
Rugby: An Agile Process Model Based on Continuous

Delivery

Stephan Krusche
TU München

Munich, Germany
krusche@in.tum.de

Lukas Alperowitz
TU München

Munich, Germany
alperowi@in.tum.de

Bernd Bruegge
TU München

Munich, Germany
bruegge@in.tum.de

Martin O. Wagner
TU München

Munich, Germany
wagmarti@in.tum.de

ABSTRACT
In this paper we introduce Rugby, an agile process model
that includes workflows for the continuous delivery of soft-
ware. It allows part-timers to work in a project-based or-
ganization with multiple projects for the rapid delivery of
prototypes and products.

We show how continuous delivery improves the develop-
ment process in two ways: First, Rugby improves the inter-
action between developers and customers with a continuous
feedback mechanism. Second, Rugby improves the coordina-
tion and communication with stakeholders and across mul-
tiple teams in project-based organizations with event based
releases.

We have evaluated Rugby in two large university software
engineering capstone courses with up to 100 participants
working in 10 simultaneous projects with industry partners
in 2012 and 2013. We describe the metrics used in the eval-
uation. First results indicate that Rugby increases the fre-
quency and quality of the interaction between developers
and customers leading to improved results in the delivered
products.

Categories and Subject Descriptors
K.6.3 [Management Of Computing And Information
Systems]: Software Management—Software development,
Software process; D.2.9 [Software Engineering]: Manage-
ment—Life cycle, Programming teams, Software configura-
tion management, Software process models

General Terms
Management

.

Keywords
Agile Methods, Release Management, Feedback, Continu-
ous Delivery, Continuous Integration, Version Control Sys-
tem, Executable Prototypes, Communication Models, User
Involvement, Software Evolution

1. INTRODUCTION
With the incorporation of agile methods, software engi-

neering projects have gained more flexibility, e�ciency and
speed. Scrum, for example, is based on the creation of a
potentially shippable product increment at the end of each
sprint. Scrum focuses on small teams with full-time avail-
ability of the developers working face-to-face. Another fea-
ture is the early recognition of risks. Daily Scrum meetings
allow the participants to report open issues such as impedi-
ments throughout the project. [20]

In some software development organizations, developers
are involved in more than one project. For example, appli-
cation domain experts usually participate in several projects
simultaneously. Also students, who are participating in soft-
ware engineering courses, cannot work full-time on the project,
as they have to take other courses as well.

Classical software lifecycles require that all requirements
are completely identified upfront and cannot be changed af-
ter the requirements elicitation phase. Agile methods have
softened but not eliminated this constraint. For example in
Scrum the requirements identified in a sprint backlog cannot
change for the duration of the sprint and product increments
can only be released at the end of a sprint. The sprint lifecy-
cle in Scrum consisting of sprint planning, development and
sprint review is rather rigid because it is time based. The ra-
tionale is that Scrum intends to protect the developers from
frequent disturbances by the product owner.

However, we believe - especially during requirements elici-
tation - that this constraint based on time is overprotective.
Requirements in the early phases of a project are often im-
precise and volatile, requiring interaction as soon as issues
arise. Even during a sprint it should be possible to disam-
biguate or refine requirements. Postponing these activities
to the end of a sprint would only delay the development
process. A developer should be able to create and publish
increments even during a sprint to receive feedback.

Feedback is an important source for requirements after
the delivery and is required for software evolution. With

the emergence of continuous delivery mechanisms and tools,
incorporating feedback into the development process has be-
come possible. Rugby presents a lightweight methodology
to develop and release rapid prototypes and to learn from
feedback comments in rapid parallel cycles1.

This paper is organized as follows. Section 2 describes the
environment of Rugby, in particular the interplay between
development, integration, delivery and target environment
to enable the incorporation of feedback from customers and
users. Section 3 presents Rugby’s process model. Rugby
takes elements from the Unified Process [14]. In particular
Rugby includes continuous delivery and user feedback as ad-
ditional workflows in the software lifecycle model. Section
4 explains in detail how Rugby integrates continuous deliv-
ery to allow event-based releases of increments. It defines
the requirements for the continuous delivery workflow and
shows how the workflow fulfills these requirements. Section
5 describes the case study, where we have used Rugby in two
large project courses and presents initial results.

2. RUGBY ENVIRONMENT
In this section we describe the environment and organiza-

tion of Rugby. Rugby is designed to be used in project-based
organizations with multiple projects.

Fig. 1 shows a typical project team in Rugby. It con-
sists of up to eight developers, a team leader and a project
leader. The project team is self-organizing, cross-functional
and therefore responsible for all aspects of development and
delivery of software.

