
Evaluation of cross-platform frameworks for mobile
applications

Andreas Sommer, Stephan Krusche

andreas.sommer@in.tum.de, krusche@in.tum.de

Abstract: With today’s ubiquity of smartphones, tablets and other mobile devices,
more and more businesses develop and use mobile applications. Multiple platforms
including Android and iOS form the market of mobile devices, so it can be important
to be able to deliver software for more than one platform. Vendor-supported SDKs
are feature-rich but incompatible with other platforms. We compared a number of
cross-platform frameworks for mostly platform-independent development on mobile
platforms, by evaluating them in several categories and weighing them against native
SDKs. We found out that cross-platform solutions can be recommended in general,
but they are still limited if high requirements apply regarding performance, usability
or native user experience.

1 Introduction

The increasing demand for mobile applications in many areas [Syb11] presents developers
and companies with several problems: implementing an application for multiple mobile
platforms, like Android and iOS, may require high effort in terms of development time,
resources, maintenance and possibly licenses, tools and deployment. One influencing
factor is the fragmentation of the market of mobile platforms, i.e. smartphones and tablets.
Android and iOS lead the sales with a high market share [Int12], while other platforms are
less prevalent but might become more popular in the future (e.g. BlackBerry 10).

Using vendor-provided SDKs in order to implement an application for each desired
platform results in highly responsive applications with a native look and feel, but has
the downside of different, often incompatible programming languages, libraries, and user
interface guidelines or designs. If instead an application is implemented with a common
code base and possibly a single programming language or a small set of technologies, the
compatibility issues are reduced, and also potentially the time required to implement and
deploy the application on all desired platforms. Previous research regarding cost savings
and other advantages exist in other areas of software reuse [A+09] [MC08], but not for all
types of cross-platform solutions such as application frameworks. There seems to be no
in-depth research available on the quantification of savings with existing cross-platform
solutions, but VisionMobile’s developer survey of 2012 [Vis12] states that typically, more
than 55% of production costs pertain to development and debugging, hinting that great
savings could be achieved regarding invested time and resources for development.

363



Different cross-platform approaches emerged within the last years. In this paper, we de-
scribe which types of cross-platform solutions exist and evaluate three frameworks versus
two native SDKs in criteria pertaining to functionality, usability features, performance
and other categories. We focus on criteria and frameworks suited for developing business
applications, i.e. excluding games in particular. Previous research in this area is sparse
and often focuses on comparing a set of existing frameworks. We would like to conclude
whether these solutions are useful at all and in which cases they can be recommended.
The problem of supporting multiple platforms is not new but rather the reappearance of
the same, 20-year old problem for PC platforms1. With the ubiquity of mobile devices and
fragmentation of platforms, it makes sense for developers to target multiple platforms and
thus for framework vendors to provide appropriate solutions [A+10].

In the following, we present existing types of cross-platform frameworks and the solutions
selected for comparison (ch. 2). Chapter 3 details the methodology of the evaluation. We
then list and explain the results for each category of criteria (ch. 4) and conclude about the
advantages and problems of the solutions as compared with a native approach, and state in
which cases the cross-platform approach is useful and ready for production (ch. 5).

2 Cross-platform frameworks

2.1 Definitions

Platforms are a combination of hardware (system plus any possibly built-in sensors
or actuators), operating system, vendor-provided software SDKs and standard libraries
[BH06], which together offer the base for building software for that platform.

A framework allows the reuse of a usually predefined application architecture and provides
components that help in quickly setting up an application [Pas02]. Thus, a cross-platform
framework allows to reuse parts of the application source code for multiple platforms
and may additionally offer building blocks such as an architecture style (e.g. MVC2),
user interface API or other functionality that is not specific to a single platform. Such
frameworks can also expose APIs for platform-specific features.

Mobile applications exploit features specific to mobile devices and platforms, for instance
a camera, accelerometer or fine-grained location retrieval. Pure web applications running
in a mobile browser do not yet have access to all device features through a JavaScript
interface [HHM12] and hence do not fall into the category of mobile applications.

1Windows, Unix, Mac OS, etc.
2Model, View, Controller

364



2.2 Types of cross-platform solutions

Pure web application frameworks Even though web applications without extensions
were not considered as mentioned above, it should be noted that several frameworks exist
which primarily rely on HTML as user interface technology and thus can be combined
with pure web application frameworks. For example, jQuery Mobile [jF12] provides
an architecture for web applications, including predefined user interface components3,
page loading and transitions. Other frameworks even contain custom styles for mobile
platforms, e.g. components that look similar to iOS native user interface components.

