
ArTEMiS - An Automatic Assessment Management System
for Interactive Learning

Stephan Krusche
Technische Universität München

Munich, Germany
krusche@in.tum.de

Andreas Seitz
Technische Universität München

Munich, Germany
seitz@in.tum.de

ABSTRACT
The increasing number of students in computer science courses
leads to high efforts in manual assessment of exercises. Existing
assessment systems are not designed for exercises with immediate
feedback in large classes. In this paper, we present an AuTomated
assEssment Management System for interactive learning.

ArTEMiS assesses solutions to programming exercises automat-
ically and provides instant feedback so that students can itera-
tively solve the exercise. It is open source and highly scalable based
on version control, regression testing and continuous integration.
ArTEMiS offers an online code editor with interactive exercise
instructions, is programming language independent and applica-
ble to a variety of computer science courses. By using it, students
gain experiences in version control, dependency management and
continuous integration.

We used ArTEMiS in 3 university and 1 online courses and report
about our experiences. We figured out that ArTEMiS is suitable for
beginners, helps students to realize their progress and to gradually
improve their solutions. It reduces the effort of instructors and
enhances the learning experience of students.

CCS CONCEPTS
• Social and professional topics→ Software engineering ed-
ucation; Computer science education; • Applied computing →
Interactive learning environments; Learning management
systems;

KEYWORDS
Automated Assessment, Programming Exercises, Continuous Inte-
gration, Version Control, Instant Feedback, Online Editor, Interac-
tive Exercise Instructions, Online Courses, In-class Exercises.

ACM Reference Format:
Stephan Krusche and Andreas Seitz. 2018. ArTEMiS - An Automatic Assess-
ment Management System for Interactive Learning. In SIGCSE ’18: SIGCSE
’18: The 49th ACM Technical Symposium on Computing Science Education, Feb-
ruary 21–24, 2018, Baltimore, MD, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3159450.3159602

SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA
2018. ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159602

1 INTRODUCTION
The amount of students in university classes and online courses
is increasing. The number of freshmen at our computer science
department increased by 67 % between 2013 (1110) and 2016 (1840).
In addition, the number of enrollments in online courses such as
MOOCs is increasing as well. Class Central recently reported 35
million students which have signed up for at least one MOOC.
With such large numbers of students, manual assessment of pro-
gramming exercises in computer science and software engineering
courses is no longer feasible. Yet, programming exercises are essen-
tial in computer science education [17].

While automatic assessment is an established concept, large
courses raise new challenges for instructors and tools. Automated
assessment must be scalable to handle a large number of students
and provide immediate feedback. The effort for an instructor con-
ducting an programming exercise has to be independent of the
number of participating students. Instant feedback to students is
required to allow resubmissions and learning from failures. This
is particularly important in courses based on active learning [3],
where the programming exercises happen in-class in specific time
frames. During the exercise, instructors need to be able to get an
overview of submitted solutions and typical problems to react and
guide the students.

There are many existing tools for automatic assessment and
grading but most of them are custom tailored solutions for specific
programming languages and requirements (compare Section 5).
This makes it particularly hard to integrate them into existing
infrastructure and use them in large scale courses.

Continuous integration (CI) is an approach allowing to detect
defects and failures in programs [7]. This idea can be used for pro-
gramming exercises to validate the correctness and completeness
of source code with test cases. Students upload their solution to a
version control system (VCS) and receive instant feedback about
the result of their submissions from the CI server. While doing the
exercise, they get used to VC and CI, which are important skills in
software development.

In this paper, we describe our experienceswith ArTEMiS, an open
sourceAuTomated assEssmentManagement System for interactive
learning. In Section 2, we cover the basic background behind the
methodology and tools for our approach. Section 3 presents the
approach behind and the use of ArTEMiS inmore detail.We describe
its scalability and show the applicability of the system within large
university courses and an online course in a multi case study in
Section 4. We analyze the participation of students in the case study
and provide insights. Section 5 relates and differentiates ArTEMiS
to other automated assessment tools. In Section 6, we conclude the
paper and provide directions for future work.