Rugby Team

Project Leader

Customer

Developer [6,8]

Team Leader

Figure 1: Rugby Team

The project leader and the team leader fulfill a role sim-
ilar to a scrum master while being in a master-apprentice
relationship. While the project manager is already experi-
enced, the team leader is an experienced developer. Thus,
he is familiar with the infrastructure and the organizational
aspects of Rugby.

One task of the team leader is to organize the first team
meeting and to ensure that the team organizes all follow-
ing team meetings in a structured way. In the first team
meeting, he takes the role of the primary facilitator and in-
troduces the other two important roles in a meeting, the
minute taker and the timekeeper [2]. In the following meet-
ings, these roles rotate between the developers so that they
also take responsibility in the meeting organization.

The job of the team leader is then to make sure, that the
developers organize the team meetings appropriately. If e.g.

1In the sport of Rugby, a Scrum is a method to restart
play after a foul or when the ball has gone out of play. In
that sense, Scrum handles only the exceptions of the game.
The use case of a Rugby player passing the ball laterally
to another player running in parallel formation is a better
metaphor for describing the continuous interaction between
developers, customers and users.

the timekeeper does not interrupt, if the team members dis-
cuss too long on an unimportant point of the agenda, the
team leader need to interfere and remind the timekeeper
about his job. During the project, the team leaders learn
essential management skills by observing the behavior and
actions taken by the project leader. Another important task
of the team leader is problem solving and the communication
of problems to the project leader and the program manage-
ment (see fig. 3).

The customer has a similar role as the product owner.
Typically there are di↵erent types of customers in software
engineering projects. If the customer of a project does not
have enough knowledge in the application domain or is not
able to make decisions, the project leader helps him. Also if
the customer is not available due to time reasons or a large
physical distance, the project leader takes the role of a proxy
customer [2].

Development Environment Integration Environment

Collaboration Environment Delivery Environment

model,
implement

commit,
build

deliver

give
feedback

communicate release

Version
Control
System

Build SystemIDEModeling
Tools

Delivery
ManagementIssue TrackerCommunica-

tion Tools
Feedback
Tracker

Target Environment

vote

use

ContextExecutable
System

Developer

User

Figure 2: Rugby’s Eco-System (adapted from [4])

Figure 2 shows the eco-system of Rugby. We divided the
eco-system into five environments. A developer interacts
with the collaboration, development, integration and deliv-
ery environment, a user interacts with the collaboration,
delivery and target environment. The focus in Rugby is
particularly on the collaboration and delivery environments
because they bridge the communication gap between devel-
opers and users. A user is notified from the delivery envi-
ronment if a new release is available and can then use the
software in his target environment. Feedback of the user
is stored in the delivery environment and then forwarded
into the collaboration environment, e.g. as feature request.
A user can also vote certain features in the collaboration
environment.

Figure 3 shows the project-based organization of Rugby.
Each development team is represented as a vertical bar,
e.g. Project 1. Additionally multiple cross-project teams
are formed in Rugby to further support certain expertise
in the development teams. One of these teams is led by

the release coordinator, who is responsible for release and
feedback management of all projects. Release management
includes all activities concerning version control, continuous
integration and continuous delivery. The release manage-
ment team is shown as horizontal box in fig. 3 and consists
of one team member of each development team, the release
manager.

Cross-Project
Activities

Project 2Project 1 Project n

Management

Development

Release
Coordinator

Project
Leader

Customer

Developer

Release
Manager

Developer

...

...

...

Management

Development

Project
Leader

Customer

Developer

Release
Manager

Developer

...

Management

Development

Project
Leader

Customer

Developer

Release
Manager

Developer

...

Program
Managers

Program Management Program
Manager

Program
Manager

Team
Leader

Team
Leader

Team
Leader

Program
Managers

Figure 3: Rugby’s Organization (adapted from [4])

Cross-project teams meet weekly or biweekly to build up
and share knowledge, to synchronize their understanding
about tools and workflows and to resolve potential issues.
While the cross-project teams are the main resource for team
members to gain knowledge on e.g. continuous delivery prac-
tices, there should also be other resources like workshops
or tutorials to learn the most important aspects about re-
lease and feedback management. In the beginning of the
project, tailored tutorials show the developers how to use
the tools. During the projects, team members reflect over
the actual tool usage in retrospective meetings to improve
upon common mistakes and to build best practices. With
these experiential learning techniques, a culture of continu-
ous improvements and continuous learning within the teams
should be established [13].