Partially based on web technology Frameworks that primarily use HTML and related
technologies to display the user interface, but additionally offer an API for calling device-
specific functionality, belong to this category. Existing frameworks employ JavaScript to
allow access to native functions, bridging between JavaScript function calls and native
APIs (e.g. functions of the vendor-provided SDK for the underlying platform). However,
there are frameworks that support calling native functionality but do not provide the
means to implement user interfaces. For instance, PhoneGap [Ado12] offers many native
functions but only supports using the platform’s web view component4 in order to display
user interfaces – no UI functionality is included. Such frameworks can be combined with
UI-focused frameworks, for example the web application frameworks mentioned above.

Compiled or interpreted code Unlike the previous category, frameworks of this type
do not mainly use web technologies, but usually incorporate a different kind of user
interface API and a single programming language which is then used across all supported
platforms. For instance, the Titanium framework [App12] packages applications with a
standalone JavaScript interpreter. Web-related APIs like DOM (Document Object Model)
manipulation are not included and instead, Titanium offers its own API for generating a
user interface from code, and for other purposes like network, device and file access.

Since these frameworks often support native user interface components, differences
between the platforms’ typical UI design must be considered. Therefore, different
framework architectures can be found. Titanium offers an abstract interface for common
components like buttons, but specialized APIs for platform-specific ones (e.g. iOS
toolbar). Other frameworks only offer a programming language for platform-independent
code, while requiring user interfaces to be developed separately for each mobile platform.

Other types A number of existing cross-platform solutions use approaches that differ
from the above categories. For example, the XMLVM project has the goal of translating
programming languages into each other. One example utilization is the cross-compilation
of an Android application to a native iPhone application by translating its source code and
adding a compatibility library that mimics the Android API on the iOS platform [XML12].

3Buttons, lists, text labels and fields, etc.
4Component supporting web browsing functionality, including rendering of HTML, JavaScript execution etc.

365



2.3 Compared frameworks

We conducted a case study comparing three cross-platform solutions with two native
SDKs. The evaluation methodology is explained in the next chapter. In the following,
the tested cross-platform frameworks and their architecture are outlined.

Titanium Titanium [App12] is a framework by Appcelerator Inc., supporting Android
and iOS with the latest version 2.0 at the time of evaluation. It leverages JavaScript as
main development language, but does not primarily use HTML or other web technologies.
HTML display using an embeddable web view component is supported, however. The
architecture consists of two major parts: an application is bundled together with a
standalone JavaScript interpreter to execute the application code, and the Titanium library
that provides APIs for device functionality like sensors, file system access, native UI
components and others, abstracting away many differences between the platforms. An
application can use the Titanium library from anywhere in the source code. Calls to
methods or properties of the global object Ti are passed to the native implementation for
the respective platform. This bridging facility also allows own native extensions (platform-
specific native code) to be added and used in a project from JavaScript code.

Rhodes The framework Rhodes [Mot12] was developed by the company Rhomobile
which was acquired by Motorola Solutions in October 2011. The latest version at the time
of evaluation was 3.3.2, supporting the 5 platforms Android, iOS, BlackBerry, Windows
Mobile and Windows Phone 7.

The client-server model is used as basic architecture. The user interface of an application
is shown entirely by a web view component that renders HTML content and evaluates
JavaScript code. The application’s backend contains models and controllers (based on the
MVC architecture) written in the Ruby programming language. Views are written using
HTML and a template language5. Any controller action can be accessed from the HTML-
based views by accessing the respective URL. The framework includes a simple web server
that is embedded in applications and runs locally on the device. This web server handles
the translation of URL accesses to method calls in a controller and returns the view that is
created as result. Controllers do not have to return a new view, but can also just run a task
in the background without rendering an HTML page. They can directly interact with the
user interface by sending JavaScript code which is executed by the web view.

Device capabilities can be accessed through the Rhodes library, and thus only from
backend code (controllers written in Ruby, not from views6). A reduced Ruby standard
library is included with the Ruby virtual machine that is bundled with an application. As a
result, common functionality such as file access does not require the use of a separate API.
Additionally, Rhodes provides modules for accessing, storing and synchronizing data.