To appear at SIGCSE 2018

Preprint

https://doi.org/10.1145/3159450.3159602
https://doi.org/10.1145/3159450.3159602

SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA Stephan Krusche and Andreas Seitz

2 FOUNDATIONS
ArTEMiS uses version control (VC) and continuous integration
(CI) to automatically assess programming exercises in interactive
learning environments. This sections describes its foundations.

2.1 Interactive Learning
Interactive learning combines lectures and exercises into interactive
classes with multiple iterations of theory, example, exercise, solu-
tion and reflection [12]. Educators teach and exercise small chunks
of knowledge in short cycles. They focus on immediate feedback
to exercises to improve the learning experience in large classes so
that students reflect and increase their knowledge incrementally.

Hands-on activities in class increase students’ motivation and
engagement and allow continuous assessment over the course [13].
This approach expects active participation of learners and the use
of computers (laptops, tablets, smartphones) in the classroom. In-
structors provide guidance during the learning process to prevent
misconceptions and to facilitate the learning process.

2.2 Continuous Integration
CI was first described by Grady Booch as concept to avoid risky late
integrations [4]. Martin Fowler defines CI as follows: “Continuous
Integration is a software development practice where members of a
team integrate their work frequently, usually each person integrates
at least daily – leading to multiple integrations per day” [7].

Each developer works on a local copy of a shared code base. After
implementing source code, the developer integrates the changes
into the shared code base. An automated build (including test cases)
verifies each integration to detect compile, test, and integration
errors as soon as possible [7]. The build is triggered on the devel-
oper’s machine or on a central CI server. While CI does not require
special tools, developers use dedicated servers to perform it.

Figure 1 illustrates a common CI workflow. (1) The process starts
with a developer committing code changes to a VCS. (2) The CI
server regularly checks the VCS for code changes and (3) automat-
ically triggers the build and test process on every commit. Tests
can range from small unit tests over larger integration tests to com-
plete system tests. (4) After the build has either succeeded or failed,
the developer is notified about the build result. Every commit trig-
gers a build, so the developer responsible for the failure is notified
immediately to fix the problem.

Version	
Control	
Server

Developer Continuous	
Integration	
Server

Commit Check	for	changes
Compile,
run	tests

Notify	developer

1 2
3

4

Figure 1: Typical continuous integration workflow

2.3 Automatic Assessment
“The [manual] assessment of [programming] assignments places
significant demands on the instructor’s time and other resources”
[5]. To solve this problem and due to the logical character of pro-
gramming, the task of assessing programming exercises can be
automated. A first example was a grading program for punch card

programs by Hollingsworth [9]. Since then, many automatic assess-
ment tools (e.g. [6], [11], [15]) have been developed, together with
guidelines on how programming exercises should be assessed.

Automatic assessment systems provide feedback on students’
solutions for programming exercises [19]. Compared to manual
assessment, they are able to provide consistent feedback for ev-
ery student without bias while significantly reducing the effort
for instructors and TAs. Ala-Mutka describes different types of
assessments [1]. The historically most common type is dynamic
assessment. Its main aspects are to assess functionality, efficiency,
and testing skills by executing a program with test input data and
checking the output for correctness. Another type is static analysis,
which provides feedback on style, programming errors or software
metrics by analyzing the code without executing it.

Students using automatic assessment tools achieve important
learning goals: they develop a clean and reusable code style, reflect
critically on errors and establish a testing culture. These goals are
achieved by multiple methods, e.g. varying the amount of feedback
provided or allowing to work incrementally on a solution. They can
be effectively implemented using different assessment techniques
such as black-box testing, white-box testing or peer reviews.

3 APPROACH
We identified the following goals for ArTEMiS by analyzing the
applicability of existing tools for large interactive courses:

Independence of programming language: different program-
ming languages are taught in university courses [17]. The system
should work independently of a specific programming language.

