Overcoming adoption challenges,” Jour-
nal of Systems and Software, vol. 128, pp. 72–86, 2017.

[12] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous Integration, De-
livery and Deployment: A Systematic Review on Approaches, Tools,
Challenges and Practices,” IEEE Access, vol. 5, pp. 3909–3943, 2017.

[13] T. Dybå and T. Dingsøyr, “Empirical studies of agile software devel-
opment: A systematic review,” Information and Software Technology,
vol. 50, no. 9, pp. 833–859, 2008.

[14] P. Rodrı́guez, A. Haghighatkhah, L. E. Lwakatare, S. Teppola, T. Suo-
malainen, J. Eskeli, T. Karvonen, P. Kuvaja, J. M. Verner, and M. Oivo,
“Continuous deployment of software intensive products and services: A
systematic mapping study,” Journal of Systems and Software, vol. 123,
pp. 263–291, 2017.

[15] J. O. Johanssen, A. Kleebaum, B. Paech, and B. Bruegge, “Practitioners’
eye on continuous software engineering: An interview study,” in Pro-
ceedings of the 2018 International Conference on Software and System
Process, ser. ICSSP ’18. ACM, 2018, pp. 41–50.

[16] ——, “Continuous software engineering and its support by usage and
decision knowledge: An interview study with practitioners,” Journal of
Software: Evolution and Process, vol. 31, no. 5, p. e2169, 2019.

[17] A. Kleebaum, J. O. Johanssen, B. Paech, and B. Bruegge, “How do
Practitioners Manage Decision Knowledge during Continuous Software
Engineering?” in Proceedings of the 31st International Conference on
Software Engineering and Knowledge Engineering, ser. SEKE’19. KSI
Research Inc., 2019, pp. 735–740.

[18] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Proceedings of the 1st International Symposium on
Handheld and Ubiquitous Computing, ser. HUC ’99. Springer-Verlag,
1999, pp. 304–307.

[19] A. K. Dey, “Enabling the Use of Context in Interactive Applications,” in
Extended Abstracts on Human Factors in Computing Systems, ser. CHI
EA ’00. ACM, 2000, pp. 79–80.

[20] M. D. Myers and M. Newman, “The Qualitative Interview in IS
Research: Examining the Craft,” Information and Organization, vol. 17,
no. 1, pp. 2–26, 2007.

[21] P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons,
2012.

[22] K.-J. Stol and B. Fitzgerald, “The ABC of Software Engineering Re-
search,” ACM Transactions on Software Engineering and Methodology,
vol. 27, no. 3, pp. 1–51, 2018.

[23] J. Saldaña, The Coding Manual for Qualitative Researchers, 2nd ed.
SAGE Publications, 2009.

[24] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, Selecting
Empirical Methods for Software Engineering Research. Springer
London, 2008, ch. 11, pp. 285–311.

[25] M. Torchiano and F. Ricca, “Six reasons for rejecting an industrial survey
paper,” in Proceedings of the 1st International Workshop on Conducting
Empirical Studies in Industry, ser. CESI ’2013, 2013, pp. 21–26.

[26] L. Karlsson, Å. Dahlstedt, J. Natt och Dag, B. Regnell, and A. Persson,
“Challenges in market-driven requirements engineering—An industrial
interview study,” in Proceedings of the 8th International Workshop on
Requirements Engineering: Foundation for Software Quality, 2002, pp.
37–49.

[27] J. Nielsen and T. K. Landauer, “A Mathematical Model of the Finding
of Usability Problems,” in Proceedings of the INTERACT ’93 and CHI
’93 Conference on Human Factors in Computing Systems, ser. CHI ’93.
ACM, 1993, pp. 206–213.

[28] M. J. Gallivan and M. Keil, “The user–developer communication pro-
cess: a critical case study,” Information Systems Journal, vol. 13, no. 1,
pp. 37–68, 2003.