3. RUGBY PROCESS MODEL
In this section, we describe Rugby and its workflows as

well as the rationale behind it. Based on Takeuchi’s and
Nonaka’s paper from 1986 [21] we use the term Rugby to
describe a lightweight process model based on Scrum [20]
that is influenced by the Unified Process [14]. In Rugby
self-organizing teams develop software in project-based or-
ganizations using the concept of sprints following Scrum.

Agile software development and continuous delivery nicely
fit together. [8] Continuous delivery bridges not only the gap
between developers and operations like described in [10] and
[12], but also the gap between developers and customers and
users. It enables the idea of continuous user involvement
as described in [16] and [18] and fits nicely into the ideas
behind the agile manifesto where working software and cus-
tomer collaboration are more important than comprehensive
documentation and contract negotiation. [1]

According to Fowler part-time developers are common in
industry projects [7]. If too many part-time developers with
di↵erent schedules work in a team, daily scrum meetings are
not feasible. Therefore Rugby proposes weekly meetings.

Rugby focuses on innovation projects where problem state-
ments are formulated as visionary scenarios and where re-
quirements and technologies can change during the project
[4]. In innovative projects, customers typically want de-
velopers to explore multiple ideas before they decide how
their vague requirements will be implemented. The saw-
tooth model, an adoption of the V-model, also addresses
incomplete and ambiguous requirements [19] and we reuse
some of its concepts in Rugby.

During the sprint planning meeting, the team baselines
the visionary scenarios for the upcoming sprint so that the
sprint backlog includes a defined set of requirements. This
means that the customer chooses requirements to work on
and specifies them detailed enough that the developers can
start working. However, he does not need to fully describe
them, and he can still challenge the developers to come up
with their own ideas of how to realize a vague requirement
and turn it into a potentially shippable product increment
which we also call executable prototype.

Implementing a visionary scenario during the sprint might
raise new questions for the team members, which they could
not have thought of in the sprint planning meeting. Present-
ing a first mockup for the visualization of a user interface
could also lead to a requirement change because the cus-
tomer might have di↵erent expectations that he was not
able to express in words during the sprint planning meet-
ing. Work that could be done during the same sprint would
shift to the sprint planning meeting of the next sprint if
customer collaboration and changing requirements during a
sprint would be disallowed.

In di↵erence to Scrum, Rugby allows that requirements
are further discussed and negotiated within the sprint. Event-
based releases using the continuous delivery workflow pre-
sented in section 4 help the team to illustrate the current
realization of a requirement and to obtain feedback whether
the team is on the right track. Therefore the team does not
have to wait until the end of a sprint to deliver software to
the customer and can save time and increase the quality of
the product increment that is delivered at the end of the
sprint.

Another emphasis of Rugby is the organization of multiple
projects in an agile manner. There are approaches for scrum
of scrum meetings (e.g. used in distributed agile develop-
ment, see [9] and [17]), but synchronizing multiple projects
with di↵erent problem statements can become very time-
consuming. In Rugby, developers and the management use
executable prototypes to report about development status
and to discuss important issues. We think this can signif-
icantly improve the quality of the communication and de-
crease the time for unnecessary discussion.

The lifecycle model of Rugby is shown as timeline in fig.
4. It shows di↵erent activities that team members apply in
parallel (adapted from the unified process) including release
management and feedback. The average e↵ort of these ac-
tivities during a certain phase is visualized as the area in
the horizontal bars. It also includes important milestones,
like the kicko↵ of projects, a review to synchronize multiple
projects and a client acceptance test (CAT) at the end of the
projects. These milestones are shown as black diamonds.

In Sprint 0, which lasts two to four weeks depending on the
sta�ng necessities, the teams focus on team building, gain
the required technical knowledge depending on the problem
statement and start with the requirements analysis phase.
Here the teams also get familiar with release management
techniques, in particular version control, continuous integra-
tion and continuous delivery, as well as with feedback man-
agement. The goal is to create an initial empty time based
release to show that the release management and feedback
capabilities are available. This can happen already in the
mid of Sprint 0 as shown in fig. 4. Experienced teams may
perform this initial sprint faster than newly established ones.

Analysis

Design

Implementation

Project
Management

Release
Management

Sprint 0 Sprint 1 Sprint 2 … Sprint n

Test

Requirements
Elicitation

ReviewKickoff CAT
Team
Allocation

Feedback
Management

Event Event based releaseTime based release

Figure 4: Rugby’s Lifecycle model (adapted from
[4])

The following working sprints lasts between two and four
weeks2, depending on the innovation of the project. Each of
these sprints lead to a potentially shippable product incre-
ment. In Rugby, these releases are seen as communication
models because they facilitate the communication between
multiple project participants.