Scalability: the system should be scalable usable in university
classes and online courses. It should work with hundreds of partici-
pating students at the same time, e.g. during an interactive class.
The workload for preparing and grading exercises must be inde-
pendent of the number of participating students.

Instant feedback: the system should provide instant feedback
for submitted solutions and describe why the particular solution is
correct or wrong so that students can improve it.

Learning from failures: students can learn, reflect and iter-
atively submit new solutions even if they fail initially. Students
should have the chance to resubmit their solutions as often as they
want (potentially limited to a specific time frame).

Different exercise types: the system allows programming ex-
ercises in different areas of the software engineering process in-
cluding programming basics, system design, object design, testing
and build and release management.

Different assessment ways: the system should allow different
ways to assess submissions. For programming exercises the sys-
tem has to support different test types (e.g. structural, behavioral,
runtime, performance or functional tests).

Traceability: the systemmust ensure traceability for instructors
and for students. With regards to team exercises, the contribution
of each team member should be accountable. Traceability enables
early detection of difficulties for the students in the assignment and
lets the instructor react accordingly.

Immediate evaluation: solutions and results are easily acces-
sible and evaluable for instructors enabling them to remove ambi-
guity, answer open questions, or extend the given working time.

To appear at SIGCSE 2018

Preprint

ArTEMiS - An Automatic Assessment Mgmt. System for Interactive Learning SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA

Interactive exercise instructions: dynamic tasks and UML
diagrams visualize the current progress of students. They update
their color from red (incomplete) to green (complete) when students
submit their solution and when associated test cases pass.

Easy to use online editor: to simplify the participation and
improve the learnability, programming beginners can work on
programming exercises in an interactive and lightweight online
editor. They can submit their solutions with just one button click.

ArTEMiS fulfills these goals by using the concepts of VC and
CI. Each student works with a given template code in his own
repository and has a build plan which executes test cases after
each commit. Students can solve the programming exercise in an
online editor, on the local computer using an IDE or with a mix of
both. When using the online editor, they don’t need to setup a VC
client and an IDE. If they work on their own computer, they need
to apply version control and install an IDE (e.g. Eclipse) and have
more functionalities in the code editor (e.g. auto completion, error
highlighting, etc.). Conducting a programming exercise consists of
7 steps distributed among instructor, ArTEMiS and students:

1. Instructor prepares exercise: set up a base repository con-
taining the exercise code and test cases. Set up a base build
plan on the CI server, and create the exercise on ArTEMiS.

2. Student starts exercise: click on Start Exercise on ArTEMiS.
This automatically generates a copy (fork) of the base reposi-
tory with the exercise code and a copy of the base build plan.
ArTEMiS sets the permissions so that students can only see
their personal repository.

3. Student clones repository: optionally clone the personal-
ized repository from the remote VCS to the local machine.

4. Student solves exercise: Solve the exercise with an IDE of
choice on the local computer or in the online editor.

5. Student submits solution: upload source code changes
to the VCS by committing and pushing them to the remote
server or by clicking Commit & Run Tests in the online editor.

6. CI server verifies solution: verify the student’s submis-
sion by executing the test cases (see step 1) and provide
feedback which parts are correct or wrong.

7a. Instructor reviews course results: review overall results
of all students, and react to common errors and problems.

7b. Student reviews personal result: review build result and
feedback using ArTEMiS. In case of a failed build, reattempt
to solve the exercise (step 4.).

Figure 2 shows this approach as UML activity diagram. CI server,
VCS, and ArTEMiS are combined in the System actor. The approach
consists of 2 phases, exercise preparation and exercise execution.

Exercise preparation: an instructor sets up a VC repository
containing the exercise code (template) handed out to students
and test cases to verify students’ submissions (base repository).
This repository typically includes a small sample project including
some predefined classes, dependencies to external libraries, e.g. a
testing framework, and test cases. A combination of behavioral
(black-box) and structural (white-box) tests allows to check for
both functionality and implementation details of the submitted
code. In addition, the instructor stores the tests separately in a test
repository, which is not accessible to students, to prevent that they
adapt the test cases. It can make sense to completely hide the tests
from the students to prevent reverse engineering the solution.

