
Semi-Automatic Generation of Audience-Specific Release
Notes

Sebastian Klepper
Technische Universität

München
Munich, Germany

klepper@in.tum.de

Stephan Krusche
Technische Universität

München
Munich, Germany

krusche@in.tum.de

Bernd Bruegge
Technische Universität

München
Munich, Germany

bruegge@in.tum.de

ABSTRACT
Agile development methodologies encourage frequent releases.
However, many releases can overwhelm clients, testers and
users if they do not understand what the actual difference
is between two versions. Every release raises questions like
whether they need to update right away, whether functional-
ity has been added or problems have been fixed and finally
whether it is worth their time to try out a new version.

Release notes can alleviate this problem by informing their
audience about the contents of a particular release, but the
creation of high quality release notes takes time and effort. A
release manager needs to have the release‘s target audience
in mind, access information from project management, issue
tracker, and build system and might even need input from
designers and developers.

We describe a semi-automated approach for generating
targeted, informative release notes. Our solution is designed
from the point of view of a release manager who acts as an
editor of auto-generated content based on information gath-
ered from both build server and issue tracker. Furthermore,
it allows release notes to be tailored to a specific audience
depending on their specific information needs.

CCS Concepts
•Software and its engineering → Agile software de-
velopment; Software post-development issues; Soft-
ware development process management; Software evolution;
Software configuration management and version control sys-
tems; Acceptance testing; Software version control; Program-
ming teams;

Keywords
Agile Development, Continuous Delivery, Release Manage-
ment, Automated Workflows

To appear in the International Workshop on Continuous Software Evolution
and Delivery - CSED, May 2016, Austin, TX, USA.

1. INTRODUCTION
Continuous delivery promises improved product quality

and high customer satisfaction through regular releases [4, 2].
However, both issuing and receiving releases in high volume
can be a communication challenge for the development team
and users, respectively. One solution to this problem are re-
lease notes that summarize changes contained in a particular
release. Such release notes can serve a multitude of purposes,
depending on the domain they are used in. For example,
they can improve user experience and serve as a marketing
channel in end user software, educate professional users of
specialized or B2B applications about new functionality, pro-
vide status updates in client-contractor projects, and elicit
feedback from recipients.

We therefore consider different target groups for release
notes that might exist in a given software project as shown in
Figure 1. Everyone in a software project can be a stakeholder
and assume one or even multiple roles, each with different
needs to be addressed with release notes, e.g.:

• An internal tester receives unfinished versions and needs
to know which features to test and which to ignore.
• Both project manager and customer want to know how

the project is going, but with different levels of detail.
• A lead user is waiting for a critical issue to be fixed.
• Beta testers give feedback on pre-release features.
• New features are advertised to existing users.

Stakeholder Role

CustomerTeam
Member User

DesignerDeveloperTest
Engineer

Project
Manager

Beta
Tester

Lead
UserEnd User

1..*

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 1: Taxonomy of stakeholder roles in software
projects

A recent trend with mobile applications delivered through
a vendor’s app store is to update them every couple of weeks,
but without any release notes1. While automatic updates in
the background might lead to release notes not being read
before the update, missing information about updates leaves
users in the dark.

1http://techcrunch.com/2015/09/04/
app-release-notes-are-getting-stupid



A major problem standing of proper release notes being
attached to every update is the amount of time it requires.
Creating understandable release notes that exactly match
the target group’s needs takes effort and might require infor-
mation from multiple sources [8]. In previous publications
[5, 6], we introduced a continuous delivery approach where
event-based releases are created from different branches in
the version control system as shown in Figure 2.

Master 
Branch

Feature 
Branches

Development 
Branch

Team 
Member

3

21

Unreleasable build
Releasable build
Release

Key:

UserCustomer

Figure 2: Event based delivery for different stake-
holders from different branches (adapted from [6])

Features are developed on feature branches and integrated
into the development branch once completed. External re-
leases are merged into the master branch and usually sent
to all stakeholders including users. Releases from develop-
ment branches can be sent to the customer to validate if
features were implemented correctly. Team members can
receive releases from all branches, e.g. to discuss status and
impediments in team meetings.