5ERB (Embedded Ruby), a templating system that is also used in web frameworks such as Ruby on Rails
6In a subsequent version, it seems that some functionality can also be accessed in HTML and JavaScript.

366



PhoneGap and Sencha Touch PhoneGap [Ado12] is a framework that does not provide
any UI generation functionality, but only the capability for displaying web technology
based content. Therefore, we decided to combine PhoneGap with the web application and
UI framework Sencha Touch [Sen12] because usability features are part of the evaluation
criteria. The evaluation results are valid for this combination of frameworks and may vary
if another web framework is chosen.

PhoneGap was initially developed by the company Nitobi which was acquired by Adobe
Systems in 2011. As of the evaluated version 1.9.0, PhoneGap supports 7 mobile platforms:
Android, iOS, BlackBerry, webOS, Windows Phone 7, Symbian and Bada. It allows
development of mobile applications using web technologies by providing an interface to
a web view component and tools to create platform-specific project files and initial source
code that shows the web view. Additionally, PhoneGap provides APIs for device and
platform functionality through a JavaScript-to-native bridge and native code can call back
JavaScript functions inside the web view as well. This bridge is implemented differently
on each platform. Developers can extend PhoneGap with native plugins by implementing
a simple interface which also differs across the platforms. No user interface functionality
of any sort is included, so PhoneGap can be seen as a wrapper for mobile applications that
use HTML and other web technologies for displaying their user interface.

Features that are not natively supported on a platform are mimicked by PhoneGap’s
own implementation. For instance, if the W3C Web SQL Database specification is not
implemented by a platform, PhoneGap’s own implementation is used. Close adherence to
such standards enables developers to use the same interface on all platforms.

3 Comparison

3.1 Methodology

The decision for the three selected cross-platform solutions was mostly based on active
development, stability and popularity of the frameworks in order to gain an insight on
solutions that are mostly ready for production use. We evaluated all solutions in five
categories which are described below. Each category has a weight between 1 and 5 points
(1=least important, 5=most important) which is multiplied with the score in a category.
The values are summed up in order to gain the final result. Single scores are also in
the range 1 to 5 (1=not fulfilled, 2=poorly fulfilled, 3=basic expectations met, 4=more
than fulfilled, 5=all expectations completely fulfilled or exceeded). Since many criteria
require evaluation of a framework’s features from a developer’s point of view, we based
the comparison on the implementation of a well-defined sample business application
with each solution. Criteria that are not related to development, such as license costs,
were also considered to a certain extent. The main focus, however, was the usefulness
of cross-platform solutions for developers and advantages for small to medium sized
companies that develop mobile applications. The same methodology was applied to both

367



the Android and iOS native SDKs7 so that comparable results could be achieved and
potential advantages and pitfalls of both the cross-platform and native approaches would
become clear during evaluation.

3.2 Sample application

The sample business application “MobiPrint” was invented as mobile app to support
customers of a contrived chain of photo printing stores. Its main purpose is to order printed
photographs over the Internet using a mobile device. Customers gain the convenience of
sending pictures from their mobile device, without having to bring a physical medium to
the store. The store itself saves time because pictures come over a common channel, and
it is not necessary anymore to extract files from different media types (USB sticks, CDs,
SD cards). Amongst other points, development of this application mainly tests

• Integration with web services: A publicly accessible, HTTP-based web service
and its exposed actions are predefined and must be used by the sample application.

• Usage of device features: For example, the current location is used to retrieve
information about nearby stores.

• Additional data sources on the device: In order to read and select pictures for
upload to the web service (e.g. access to photos or file system).

• Usability features: Mockup designs for different screens were given and the UI had
to be implemented from scratch with each of the five competitors. Thus, features
and problems with e.g. layouting could be evaluated in each implementation.

3.3 Categories

The three cross-platform solutions and two native SDKs were evaluated in five categories
which are roughly based on the FURPS+ model [BD09]8, but adapted to describe the re-
quirements of frameworks instead of finished software. The adapted model shall describe
how well a framework supports the various categories when using it to develop software
products, e.g. “features to improve usability” instead of “actual usability”. FURPS+ was
chosen because it concisely categorizes different types of software requirements.