Especially in projects where user interfaces are an im-
portant part of the development, project participants can
hardly discuss important issues without having an executable
prototype running on a device in the target platform. While
Rugby expects each team in the project-based organization
to deliver at least one time-based release at the end of each
sprint, it motivates the teams to release their software also
event-based, i.e. whenever they want to obtain feedback or
when a manager or the customer request it. In Rugby user
feedback is an important source of elements for the backlog
such as bug reports, design requests and feature requests.
Rugby supports di↵erent kinds of issues that trigger the de-
velopment. Depending on the issue type developers initiate
2Explorative projects usually have shorter sprints as re-
quirements change more often and more feedback is re-
quired. Projects with mature requirements usually have
longer sprints.

a di↵erent workflow. Fig. 5 shows the feedback lifecycle3 of
Rugby in several usage scenarios.

Initially the user receives a potential product increment
P0. While using it, he sends a couple of feedback items to
the backlog. Each feedback item is categorized according to
its type. The developers handle feature requests in the anal-
ysis workflow, design requests in the design workflow and
bug reports in the implementation workflow. In the scenario
shown in fig. 5, the first feedback includes two bug reports.
The team resolved both bugs in the implementation work-
flow. After the implementation the developers commit their
changes to the version control system and the build server
automatically creates a new build including these changes.

Design

Backlog

Implemen-
tation

Release
Management

Analysis

Use

Feature
Request

Design
Request

Bug
Report

Issue

P1 P2 P3P0

Feedback

Release

User

Developer

Figure 5: Rugby’s Feedback Lifecycle

As part of the release management workflow, the release
manager of the team decides whether and to whom the build
should be delivered. In the scenario in fig. 5, the team
decides to release and deliver this build as product incre-
ment P1. During a sprint, such a delivery is an event based
release in Rugby. They can contain concrete questions of
developers, e.g. in the release notes. Now the user can di-
rectly validate whether the reported feedback was resolved
correctly.

P1 e.g. includes release notes about the two resolved bugs,
so that the user can directly see that the team was able to re-
solve those. While using P1 the user finds another issue and
produces another feedback request, which is categorized as a
design request. This time the team handles the the feedback
first in the design workflow, e.g. by adapting the system de-
sign of the software. After that it forwards the request to the
implementation workflow so that the implementation can be
adapted to the new design.. In Rugby multiple issues can
be addressed in parallel. Some issues lead all the way to the
release of a new product increment such as P1. Others lead
only to internal releases such as P2. Some of the requests
turn out to be not realizable and stay in the product backlog
for a future sprint.

3Issues in the backlog have multiple sources like e.g. cus-
tomer requirements. Fig. 5 focuses on the aspect how feed-
back is processed in Rugby and omits other sources.

4. EVENT-BASED DELIVERY IN RUGBY
In this section, we describe how Rugby uses continuous

delivery to enable event-based releases. We first describe the
deployment process to build and deliver new releases. We
then explain the tools and continue with an overview of the
workflow. We finally discuss how developers and managers
use releases as models to facilitate communication between
each other and with the customer. [4]

Humble models a deployment process as a stage-gate pro-
cess, shown in fig. 6 [11]. During its lifecycle a build moves
from the integration stage (1) through multiple testing stages
(2) to a target environment (3). In each stage the build is
checked against certain quality criteria. If these are ful-
filled, the build is promoted to the next stage. Rugby calls
a build which successfully went through all testing stages
releaseable. A releasable build can be delivered to a target
environment, e.g. production with no e↵ort.

Production

Configure environment

Deploy binaries
3

Integration-Stage

Build

Unit-Testing

Packaging 1

Enviroment
configuration

Binaries Meta-
data

Binaries Meta-
data Binaries Meta-

data

Source Code

Version Control System

Artifact RepositoryA

S

Test data

Key

Object-
flow

Control Flow
Storage Stage

Test Stage(s)

Configure environment

Deploy binaries
 2

Figure 6: Rugby’s Deployment Process (adapted
from [11])

Rugby uses Humble’s deployment process as a base for its
continuous delivery workflow shown in fig. 7. To implement
it, there is an Issue Tracker in the collaboration environment
to manage the product backlog and a Version Control Server
in the integration environment with support for branches to
store source code and configuration data (S)4.