In this paper, we describe a semi-automated approach for
the generation of release notes that is integrated into the
event based release mechanism. Our solution is designed
from the point of view of a release manager who should not
act as a copywriter but rather an editor of pre-generated
release notes. In a continuous delivery environment, we
can use automated infrastructure to save time collecting
and generating release notes. Each release can be treated
individually, providing an opportunity for tailoring release
notes content. We define release notes and describe related
work in Section 2. We present our approach in Section 3 and
provide an overview of future work in Section 4.

2. BACKGROUND AND RELATED WORK
Release notes are part of software configuration manage-

ment [7] and can be defined as documents produced by the
development team to summarize the main changes between
two releases [8]. They usually contain the release date and
version of the product as well as a summary of the release
and a list of additions, removals, changes, or fixes included.

Release notes generally inform the recipient of an appli-
cation update about its contents. This can take different
forms, depending on the audience of a particular release: A
team member is instructed how to test functionality that’s
currently in development; a customer is informed about the
state of changes and improvements they have requested; an
end user is prompted to try out a new feature and assured
that known problems have been fixed. Release notes provide
a concise overview of the changes a new release introduces
and how to take advantage of them. In doing so they improve

both, the recipient’s user experience and serve as an impor-
tant communications channel for the development team.

Moreno and his colleagues propose an approach that identi-
fies changes in the commits between two releases of a software
project, such as structural changes, upgrades of external li-
braries, license changes [8]. They summarize the code changes
and link it to information from commit notes and issue track-
ers. Then they organize the release notes into categories and
present them in an HTML document. Our approach differs
because it is based on a continuous delivery workflow, where
releases are created on a regular basis for different target
groups, and takes the target audience into account for the
creation of release notes. The release manager is responsible
for triggering a release and has the authority about what
makes it into the release [3]. Based on this role, we enable
automatic generation of release notes content, but keep the
option to manually review and curate them.

The reasoning is that manual curation allows the release
manager to tailor the release notes to the audience of a par-
ticular release, which is another important requirement for
our approach. We postulate the hypothesis that audience-
specific release notes provide exactly the informa-
tion their recipients are looking for. As a consequence,
we restrict release notes to only relevant content in the con-
text of their target audience. Information is filtered, grouped
and sorted so that the recipients’ information needs are opti-
mally fulfilled. Data sources are selected to provide exactly
the information needed to realize this requirement – in con-
trast to other approaches where release notes might simply
contain all information available, regardless of whether that
information is insufficient or even unnecessary.

3. APPROACH
We use a semi-automatic approach to release notes gen-

eration to reduce workload for the development team and
release manager while still allowing them to provide properly
targeted content depending on the context and recipients
of a release. We enable this by integrating with tools along
the continuous delivery model [4]. The information that is
already produced during the development process is used to
prepare release notes content. Subsequently, we allow release
managers to individualize this content either via configura-
tion options or as part of the release process. Release notes
generated this way will then be delivered alongside the actual
application to intended recipients.

3.1 Requirements
We identify the following functional requirements for

a potential solution:

• Automatically gather all relevant information about a
release, e.g. by integrating with the build server, issue
tracker, or version control system.
• Automatically compile a list of changes to be published

in the release notes.
• Allow a release manager to review and edit this list of

changes before publishing.
• Allow a release manager to add custom notes such as

a summary of the release.
• Allow to filter the auto-generated information based

on the target audience of the release.
• Allow to restrict the information density so that it’s

appropriate to the target audience.



Content
Audience

Data source
User Customer Team member

Release description X X X Input by release manager
New functionality X X X Issue tracker
Fixed issues X X X Issue tracker
Other changes X X X Issue tracker
Known issues X X Issue tracker
Technical information X Version control system, build server
Testing instructions X Input by release manager

Table 1: Sample mapping of release notes contents to audiences and data sources.

Additionally, we identify non-functional requirements:
Generating release notes must integrate seamlessly into an
existing release workflow. The generator must be easy to
install and configure. Using the generator during the release
process must be easy and intuitive.

3.2 Targeting
As potential recipients of release notes can vary from

project to project, a generalized role model helps to dif-
ferentiate their expectations of a release notes document:
team members such as developers or test engineers, regu-
lar users of the application, and the project’s customers.
The latter group may also include other internal or external
stakeholders such as business units or management.