[29] D. Dzvonyar, S. Krusche, R. Alkadhi, and B. Bruegge, “Context-aware
User Feedback in Continuous Software Evolution,” in Proceedings of the
International Workshop on Continuous Software Evolution and Delivery,
ser. CSED ’16. ACM, 2016, pp. 12–18.

[30] M. Oriol, M. Stade, F. Fotrousi, S. Nadal, J. Varga, N. Seyff, A. Abello,
X. Franch, J. Marco, and O. Schmidt, “FAME: Supporting Continuous
Requirements Elicitation by Combining User Feedback and Monitoring,”
in Proceedings of the 26th International Requirements Engineering
Conference, ser. RE ’18. IEEE, 2018, pp. 217–227.

[31] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User Acceptance
of Computer Technology: A Comparison of Two Theoretical Models,”
Management Science, vol. 35, no. 8, pp. 982–1002, 1989.

[32] S. Wagner, A. Goeb, L. Heinemann, M. Kläs, C. Lampasona,
K. Lochmann, A. Mayr, R. Plösch, A. Seidl, J. Streit, and A. Trendowicz,
“Operationalised product quality models and assessment: The Quamoco
approach,” Information and Software Technology, vol. 62, no. 1, pp.
101–123, 2015.

[33] X. Franch, C. Ayala, L. López, S. Martı́nez-Fernández, P. Rodrı́guez,
C. Gómez, A. Jedlitschka, M. Oivo, J. Partanen, T. Räty, and V. Ryti-
vaara, “Data-driven requirements engineering in agile projects: The q-
rapids approach,” in Proceedings of the 25th International Requirements
Engineering Conference Workshops, ser. REW ’17. IEEE, 2017, pp.
411–414.

[34] R. Durán-Sáez, X. Ferré, H. Zhu, and Q. Liu, “Task Analysis-Based
User Event Logging for Mobile Applications,” in Proceedings of the
25th International Requirements Engineering Conference Workshops,
ser. REW ’17. IEEE, 2017, pp. 152–155.

[35] E. Guzman and W. Maalej, “How Do Users Like This Feature? A Fine
Grained Sentiment Analysis of App Reviews,” in Proceedings of the
22nd International Requirements Engineering Conference, ser. RE ’14.
IEEE, 2014, pp. 153–162.

[36] A. Knauss, “On the usage of context for requirements elicitation:
End-user involvement in IT ecosystems,” in Proceedings of the 20th
International Requirements Engineering Conference, ser. RE ’12. IEEE,
2012, pp. 345–348.

[37] V. Gervasi, R. Gacitua, M. Rouncefield, P. Sawyer, L. Kof, L. Ma,
P. Piwek, A. de Roeck, A. Willis, H. Yang, and B. Nuseibeh, Unpacking
Tacit Knowledge for Requirements Engineering. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 23–47.

[38] J. A. Bubenko, “Challenges in requirements engineering,” in Proceed-
ings of International Symposium on Requirements Engineering, ser. RE
’95. IEEE, 1995, pp. 160–162.

[39] K. Pohl and C. Rupp, Requirements Engineering Fundamentals, 2nd ed.
Rocky Nook, 2015.

[40] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” Information Systems
Journal, vol. 20, no. 5, pp. 449–480, 2010.

[41] E. C. Groen, S. Kopczyńska, M. P. Hauer, T. D. Krafft, and J. Doerr,
“Users — The Hidden Software Product Quality Experts?: A Study on
How App Users Report Quality Aspects in Online Reviews,” in Proceed-
ings of the 25th International Requirements Engineering Conference, ser.
RE ’17. IEEE, 2017, pp. 80–89.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026


Accepted at the 27th IEEE International Requirements Engineering Conference (RE’19), Copyright IEEE

[42] E. Sauerwein, F. Bailom, K. Matzler, and H. H. Hinterhuber, “The
Kano model: How to delight your customers,” in Proceedings of the 9th
International Working Seminar on Production Economics, ser. WSPE
’96, R. W. Grubbström, Ed., vol. 1. Innsbruck: Elsevier, 1996, pp.
313–327.