Instructor System Student

1. Prepare
exercise

2.1 Start
exercise

2.2 Copy &
configure
repository

2.3 Copy &
configure
build plan

3. Clone
repository

4. Solve
exercise

5. Commit &
push solution

6. Build &
test code

7b. Review
test results

7a. Review
course
results

ok?

yes

no

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 2: Process for automated assessment in ArTEMiS

After setting up the base and test repositories, the instructor
configures the build plan on the CI server which compiles and
tests the exercise code using the previously defined test cases (base
build plan). This build plan includes a task to pull the source code
from the base repository and the test repository whenever changes
occur, and to combine them so that the tests can be executed in the
second step. A final task, which is also executed when compilation
or test execution fails, notifies ArTEMiS about the new result. The
instructor finally creates an exercise on ArTEMiS by selecting the
preconfigured base repository of the VCS and the preconfigured
base build plan of the CI server.

Exercise execution: a student starts an exercise with a single
click, triggering the setup process: ArTEMiS creates a personal copy
of the base repository, the student repository, and provides access
only to this student. It creates a personal copy of the base build
plan, the student build plan, and configures it to be triggered when
the particular student uploads changes to this personal student
repository. The student can usually not access the build plan to
hide its complexity. Personalized means that each student gets one
repository and one build plan. When 200 students participate in an
exercise, ArTEMiS creates 200 student repositories and 200 student
build plans. Students only have access to their personal reposi-
tory, they cannot access other student repositories. This prevents
cheating, because students cannot access code of each other.

After the setup is complete, ArTEMiS displays the clone URL
and/or allows the student to open the exercise in the online edi-
tor. The student clones the repository to the local computer and
starts working on the exercise. When the students uploads a new
solution to the personalized repository, the personalized build plan
of the student assesses the solution. Students upload solutions by
committing and pushing changes in their source code to their per-
sonal repository or by submitting their changes in the online editor
(which triggers a commit and a push operation in the background).
The new commit on the personal repository triggers the personal
build plan to assess the solution on a build agent. The build agent
pulls the submitted code from the personal repository and the tests
from the test repository, and combines them in a working directory.
It compiles the code, executes the tests and uploads the results to
ArTEMiS in a few seconds, so that the student can immediately
review the feedback and iteratively improve their solution.

In case of an incorrect solution, the feedback includes how many
tests failed and the corresponding failure message for each failed

To appear at SIGCSE 2018

Preprint

SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA Stephan Krusche and Andreas Seitz

Figure 3: Screenshot of the ArTEMiS online editor with interactive exercise instructions on the right

test. The student can now reattempt to solve the exercise and submit
a new solution. The instructor can review the results, gain insights
on the exercise progress and react immediately to errors and prob-
lems during the exercise. ArTEMiS acts as facade to the CI process
and hides complex details, which enables less experienced students
to participate in the exercise. Every student has a personalized build
plan, so the approach can be used to teach the concepts of CI. Then,
students get access to their build plan and have to configure it on
their own. Students can only see, edit and adjust their personalized
build plan. They cannot inspect build plans of their fellow students.

ArTEMiS includes an online editor that allows unexperienced
students to participate in exercises without dealing with the com-
plex setup of VC and IDEs. Figure 3 shows the online editor with
interactive and dynamic exercise instructions on the right side. In-
teractive instructions change their color depending on the progress
of students. Already completed tasks are marked with a green tick,
incomplete tasks are marked with a red cross. This helps students
to identify which parts of the exercise they have already solved
correctly. When they submit their current solution with the Com-
mit & Run Tests button in the upper right corner, the interactive
instructions dynamically update. The exercise tasks and the UML
diagram elements are referenced by the predefined test cases. They
change their color from red to green when all test cases associated
with the task or diagram element pass. This allows the students
to immediately recognize which tasks are already fulfilled and is
particularly helpful for beginners.