These roles might have very different information needs
when reading release notes for a particular version. Regular
users might only be interested in new functionality and fixed
problems, whereas a client also wants to know about existing
but known issues and other changes. Testers within the team
are interested in all of that but also expect instructions for
testing as well as technical information such as the current
branch and commit of the app in their hands.

A release manager therefore defines a mapping of available
information to the audience of a particular type of release.
A good way of targeting these different types of releases is
to use a suitable branching model. In the approach of our
choice, users would only receive releases from the master
branch whereas customers might also receive pre-release
versions from the development branch. Team members can
test versions from everywhere including feature branches.

By integrating release notes generation as build step, we
enable different settings for each type of branch and include
the branch name a release is based on. Based on a sample
mapping fulfilling the requirements of our iOS project course
[1], we identify each audience’s information needs and suitable
data sources. Table 1 shows such a mapping of potential
release content to audiences as well as utilized data sources.

3.3 Workflow
Figure 3 depicts the basic workflow of our solution as part

of the delivery model of a continuous delivery project:

1. Release notes generator is executed as build step.
2. Generator fetches relevant information from data sources.
3. Generator generates release notes as a build artifact.
4. Release manager reviews and revises release notes.
5. Release notes are delivered along with the app.

A central element to this workflow is that the build server
knows which issues are associated with a particular build.
This information can either be provided manually when start-
ing a build or developers can use so-called ”smart commits”

with messages that contain issue keys to allow automatic
detection of relevant issues. To support automated issue
linking and make things easier for developers, we provide
a script that integrates with Git’s commit-msg hook: Issue
numbers contained in a branch name automatically appended
to a commit message. Whenever a build runs, release notes
generation is triggered as a build step and release notes are
attached as a build artifact:

1. Configuration is retrieved, options can either be set
statically (e.g. settings file) or dynamically for each
build (e.g. environment variables or build server UI).

2. Generator fetches data from respective source systems,
e.g. build server, issue tracker, version control.

3. Data is filtered, sorted and grouped based on the con-
figuration, during either API calls or post-processing.

4. Release notes are generated in a desired target format,
e.g. plain text, Markdown, or HTML.

Using static or dynamic configuration, a release manager
has precise control over release notes content, level of detail,
and format. Carefully selecting information for each target
audience is particularly important to avoid a “garbage in,
garbage out” effect. Tickets can be selected or ignored, based
on type, status, or other available attributes. Similarly,
tickets can be sorted and grouped, even differently for each
ticket type. Data to display can then be selected based on the
audience’s needs, e.g. with technical or non-technical focus.
For example, useful configuration options could be: Group
user stories by epic, ignore user-generated bug reports as well
as those flagged “wont’t fix”, include general improvement
tickets but exclude technical tasks, use a custom field instead
of ticket title if provided, etc.

Figure 4 shows how different audiences can be addressed
using the same data, ranging from technical details for team
members (4a) over a styled list for a status report (4b) to
a casual description for the app store (4c). Our approach
provides release managers with flexibility and can turn the
same data set into different forms of release notes, further
reducing the need for manual revision. It is important to
note that content does not have to be restricted to a single
build. The same generator can as well produce a change log
across multiple builds, versions, or sprints.

4. CONCLUSION AND FUTURE WORK
In this paper, we proposed a semi-automatic approach for

the generation of audience specific release notes for event
based releases. We want to evaluate the approach in a case
study in a large capstone course in university, refine it upon
the evaluation results and then introduce it into industry.

As a proof of concept, we have implemented a working
albeit not full-fledged solution: Our generator script can be



Figure 3: Semi-automatic release notes generation as part of a continuous delivery workflow.

Project Shopping App on branch feature/product-search
Build 456 on 23.11.2014 for version 1.2.0

Please verify that search works smoothly in both online and offline mode using local cache.

Type Description Issue Status

Epic Product Search SA-232 in progress

Story Users can search for products SA-233 closed

Story Users can filter search results SA-239 closed

Story Last searches are suggested as auto-complete SA-241 closed

Improvement Faster loading of product lists with multiple pages SA-245 closed

Bug Crash when logged out user tries to save filter SA-231 fixed

Bug Layout of product page broken in landscape mode SA-235 fixed

Bug App launch slow on iPhone 3GS SA-235 won’t fix

(a) Technical details for team members.