Functionality This category typically comprises all functional requirements of a soft-
ware product. For cross-platform frameworks, the available variety and quality of features

7Android SDK v10 (for Android 2.3), iOS 5.1 SDK
8Describes software requirements in functionality, usability, reliability, performance, supportability and other

categories

368



Figure 1: Mockups for the sample application screens

are considered, which includes: geolocation and network access, a persistence layer or
database access, hardware sensors and actuators, buttons (hardware buttons, or software
buttons provided as a persistent element of the operating system’s user interface9), appli-
cation lifecycle (events such as start, pause, resume; ability to run a background service
or similar) and access to data provided by other applications or the operating system (e.g.
contacts). Extensibility positively affects the score, for example if natively running code
or access to features of a platform’s native SDK is supported.

Usability features This category answers the question: how well does a framework
support features and concepts that can help improve usability of the developed application?
This includes features offered for creating a user interface: typical elements like buttons,
lists, a tab or navigation bar, but also more mobile-specific elements like a paging
component for switching between several pages by touch gestures.

The support for touch gestures is important because gestures (potentially platform-
specific) improve learnability and satisfaction by allowing users to achieve certain actions
quicker and in a familiar way (e.g. “pull to refresh”10). Another criterion is customiz-
ability, meaning which attributes of UI components can be changed and to what extent.
This includes colors, transparency, font type and size or shapes. Corporate identity, for
example, may prescribe a certain color scheme or font type. The better an interface can
be accommodated to the intended design, the better its usability can potentially be – or in
other words, if the necessary customizations and features are not available, some usability
features (like gestures and UI patterns based on them) cannot be implemented, or only
with high effort.

9Fixed button bar as introduced in Android 3.0, for example.
10If a list component is scrolled to the very top, and the user shortly swipes down with the finger, an application

can recognize this gesture and e.g. refresh the list.

369



The incorporated points of comparison include UI functionality, i.e. basic and advanced
features and components, customizability, gesture support and the ability to use native UI
components, e.g. the iOS navigation bar. Moreover, the easiness of applying platform-
specific looks and the overall subjective UI impression are taken into consideration.

Developer support This category aims at the ease of use that a framework offers to a
developer. Documentation completeness and quality plays an important role, but also the
development tools provided. Frameworks based on web technology may allow testing a
mobile application in a browser or simulator, which would give developers the advantage
of modern debugging tools built into browsers11. Other frameworks may provide their
own simulator or support for using an existing simulator (e.g. iPhone simulator) to test
applications. Some frameworks may restrict developer tools for common tasks (build,
framework update, etc.), such as a certain IDE. Restrictions of this type may hinder
the workflow of developers or existing automatic build setups. Overall, the following
points are considered for the developer support category: documentation, debuggability
and testability, tool restrictions and learning effort (e.g. number of technologies involved).

Reliability & Performance These categories are defined separately in the FURPS+
model – for simplicity, they are combined here. A reliable application is able to “perform
its required functions under stated conditions for a specified period of time” [IEE90]. This
is particularly important for mobile applications: since they typically run with restricted
resources (e.g. available memory, process paused while application is in background),
applications should run without crashes even if certain operations need a high amount of
memory for a short time. Performance – specifically in the area of mobile applications –
is mainly concerned with short response times for user interactions. Thus, an example of a
poorly performing application feature could be a user interface that takes several seconds
to switch between screens. Of course, general performance criteria for software apply, too,
i.e. any measurable attribute that affects speed, waiting times or accuracy.

Performance was evaluated on two older test devices, the Huawei Ideos X312 and iPhone
3GS13, in order to see how well the sample application implementations perform on
low-end devices. For this category, the sample application’s stability and size of the
packaged/installed application are considered, as well as UI and application performance.

Deployment, Supportability, Costs Supportability is determined by the “ease of
changes to the system after deployment” [BD09]. App stores are an important point
to consider, in particular regarding the framework’s support for packaging and its com-
patibility with restrictions and submission guidelines of the stores. Supportability also
includes the portability to other systems – in this case, other mobile platforms. Experi-
ences porting the sample business application from Android to iOS will be documented

11For instance the WebKit development tools that can display the HTML document tree, CSS (Cascading Style
Sheets) rules, loading times, a JavaScript console and other helpful utilities

12Android 2.3.3, 600 MHz, 256 MB RAM
13Tested with iOS 5.1.1, 600 MHz, 256 MB RAM

370



in the evaluation. Portability for the native SDKs is rated low because native applications
cannot be ported easily. This criterion is not weighted higher or regarded as separate
category because there is little research available on quantitative differences in develop-
ment time and costs when porting applications. Furthermore, the activity of framework
development and the viability of vendors are important, especially if a business wants to
use a certain framework in their long-term mobile strategy.