[43] M. Stade, M. Oriol, O. Cabrera, F. Fotrousi, R. Schaniel, N. Seyff, and
O. Schmidt, “Providing a User Forum is not enough: First Experiences
of a Software Company with CrowdRE,” in Proceedings of the 25th
International Requirements Engineering Conference Workshops, ser.
REW ’17. IEEE, 2017, pp. 164–169.

[44] M. Gómez, B. Adams, W. Maalej, M. Monperrus, and R. Rouvoy, “App
Store 2.0: From Crowdsourced Information to Actionable Feedback in
Mobile Ecosystems,” IEEE Software, vol. 34, no. 2, pp. 81–89, 2017.

[45] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Toward Data-Driven
Requirements Engineering,” IEEE Software, vol. 33, no. 1, pp. 48–54,
2016.

[46] J. Heiskari and L. Lehtola, “Investigating the State of User Involvement
in Practice,” in Proceedings of the 6th Asia-Pacific Software Engineering
Conference. Penang, Malaysia: IEEE, 2009, pp. 433–440.

[47] A. J. Ko, M. J. Lee, V. Ferrari, S. Ip, and C. Tran, “A case study
of post-deployment user feedback triage,” in Proceedings of the 4th
International Workshop on Cooperative and Human Aspects of Software
Engineering, ser. CHASE ’11. Waikiki, Honolulu, HI, USA: ACM
Press, 2011, pp. 1–8.

[48] M. Stade, F. Fotrousi, N. Seyff, and O. Albrecht, “Feedback Gathering
from an Industrial Point of View,” in Proceedings of the 25th Interna-
tional Requirements Engineering Conference, ser. RE ’17, A. Moreira

and J. Araújo, Eds. Lisbon, Portugal: IEEE, 2017, pp. 63–71.
[49] H. Holmström Olsson and J. Bosch, “Towards Data-Driven Product

Development: A Multiple Case Study on Post-deployment Data Usage
in Software-Intensive Embedded Systems,” in Lecture Notes in Business
Information Processing, B. Fitzgerald, K. Conboy, K. Power, R. Valerdi,
L. Morgan, and K.-J. Stol, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, vol. 167, pp. 152–164.

[50] D. Pagano and B. Brügge, “User Involvement in Software Evolution
Practice: A Case Study,” in Proceedings of the International Conference
on Software Engineering, ser. ICSE ’13. IEEE Press, 2013, pp. 953–
962.

[51] J. O. Johanssen, A. Kleebaum, B. Bruegge, and B. Paech, “Feature
Crumbs: Adapting Usage Monitoring to Continuous Software Engineer-
ing,” in Product-Focused Software Process Improvement, M. Kuhrmann,
K. Schneider, D. Pfahl, S. Amasaki, M. Ciolkowski, R. Hebig, P. Tell,
J. Klünder, and S. Küpper, Eds. Springer International Publishing,
2018, pp. 263–271.

[52] J. O. Johanssen, L. M. Reimer, and B. Bruegge, “Continuous thinking
aloud,” in Proceedings of the Joint 4th International Workshop on Rapid
Continuous Software Engineering and 1st International Workshop on
Data-Driven Decisions, Experimentation and Evolution, ser. RCoSE-
DDrEE ’19. IEEE Press, 2019, pp. 12–15.

[53] J. O. Johanssen, J. P. Bernius, and B. Bruegge, “Toward Usability
Problem Identification Based on User Emotions Derived from Facial
Expressions,” in Proceedings of the 4th International Workshop on
Emotion Awareness in Software Engineering, ser. SEmotion ’19. IEEE
Press, 2019.

Definitive version available at https://doi.org/10.1109/RE.2019.00026

https://doi.org/10.1109/RE.2019.00026