Version 1.2.0 (23.11.2014)
 Users can now search for products.

 Users can now filter search results.
 Last searches are suggested for auto-complete.
 Product lists with multiple pages load faster.

 Saving a filter while logged out doesn’t crash anymore.
 Product page now works fine in landscape mode.

Added

Added

Added

Improved

Fixed

Fixed

(b) Styled list for status report.

Shopping App 1.2.0

New: Product Search
You can now search for products and filter search results,
your last searches will be suggested automatically.
Have fun browsing the store!

Other improvements:
Product lists now load faster and look better.
Fixed crash when trying to save a filter while logged out.

(c) Casual description for app store.

Figure 4: Examples for release notes based on the same data but tailored to different target audiences.

configured via settings files or build variables. It is run as a
build step and uses Bamboo’s and JIRA’s API to generate a
markdown file containing all changes in the current sprint.
This file is then uploaded to HockeyApp, our delivery service,
along with the app and rendered to HTML before being
displayed to users. Potential future extension of our solution
hinges on several interesting evaluation questions.

Information needs: Which specific questions does each
target audience have in mind when examining a release? Are
these questions answered sufficiently by our release notes?
What other requirements or restrictions apply when publish-
ing release notes? An appropriate solution might also require
involving other stakeholders such as marketing, editorial or
legal staff at the right time.

Workflow integration: How much effort is caused by this
way of preparing release notes? If it affects the team’s produc-
tivity, would better integration with existing tooling improve
efficiency? Possible improvements are integrating with other
CI servers and issue tracking systems. Proper UI integration,
e.g. as a CI server plugin, might bring additional benefits
with regards to ease of use and productivity.

Content generation: Is it sufficient to use information
that is already produced during the development process or
should release notes content be prepared separately? How
does time and place of delivery affect requirements to release
notes format? We could further improve our method of
customizing content and add other data sources. Utilizing
custom fields of the issue tracker or knowledge management
systems, e.g. Confluence, would allow release managers to
capture information ahead of time.

Feedback cycle: Do release notes enable users to give feed-
back more quickly? Do release notes improve the quality of
feedback the team receives? This is an important research
field as stated by Rodŕıguez and her colleagues: “a clear re-
search gap exists for mechanisms to use customer feedback in
the most appropriate way so that information can be quickly
interpreted” [9]. To track this methodically, we would utilize
feedback management as e.g. offered by HockeyApp.

5. REFERENCES
[1] B. Bruegge, S. Krusche, and L. Alperowitz. Software

engineering project courses with industrial clients. ACM
Transactions on Computing Education, 15(4):17:1–17:31,
2015.

[2] L. Chen. Continuous delivery: Huge benefits, but
challenges too. Software, IEEE, 32(2):50–54, 2015.

[3] J. Erenkrantz. Release management within open source
projects. Proceedings of the 3rd Open Source Software
Development Workshop, pages 51–55, 2003.

[4] J. Humble and D. Farley. Continuous delivery: reliable
software releases through build, test, and deployment
automation. Pearson, 2010.

[5] S. Krusche and L. Alperowitz. Introduction of
Continuous Delivery in Multi-Customer Project Courses.
In Companion Proceedings of the 36th International
Conference on Software Engineering, pages 335–343.
IEEE, 2014.

[6] S. Krusche, L. Alperowitz, B. Bruegge, and M. Wagner.
Rugby: An agile process model based on continuous
delivery. In Proceedings of the 1st International
Workshop on Rapid Continuous Software Engineering,
pages 42–50. ACM, 2014.

[7] M. Moreira. Software configuration management
implementation roadmap, volume 1. John Wiley & Sons,
2004.

[8] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto,
A. Marcus, and G. Canfora. Automatic generation of
release notes. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 484–495. ACM, 2014.

[9] P. Rodŕıguez, A. Haghighatkhah, L. E. Lwakatare,
S. Teppola, T. Suomalainen, J. Eskeli, T. Karvonen,
P. Kuvaja, J. M. Verner, and M. Oivo. Continuous
deployment of software intensive products and services:
A systematic mapping study. Journal of Systems and

Software, 2016.