This category comprises a variety of criteria: a framework’s supported mobile platforms,
compatibility with app store guidelines, additional dependencies (e.g. a runtime environ-
ment has to be installed separately to run an application) and built-in support for interna-
tionalization, i.e. translations and localization (formatting of dates, currency values and
other locale-dependent settings). We also considered support for simplified or automatic
builds, for example through external build services or included tools, and checked how ac-
tively the frameworks are being developed. Regarding costs, we evaluated the direct costs
for using a framework and additional (professional) support options and costs.

3.4 Category weights

Weights describing the importance of a category from the point of view of a small
development company are assigned as follows (1=least important, 5=most important):

Functionality: 4 Certain built-in features and support for hardware sensors and actuators
can be very important depending on the type of application. Extensibility, e.g. being
able to add code that uses native functionality or to use third-party libraries, is even
more important.

Usability features: 3 Usability greatly depends on a good application design. However,
in case a framework does not provide extended features such as gesture recognition,
some features of the finished application are harder to implement.

Developer support: 2 Tool restrictions and debuggability play a smaller role with mobile
applications because they are typically less complex or require less development
time than comparable desktop applications, and as such the need for helpful
developer tools is not as important.

Reliability & Performance: 3 Performance is a critical point for customer satisfaction
because slow loading times may prevent users from ongoing use of an application.
Nevertheless, new technologies such as multi-core processors are already emerging
and will help mitigate performance issues. Also, cross-platform frameworks are
relatively new and still have the potential to progress in terms of performance.
Together with reliability, a common and surely important aspect of software, this
category is considered of medium importance overall.

Deployment, Supportability, Costs: 5 Costs and time-to-market are key factors for the
success of an application. The typically short development cycle of mobile applica-
tions requires fast delivery of new versions, which can be simplified by automatic

371



build services or built-in packaging or deployment functionality. This category also
comprises the fulfillment of app store rules, support for different platforms and how
actively a framework is developed. Costs of a framework and available support plans
are also evaluated. Therefore this category is most important because it includes fac-
tors that influence the cost, ease and speed of deployment in the long term.

4 Results

Table 1 summarizes the results of the evaluation. The scores show that the native SDKs win
most categories. However, the actual differences in each category need to be considered.

Category Weight Titanium Rhodes PhoneGap
and Sencha
Touch

Android
SDK

iOS
SDK

Functionality 4 3 2 3 4 4
Usability features 3 4 3 3 5 5
Developer support 2 4 3 4 4 4
Reliability &
Performance 3 3 2 2 4 5
Deployment,
Supportability, Costs 5 4 4 4 4 3

Rounded final score: 3.6 2.9 3.2 4.2 4.1

Table 1: Overview of evaluation scores for all frameworks

4.1 Functionality

All three cross-platform frameworks support basic functionality like lifecycle events
(except Rhodes), access to built-in hardware, intercepting button presses, or network,
file and data access. In order to support all functions that the native SDKs offer, a
framework would need many high-level abstractions or has to make compromises –
Titanium supports some extra features of both Android and iOS without exposing them
as platform-independent interface. The number of developers actively involved in the
cross-platform frameworks is supposedly small in comparison to the native SDKs that are
supported by large companies. Therefore, functionality of the frameworks is first of all
restricted to what their developers can implement and support. PhoneGap takes a good
approach here, in that only portable functionality is supported in the core API, whereas
other features are available in separate plugins that are written in native code and thus can
utilize all functions of the respective platform.

372



4.2 Usability features

The score difference in this category is mostly due to the support for native components
or native-like styling capabilities. Titanium uses native components, but both Rhodes and
PhoneGap are based on HTML, so achieving a fully native experience is cumbersome.
Also, the native SDKs provide high customizability and well-designed UI components.
Regarding quality and availability of features for usability, the cross-platform frameworks
are rated good throughout, supporting the basic features as listed before (e.g. transitions).

The way how layouting works in the five solutions varies greatly, but with all of them,
a customizable frontend can be created. Titanium additionally requires testing on both
supported platforms because missing layouting attributes and different default behaviors
can cause problems. The other two cross-platform solutions make porting very easy by
using web technology. The subjective impression varies and the look of UI components
differs greatly, which can be an important point when deciding between the solutions.