To checkout, build, test and package the application there
is a central Continuous Integration Server in the integra-
tion environment, which fulfills the role of the repository
for build artifacts (A). To deliver a build to a target envi-
ronment there is a separate Delivery Server in the delivery
environment. The delivery server provides an easy to use so-
lution for team members and users when downloading and
installing a release into the target environment and allows
users to give feedback to a certain release in a structured
way.

Figure 7 shows the integrated continuous workflow to-
gether with its tools and transitions. The workflow starts
each time a developer commits source code to the version
control server, leading to a new build on the continuous in-
tegration server. If the build was built successfully and if
it passed all test stages, the team can decide to upload it
to the delivery server which then notifies users about a new

4Also compare fig. 2 for the di↵erent environments

20

Version
Control
Server

Developer

�1

notify

upload!
build

download

Issue
Tracker

notify

store crash reports and!
feedback as issues

release

Release  
Manager

checkout, compile,!
test and package build

upload crash reports!
and feedback

give feedback

Continuous
Integration

Server

Delivery
Server

use

DeviceUser

inform about!
build status

commit

Figure 7: Rugby’s Basic Continuous Delivery Work-
flow (adapted from [15])

release. Each release includes release notes, which are col-
lected automatically by the continuous integration server5

and can be edited in the manual release step if necessary.
The user can download the release and recognize easily,

which features and bugs were resolved in the release. He
can use an embedded mechanism to give feedback in a struc-
tured way. This feedback is collected on the delivery server
and forwarded to the issue tracker which notifies the release
manager about. For a detailed description of the workflow
we refer to [15].

The workflow in fig. 7 only shows a limited amount of
interactions of the developer with the version control server.
In fact a developer has more possibilities than just commit-
ting source code. He can create branches to separate the
work on a feature basis and merge these branches. Rugby
uses a simplified version of the gitflow branching model [6]
shown in fig. 8.

Developers use feature branches for the actual develop-
ment work, a development branch for the integration of the
feature branches and a master branch for time-based releases
(e.g. at the end of the sprint) to the customer. Rugby’s de-
ployment process can automatically build and test all those
three types of branches. For more details about the branch-
ing model we refer to [15]. Continuous delivery combined
with this branching model helps a developer to automati-
cally check if a new feature passes all test-stages and can
be delivered to a target environment. It also enables de-
velopers to let users or customers validate the requirements
of a feature, by producing an executable prototype as com-

5The continuous integration server asks the issue tracker to
get all resolved issues since the last release. This connection
is not shown in fig. 7 for simplicity reasons.

Management
Meeting

master

feature
branches

develop

Sprint 
Start

Developer
Meeting

Sprint- 
Review

1 3 4 Sprint 
End

User-
Feedback

2

Non-releasable build
Releasable build
Release

Figure 8: Rugby’s Branching Model (adapted from
[15])

munication model and sending it to the user or customer
(event-based).

As described in section 3, Rugby proposes the use of exe-
cutable prototypes created throughout the deployment pro-
cess as communication models during the whole develop-
ment process. The Rugby process model therefore allows
developers to create releases from any branch as communi-
cation models. Fig. 8 also shows four di↵erent use cases of
releases in Rugby. Releases from feature branches can be
used in meetings to demonstrate the development status to
all other team members (1).

Figure 9: Notification Email for an event-based Re-
lease from a Feature Branch

This improves the quality of the communication in the
team meeting and shortens the time that is required to ex-
plain specific implementation details. Releases from feature
branches can also be used to obtain feedback from users to
see whether a feature is usable and satisfies all user wishes
(2). An example of an email sent to a user for an event-
based release of a feature branch is shown in fig. 10. The
release notes include one resolved task IOS13AUDI-247 that
was implemented in the feature branch UIDesign. It is in-
cluded as a link directly into the issue tracker, so that the
user can see details within one click.

Releases of the development branch can e.g. be used for
the status in management meetings (3), i.e. where all team
leaders or all project leaders meet each other. This enables a
lightweight coordination across teams for the program man-
agement because the current implementation status is al-
ways visible in form of executable prototypes. Builds from
the master branch are used as time-based releases in the way
Scrum uses product increments at the end of the Sprint. The
team produces such releases for sprint review meetings (4)
and does not need to create them manually.

An example of an email sent to a customer for a time-
based release of the master branch is shown in fig. 9. The
release notes include five resolved tasks, all of them including
with a link into the issue tracker. One of these tasks was
actually already delivered from a feature branch, but is again
included because it was not included in the previous product
increment (created from the master branch).