Figure 4 shows the system architecture of ArTEMiS. A student
uses the ArTEMiS Application Client (a browser) and a VC Client of
his choice to obtain the exercise code and to submit solutions. VC
Server, CI Server, Local Build Agents, and the ArTEMiS Application
Server run on the university’s infrastructure. TheCI Server delegates
the builds to local and/or remote agents, e.g. on Amazon Web
Services, depending on how much capacity is required for the
number of participating students. This makes it easy to scale the
approach by adding additional build agents. ArTEMiS uses the

university’s User Management System. The components VC Server
and CI Server are exchangeable, resulting in a flexible system which
can be adapted to the specific requirements of instructors.

<<device>>
Student Machine

<<component>>
ArTEMiS

Application Client

<<component>>
Version Control

Cl ient

<<infrastructure>>
University Data Center

<<component>>
ArTEMiS

Application Server

<<component>>
Continuous

Integration Server

<<component>>
Version Control

Server

<<component>>
Local Build Agent

<<infrastructure>>
Iaas Provider Data Center

<<component>>
Remote Build

Agent

<<component>>
User Management

System

Visual Paradigm Standard Edition(TUM - Institut fuer Informatik - Lehrstuhl 1)

Figure 4: System Architecture of ArTEMiS

The use of CI leads to several benefits: the programming language
for programming exercises is freely configurable. Compilation and
testing of student solutions is not a matter of ArTEMiS, it only
depends on the configuration of the build system. Students learn the
concepts and workflows of VC, CI and testing, all important skills in
software development. The system is scalable and can react to the
number of assessments to be handled with a corresponding number
of build agents. Adding more build agents allows more students to
submit their solution at the same time and still receiving instant
feedback. This is crucial for interactive learning based exercises
that are integrated into a class.

4 CASE STUDY
We use ArTEMiS in 3 large university course (UC) and in a MOOC:

(1) UC - Introduction to Software Engineering: mandatory
subject, 1400 bachelor students (2nd semester), 6 exercises,
814 students participated

(2) UC - Patterns in Software Engineering: elective subject,
400 master students, 34 exercises, 334 students participated

To appear at SIGCSE 2018

Preprint

ArTEMiS - An Automatic Assessment Mgmt. System for Interactive Learning SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA

(3) UC - Project Organization and Management: manda-
tory subject for business informatics, elective subject for
computer science, about 300 bachelor and master students,
1 exercise, 224 students participated

(4) MOOC - Software Engineering Essentials: 300 active stu-
dents, 10 exercises, 257 students participated

In the beginning of these courses, we go through a short inter-
active tutorial together with the students to show them how to
use ArTEMiS. In all these courses, we recommend to use Eclipse as
IDE and SourceTree as VC client (git). Students could individually
decide which VC client to use to retrieve the assignment, and hand
in their solution. We describe 4 typical exercises from our courses:

(1) Programming: write source code for a problem statement
or UML model. Typical examples are the implementation of
the quick sort algorithm or the strategy pattern. Test cases
assess the correctness of the solution.

(2) Testing: write test cases for the given program code and
mock parts of the program. The instructor creates test cases
that assess the test cases of the students with the given
correct program code and by injecting wrong program code
to review if the tests of the students are correct.

(3) Merge conflict: experience a merge conflict in git and have
to resolve it.

(4) Release management: learn how commits trigger the CI
server, which produces new build artifacts. Students get
direct access to their personalized build plan to be able to
view its configuration in detail.

By automizing all setup steps, we decreased the effort for stu-
dents and instructors. The instructor can dynamically adapt the
working time for different assignments based on the students’
progress in class. This allowed students to actively think about
the exercises instead of just following along with the solution.

4.1 Results
In simulations with 800 students and 2000 submissions over a period
of 10 minutes, ArTEMiS assessed solutions in an average of 10
seconds. In our courses, we measure the average assessment time.
This allows us to constantly evaluate whether ArTEMiS fulfills its
scalability goals under real classroom conditions. In a quantitative
analysis, we found the following results:

(1) Scalability: ArTEMiS can handle 200 submissions per minute.
(2) Feedback: ArTEMiS provides feedback within 10 seconds.
(3) Usability: Programming beginners are able to use ArTEMiS.
Table 1 displays an overview of the number of students and

submissions for each exercise together with the average assessment
time. The number of submissions per student varies from 1.6 to
4.3 on average. In one exercise, where students could only use the
online editor, this number was higher: 7.2. If students participate in
the exercise and submit solutions, most of them also successfully
solve the exercise. The assessment time, i.e. the time for students
to wait from the moment they submit their solution until they see
the test results and the feedback, varies from 5.1 to 10.3 seconds on
average depending on the complexity of the exercise, the number
of tests and the number of external dependencies. In exercises
with more complex tests, e.g. asynchronous client-server tests with
timeouts, this number can increase. In such cases, it makes sense
to distribute tests to students so that they can also execute them

on their computer. ArTEMiS uses a separate test repository so that
students who try to cheat and change tests locally, e.g. to let all tests
pass immediately without solving the exercise, can be detected.

We asked the students for feedback regarding the use of ArTEMiS.
Most students had less experience in the areas of distributed VC
and CI, nonetheless they had no issues working with ArTEMiS.
They stated, that the test results and the feedback was helpful to
solve the exercises, they enjoyed working with it and preferred
the usage of ArTEMiS over the previous process where there was
no automatic and instant feedback. In an online questionnaire, we
found that more than 90 % of the students consider the interactive
exercise instructions helpful in solving the exercise. They are par-
ticularly valuable in online courses, where students are distributed
and instructors cannot guide them directly in case of problems.

(1) Pro-
gramming

(2)
Testing

(3) Merge
conflict

(4) Release
management

Participating students 317 167 224 248
Submitting students 209 (66%) 109 (65%) 211 (94%) 149 (60%)
Successful students 200 (96%) 108 (99%) 183 (87%) 135 (91%)
Overall submissions 340 340 904 285
Correct submissions 236 236 291 198
Test cases 12 12 2 0
Assessment time* 10.3 s 8.3 s 5.1 s 9.6 s
Submissions per student* 1.6 3.1 4.3 1.9

Table 1: Numbers in typical exercises (* on average)

4.2 Discussion
ArTEMiS provides flexibility in how instructors conduct exercises.
It allows them to distribute assessment tests to students so that
they can find their own errors during debugging easier. However,
this might facilitate that students only work on getting the tests
passed and do not take the time to understand the actual problem
and solve it on their own. In such cases, instructors can hide the
tests and only show the test results on ArTEMiS.

Another choice is the use of the online editor vs. the use of
an IDE on the local computer. While the online editor lowers the
entrance barrier, it has limited features. In a comparison, we found
that students prefer the local IDE if they are already familiar with it,
as it offers more features such as syntax and error highlighting, auto
completion and debugging. In an experiment, we forced them to use
the online editor, however some students copied the code file by file
into their local IDE, solved the exercise there, and copied the code
back. An open question at this point is whether providing features
such as auto completion is beneficial to the learning experience.
Novice programmers often heavily depend on such features [18].
This may make students reliant on them and may prevent learning
the correct syntax of the programming language. It could be a viable
strategy to provide only minimal features in a code editor.

ArTEMiS supports in-class exercises with hundreds of students
and can additionally be used for homework exercises. We use it
in online courses where students are distributed and rely on the
exercise instructions and in university classes where instructors can
guide the students in addition. The costs of providing the system
are not negligible. We could use already existing, self-hosted CI and
VC systems. These are hosted at our institution, but we have to take
care of the maintenance. Alternatively, cloud-based solutions such
as GitHub Education, GitLab or Bitbucket Cloud can be used. These
usually offer attractive opportunities for educational institutions.