Figure 10: Notification Email for a time-based Re-
lease from the Master Branch

For each of the above mentioned events and meetings,
a developer or manager can select a successful tested, i.e.
releasable, build and deliver it to his own device for demon-
stration. The use of branches together with an automated
deployment process increases the complexity of the inter-
action with the version control system, because developers
now need to consider multiple branches and the according
merge procedures and conflicts.

However the ability to use branching increases the flexibil-
ity for the developers, because they now have the possibility
to create internal releases to test the software on their own
devices and external releases just for specific features. Ad-
ditionally, managers can use a development build to discuss
the progress and current issues with other managers and the
program management, using the same deployment process
and amount of automation.

5. EVALUATION
We have used Rugby in two large capstone courses in uni-

versity in 2012 [3] and 2013 [5]. In this section we describe
the evaluation of Rugby in both courses. First we described
the setup of the evaluation and discuss interesting obser-
vations from both courses. Then we show the results of
an online questionnaires, a retrospective and personal inter-
views about Rugby and the use of release management and
feedback with the participants of both courses. Finally we
discuss the threats to validity.

5.1 Study Setup
Both capstone courses were multi-project courses with in-

dustry partners. In 2012 we had 11 projects and 100 partici-
pants, in 2013 we had 10 projects and 100 participants. The
setup of these courses requires a high e↵ort for the students
as well as for the teaching assistants who prepare and orga-
nize them. However this commitment lets students experi-
ence real communication in a real project team with up to
eight developers, a team leader and a project leader. Project
leaders in these course were teaching assistants with more
than two years project experience. They are responsible for
the project success and the customer communication.

Team leaders were students who took the course in the
year before as developer. They are responsible for the or-
ganization of team meetings, they control that the mostly
inexperienced developers choose the right tasks and review
the design as well as the implementation of the developers.
A more detailed description about the course and its partic-
ipants can be found in [4].

In 2012 and 2013, we evaluated Rugby in personal inter-
views with the release managers after the course. In 2013, we
additionally conducted a retrospective with all project lead-
ers and team leaders (see fig. 3) in an online questionnaire.
We asked 14 questions about the organization of the course
and the management meetings in general, the retrospective
was completely anonymous.

In 2013, we furthermore conducted an online question-
naire about Rugby’s release management and feedback work-
flows. We invited 90 participants, all developer and coaches
of the course to participate in the online questionnaire. The
questionnaire consisted of 16 questions and took about 15
minutes. The participants had four weeks after the final
presentations in August 2013 to fill out the survey. We re-
ceived 41 valid responses out of 90 participants. In 2012
and 2013, we also defined metrics to measure the e↵ect of
Rugby’s release management and feedback workflows.

5.2 Observations
In 2012 the synchronization of the multiple projects on

project management level took too much time because the
project manager were not able to report their status pre-
cisely in the short amount of time. This was also the feed-
back we received from some of the project and team leaders
in 2012. Often the participants didn’t focus on crucial points
and discussed issues too long which were not important for
all meeting participants. This communication problem was
intensified because of the multiplicity of problem statements
and the di↵erent technical challenges in each of the projects.
If a project leader talks about the status of his team without
the ability to visualize it, the others can hardly follow and
understand it.

In 2013, we introduced executable prototypes produced
with Rugby’s release management workflow as the central
part of two management meetings, one with project leaders
and one with the team leaders. The participants of these
meetings were able to communicate their status of their team
in significant less time. Furthermore the other participants
of these two meetings were able to understand the status
of the projects much better than in the meetings without
executable prototypes.

We also asked the release managers to introduce this tech-
nique in the team meetings. From the personal interviews
and the retrospective we conducted in 2013, we received a
lot of positive feedback about this possibility. If the meeting
participates prepare the executable prototype in advance,
this technique saves a lot of time and improves the commu-
nication.

5.3 Results
In the online questionnaire about release management we

evaluated whether the students performed specific tasks in
the three di↵erent parts of the workflow (version control,
continuous integration and continuous delivery) and whether
they could obtain feedback with it. We summarize the uti-
lization of these three parts in fig. 11. It shows that in
each part more than half of the students performed at least
one task and that version control tasks are applied most
frequently.

13%$

39%$ 35%$13%$

16%$ 19%$

74%$

45%$ 46%$

0%$

10%$

20%$

30%$

40%$

50%$

60%$

70%$

80%$

90%$

100%$

Version$Control$ Con7nuous$Integra7on$ Con7nous$Delivery$

Not$used$ Some7mes$used$ Usedindaily$rou7ne$

Figure 11: How often did you perform the task?

We also evaluated whether students see benefits in using
version control, continuous integration and continuous de-
livery in Rugby. We wanted to know if e.g. branches help
in developing and delivering multiple di↵erent prototypes at
the same time. We therefore described three typical tasks
for each topic and asked the participants if they see benefits
using them.