To appear at SIGCSE 2018

Preprint

SIGCSE ’18, February 21–24, 2018, Baltimore, MD, USA Stephan Krusche and Andreas Seitz

5 RELATEDWORK
A variety of systems for automatic assessment exists. Multiple sur-
veys have been published, summarizing and categorizing these
systems. The first extensive surveys on this topic were done by
Ala-Mutka [1] and Douce et al. [5]. They describe multiple auto
assessment tools and categorize them into dynamic and static as-
sessment and differentiate between local and web based systems.

The survey by Ihantola et al. focuses on identifying key fea-
tures of automatic assessment tools, such as supporting different
programming languages, allowing resubmissions, or providing a
sandbox environment to handle malicious submissions [10]. The
authors state most systems are not open source or available other-
wise, even if a publication describes the development of a prototype.
A survey by Queiros states interoperability and compatibility to
other services is a key factor for automatic assessment systems [14].
He concludes that this factor is not considered for many existing
assessment tools and that future solutions have to improve this.
Our approach fulfills many of the stated features by connecting to
university user management or providing interfaces to VCS.

From those surveys, we identified multiple publications related
to our system. WebCAT was first created in 2003 and is arguably
one of the most complete automatic assessment tools [6]. It has been
developed as open-source software and allows extensibility by plu-
gins. In terms of assessment, it supports student written tests, test
coverage, static code analysis and a combination of both automatic
and manual grading. Our approach covers most of the features
of WebCAT, while removing the dependence on a single software
product. Instead, our approach consists of multiple independent
software systems that are connected using common interfaces. This
leads to a higher flexibility as individual parts of the architecture can
be replaced, for example in favor of lower costs, superior support,
larger communities or general management decisions.

Marmoset focuses on information collection during the develop-
ment process of students [16]. The system takes regular snapshots
of the students’ progress. It allows the instructor to study the de-
velopment process of the students and to identify common bug
patterns. By using VCS and teaching its application, we achieve
the same outcome. Students commit multiple iterations of their
solution, resulting in a commit history that can be evaluated. This
allows to identify common mistakes and study problem solving
behavior. Amelung et al. propose a system thats splits e-learning
and e-assessment platforms into separate systems, allowing inde-
pendent deployment and easier adoption [2]. Our approach targets
the same idea, but our goal is not to implement another closed
source assessment system. Instead, we reuse workflows provided
by existing CI tools to achieve similar results.

Gruenewald et al. focus on the challenge of conducting program-
ming lectures as MOOCs [8] integrating active experimentation
and relating to concrete experience. Those aspects are considered
in ArTEMiS as well. In recent years, commercial products have be-
come available for automatic grading, including Vocareum, Turing
Craft, etc. An open source and free alternative is Codeboard, devel-
oped by ETH Zurich. These online tools are cloud based and use
regression testing, a technique used for quality control in software
development. They allow students to edit and submit source code
in the browser to simplify the participation.

6 CONCLUSION
ArTEMiS combines VC and CI with automated assessment of pro-
gramming exercises and immediate feedback. This enables high
flexibility and scalability in large classes. Our experiences in 3 uni-
versity courses and 1 online course show that programming begin-
ners are able to use the system, improve their solutions iteratively
with immediate feedback and increase their learning experience.

Dynamic and interactive exercise instructions are particularly
helpful for beginners to immediately recognize which tasks are
resolved. The effort for instructors and TAs is reduced. They can
evaluate student results immediately during the exercise to help
students when problems occur. ArTEMiS is free and open source
on https://github.com/ls1intum/ArTEMiS, so that other instructors
can use it in their courses. We will support additional interactive
exercises in the future, in particular quizzes and modeling.

ACKNOWLEDGMENTS
We want to thank Dominik Münch, Andreas Greimel and Josias
Montag who participated in the development of ArTEMiS.