Fig. 12 shows that the participants see the benefits in us-
ing a central version control system combined with a simple
branching model. Over 80% of the team members think that
the branching model helped to work with multiple persons
on the same codebase. More than 40% of the developers
used features branches to develop multiple prototypes for
one functionality.

Additionally we asked if they think that continuous in-
tegration (CI) leads to faster error detection and correction

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

Gi/low#helped#my#team#to#
work#with#mul>ple#persons#
on#the#same#codebase#

Gi/low#helped#my#team#to#
develop#mul>ple#

prototypes#for#a#feature#

Gi/low#was#well#
understood#by#my#whole#

team#

no# uncertain# yes#

Figure 12: Do you agree to the following statements
about Rugby’s branching model?

and asked if continuous integration helped them to improved
their development workflow. Fig. 13 shows that more than
half of the team members see benefits when applying con-
tinuous integration.

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

CI#helped#my#team#to#
improve#the#code#quality#

CI#helped#my#team#to#find#
and#fix#broken#commits#

faster#

CI#helped#my#team#to#
improve#our#overall#

development#workflow#

no# uncertain# yes#

Figure 13: Do you agree to the following statements
about Rugby’s use of Continuous Integration (CI)?

Finally we asked the participants if they were able to col-
lect more and better feedback from customers when applying
continuous delivery (CD). Fig. 14 shows that 60% of the stu-
dents think that the automated development process helped
them to deliver more prototypes compared to a manual de-
livery process. About 40% think that they could obtain
more and better feedback from their customers by applying
continuous delivery.

We also used metrics to measure the e↵ect of the release
management and feedback workflows in Rugby. As shown in
figure 15 and 16 the number of branches increased in 2013
when we first introduced the branching model. The number
of commits in the version control system is almost the same,
but in 2013 more than 75% commits led to a build in the
continuous integration server while in 2012 only 15% of the
commits led to a build.

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

100%#

CD#helped#my#team#to#
release#more#prototypes#to#

our#customer#

CD#helped#my#team#to#
gather#more#feedback#from#

our#customer#

CD#helped#my#team#to#
gather#beAer#feedback#from#

our#customer#

no# uncertain# yes#

Figure 14: Do you agree to the following statements
about about Rugby’s use of Continuous Delivery
(CD)?

This is caused by the fact that the build server was avail-
able from the first day in 2013 whereas in 2012 it was only
available after two third of the project course. Most of the
builds (in fact more than 94%) were successful in 2013, be-
cause the team leaders cared more about always having an
executable prototype to present in a meeting. Consequently
the absolute number of executable prototypes delivered to
the customer is three times higher in 2013 because the teams
were able to deliver releases from the first day.

Version Control Server Integration-Server Delivery-Server

22 5500 831 619 163 nn nn

Branches Commits Builds 
Overall

Build

successful

Build 
delivered

Download

overall

Crash
Reports

+ Feedback

Figure 15: Statistics of the Multi-Project Course in
2012

Version Control Server Integration-Server Delivery-Server

260 5754 4396 4139 490 1260 139

Branches Commits Builds 
Overall

Build

successful

Build 
delivered

Download

overall

Crash
Reports

+ Feedback

+ 1082% + 5% + 429% + 569% + 201%

Figure 16: Statistics of the Multi-Project Course in
2013

In 2012 we did not measure the number of downloads,
crash reports and feedback reports. However, in 2013 we
can see that each delivered build was downloaded 2.5 times
on average and that crash reports and the structured built-in
feedback were used to create 139 reports.

5.4 Threats to Validity
We see the following threats to the validity in our evalu-

ation. First, our findings apply to a multi-project software
engineering course that was setup in university. While we
believe that Rugby is applicable in innovation projects, the
results might not be applicable in an industrial environment.
We know that we cannot generalize our findings because of
our setup in the university and the prior knowledge of the
students. But we believe that some of the findings apply
to software companies with project-based organizations in
industry as well.

There might be the problem of selection bias in our online
questionnaire, because we sent the invitation to all develop-
ers and team leaders of the project course and 41 out of 90
students responded. From the results and our observations
we know that some teams used the release management and
feedback workflows more than others. This was due to more
experienced students or because of customer requests.

To alleviate this threat we asked the students in which
team they worked. As we have at least three responds from
each team and as we also analyzed the results on a team
basis and did not find significant deviations, we think that
this threat is low. Additionally we observed the same results
in the personal interviews and all interviewees agreed with
our findings.