REFERENCES
[1] K. Ala-Mutka. 2005. A Survey of Automated Assessment Approaches for Pro-

gramming Assignments. Computer Science Education (2005), 83–102.
[2] M Amelung, P. Forbrig, and D. Rösner. 2008. Towards Generic and Flexible Web

Services for E-Assessment. SIGCSE Bulletin (June 2008), 219–224.
[3] C. Bonwell and J. Eison. 1991. Active Learning: Creating Excitement in the Class-

room. ASHE-ERIC Higher Education Reports.
[4] G. Booch. 1991. Object Oriented Design with Applications. Benjamin-Cummings

Publishing Co., Inc., Redwood City, CA, USA.
[5] C. Douce, D. Livingstone, and J. Orwell. 2005. Automatic Test-Based Assessment

of Programming: A Review. Journal on Educ. Resources in Computing (2005).
[6] S. Edwards. 2003. Improving student performance by evaluating how well Stu-

dents test their own programs. Journal on Educ. Resources in Computing (2003).
[7] M. Fowler. 2006. Continuous Integration. http://www.martinfowler.com/articles/

continuousIntegration.html. (2006).
[8] F. Grünewald, C. Meinel, M. Totschnig, and C. Willems. 2013. Designing MOOCs

for the Support of Multiple Learning Styles. In European Conference on Technology
Enhanced Learning. Springer, 371–382.

[9] J. Hollingsworth. 1960. Automatic Graders for Programming Classes. Commun.
ACM (1960), 528–529.

[10] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä. 2010. Review of Recent
Systems for Automatic Assessment of Programming Assignments. In Koli Calling
Conference on Computing Education Research. ACM, 86–93.

[11] M. Joy, N. Griffiths, and R. Boyatt. 2005. The BOSS Online Submission and
Assessment System. Journal on Educational Resources in Computing (2005).

[12] S. Krusche, A. Seitz, J. Börstler, and B. Bruegge. 2017. Interactive Learning:
Increasing Student Participation through Shorter Exercise Cycles. In Proceedings
of the 19th Australasian Computing Education Conference. ACM, 17–26.

[13] S. Krusche, N. von Frankenberg, and S. Afifi. 2017. Experiences of a Software
Engineering Course based on Interactive Learning. In Proceedings of the 19th
Workshop on Software Engineering Education in Universities. 32–40.

[14] R. Queirós and J. Leal. 2012. Programming Exercises Evaluation Systems – An
Interoperability Survey. In Conference on Computer Supported Education. 83–90.

[15] R. Singh, S. Gulwani, and A. Solar-Lezama. 2013. Automated feedback generation
for introductory programming assignments. SIGPLAN Notices (2013), 15–26.

[16] J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, . Hollingsworth, and N. Padua-Perez.
2006. Experiences with Marmoset: Designing and Using an Advanced Submission
and Testing System for Programming Courses. SIGCSE Bulletin (2006), 13–17.

[17] T. Staubitz et al. 2015. Towards Practical Programming Exercises and Automated
Assessment in Massive Open Online Courses. In International Conference on
Teaching, Assessment, and Learning for Engineering. 23–30.

[18] A. Vihavainen, J. Helminen, and P. Ihantola. 2014. How novices tackle their first
lines of code in an IDE: Analysis of programming session traces. In Koli Calling
Conference on Computing Education Research. ACM, 109–116.

[19] M. Vujošević-Janičić, M. Nikolić, D. Tošić, and V. Kuncak. 2013. Software Verifi-
cation and Graph Similarity for Automated Evaluation of Students’ Assignments.
Inf. Softw. Technol. 55, 6 (2013), 1004–1016.

To appear at SIGCSE 2018

Preprint

https://github.com/ls1intum/ArTEMiS
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html

	Abstract
	1 Introduction
	2 Foundations
	2.1 Interactive Learning
	2.2 Continuous Integration
	2.3 Automatic Assessment

	3 Approach
	4 Case Study
	4.1 Results
	4.2 Discussion

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