Another problem might be, that participants gave answers
which do not reflect their work practice, because they knew
that we like to publish the results assuming that this would
give them a good grade. We addressed this threat by making
the survey completely anonymous.

6. CONCLUSION
We have established an agile process model Rugby that

is based on continuous delivery and event-based releases.
Rugby adds two additional workflows to the lifecycle model,
release management and feedback. It focuses on rapid deliv-
ery and increases the number of releases as we have shown
in our evaluation.

Rugby is lightweight and improves the coordination across
multiple teams as well as the communication between de-
velopers and customers. The use of executable prototypes
as communication models reduces the time spent for sta-
tus reports and discussion and helps in the requirements
elicitation. The inclusion of multiple feedback cycles allows
developers to respond to user feedback in a structured with
release notes to notify users about changes in the updated
release.

We like to further investigate Rugby in an industrial project
where the circumstances are even more realistic than in our
capstone course in university. We plan to accompany a first
project using Rubgy in industry in 2014.

7. ACKNOWLEDGMENTS
We want to thank all participants of our project courses,

in particular the project and team leaders. We also thank
the students who filled out our online survey and who talked
to us in personal interviews.

8. REFERENCES
[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,

W. Cunningham, M. Fowler, J. Grenning,

J. Highsmith, A. Hunt, R. Je↵ries, et al. Manifesto for
agile software development. The Agile Alliance, 2001.

[2] B. Bruegge and A. H. Dutoit. Object Oriented
Software Engineering Using UML, Patterns, and Java
(Third Edition). Prentice Hall International, 2009.

[3] B. Bruegge, S. Krusche, and M. Wagner. iOS
Praktikum, 2012. http://www1.in.tum.de/ios12.

[4] B. Bruegge, S. Krusche, and M. Wagner. Teaching
Tornado: from communication models to releases. In
Proceedings of the 8th edition of the Educators’
Symposium, pages 5–12. ACM, 2012.

[5] B. Bruegge, S. Krusche, and M. Wagner. iOS
Praktikum, 2013. http://www1.in.tum.de/ios13.

[6] V. Driessen. A successful git branching model, 2010.
http://nvie.com/posts/

a-successful-git-branching-model.
[7] M. Fowler. The new methodology. Wuhan University

Journal of Natural Sciences, 6(1-2):12–24, 2001.
[8] P. Gfader. Use scrum and continuous delivery to build

the right thing, 2013. https://www.scrum.org/
Portals/0/Documents/Community%20Work/Scrum.

org%20Whitepaper_Continuous%20Delivery.pdf.
[9] E. Hossain, M. A. Babar, and H.-y. Paik. Using scrum

in global software development: A systematic
literature review. In ICGSE’09, pages 175–184. IEEE,
2009.

[10] J. Humble. Devops: A software revolution in the
making? Cutter IT Journal, 24(8), 2011.

[11] J. Humble and D. Farley. Continuous delivery: reliable
software releases through build, test, and deployment
automation. Pearson Education, 2010.

[12] J. Humble and J. Molesky. Why enterprises must
adopt devops to enable continuous delivery. Cutter IT
Journal, 24(8):6, 2011.

[13] D. A. Kolb et al. Experiential learning: Experience as
the source of learning and development, volume 1.
Prentice-Hall Englewood Cli↵s, NJ, 1984.

[14] P. Kruchten. The rational unified process: an
introduction. Addison-Wesley Professional, 2004.

[15] S. Krusche and L. Alperowitz. Introduction of
Continuous Delivery in Multi-Customer Project
Courses. In Proceedings of ICSE’14. IEEE, 2014.

[16] W. Maalej, H.-J. Happel, and A. Rashid. When users
become collaborators: towards continuous and
context-aware user input. In OOPSLA’09, 2009.

[17] M. Paasivaara, S. Durasiewicz, and C. Lassenius.
Using scrum in distributed agile development: A
multiple case study. In ICGSE’09, pages 195–204.
IEEE, 2009.

[18] D. Pagano and B. Bruegge. User involvement in
software evolution practice: a case study. In
Proceedings of ICSE’13, pages 953–962. IEEE, 2013.

[19] R. B. Rowen. Software project management under
incomplete and ambiguous specifications. Engineering
Management, IEEE Transactions on, 37(1):10–21,
1990.

[20] K. Schwaber and M. Beedle. Agile software
development with Scrum. Prentice Hall PTR, 2002.

[21] H. Takeuchi and I. Nonaka. The new new product
development game. Harvard business review,
64(1):137–146, 1986.