4.3 Developer support

Except for PhoneGap, which is used with separate native project files per platform and
thus can be used with the respective IDEs, all other frameworks provide an IDE for de-
velopment, debugging and deployment of applications. Rhodes is the only framework
with a score of only 3 points because the learning effort for two programming languages
(Ruby and JavaScript) is considered higher and Ruby code debugging is only supported on
RhoSimulator, not on devices or other simulators. Typical requirements, such as debug-
ging with breakpoints, are fulfilled by both the cross-platform frameworks and the native
SDKs, rendering them pretty much equivalent for this category. Documentation quality
and completeness is also adequate for serious development – solutions for Android and
iOS SDK problems can be found more easily because of the large developer community.

4.4 Reliability & Performance

During implementation and testing of the sample application, no relevant crashes were
found with any of the cross-platform frameworks and native SDKs, apart from mem-
ory management of loaded thumbnails from large pictures. With Titanium and the An-
droid/iOS SDKs, references are managed manually, which led to crashes on the Android
device because of the limited application memory. The native Android SDK solves this
with functions to efficiently handle thumbnail loading which are however not available in
Titanium. In these cases, the frameworks are still missing functionality. With the web
technology based frameworks, memory management is performed automatically by the
web view component and thus did not lead to similar issues.

Performance-wise, the cross-platform frameworks vary greatly from its native competitor.
Both in observed reaction times and subjective regard, Titanium was the fastest of the

373



three cross-platform solutions, which, together with the native UI components, brings it
close to the native SDKs. The choice of JavaScript, however, has certain implications:
multithreading and asynchronous operations are not supported directly, apart from those
APIs which are already implemented to run in the background (e.g. HTTP requests).
PhoneGap as framework for use of web technology has this problem, while Rhodes and
Sencha Touch have additional causes for their very poor performance14. PhoneGap’s
performance can be fast enough for many types of applications if the right web framework
is chosen. Combined with Sencha Touch, it was very slow on the test devices, with screen
switch times of up to multiple seconds. Rhodes has equally poor performance.

4.5 Deployment, Supportability, Costs

Each of the vendors of the tested cross-platform frameworks offers professional support
with different options or payment plans. Google and the Open Handset Alliance do not
seem to offer such plans for Android, and Apple only seems to offer e-mail support through
a ticket system. Free support options such as online forums exist for all solutions, and a
point that speaks for Android and iOS is that their developer community is so large that
solutions to typical problems can almost always be found on the Internet and not only in
the official forums. Even though support options differ, all five solutions can be considered
very good in this category. One point was deducted from the iOS SDK score because of
its only basic translation support15 and the need to pay the membership fee to gain access
to technical support and the bug tracker. Regarding internationalization capabilities, all
frameworks are extensible so that external solutions can be used for internationalization
and other purposes. Android already offers advanced support for translations.

5 Conclusion

A major advantage of the cross-platform frameworks is code reuse. In the evaluation, the
sample application was always first implemented and tested on Android and only later we
checked whether it runs unchanged on the iOS platform. Both HTML-based solutions,
Rhodes and PhoneGap with Sencha Touch, did not require any changes to the code itself.
Titanium, on the other hand, required small changes to the layouting attributes.

Regarding developer support, documentation and additional learning sources (screencasts,
tutorials) are available for all evaluated solutions, and mostly of good quality even for
the fairly young cross-platform frameworks. As the frameworks are under very active
development, the quality can be expected to improve over time.

HTML-based framework types have specific advantages. For instance, PhoneGap requires
close to no extra knowledge for an experienced web developer: project setup is simple

14Possible reasons are a complex and deeply nested HTML DOM tree with Sencha Touch and the client-server
architecture with embedded web server of the Rhodes framework.

15Translation support was improved with the iOS SDK 6 which was not tested in this evaluation.

374



and applications can be developed with web technology only (unless PhoneGap plugins
or platform-specific functionality are needed). In addition, an application can be deployed
as normal web site if it can run without device features that are not available in a browser.
Hence, PhoneGap is a good option if an application should also be the base for a mobile
web site. Rhodes does not support web deployment in the evaluated version.

The main disadvantage of the cross-platform approach with the evaluated frameworks is
the availability of usability features and the partially very poor performance as compared
to the native implementations of our sample application. Rhodes and Sencha Touch do
not support the native platform design which might be desired to present users with a
more familiar interface, or to make sure an application is not rejected on app stores for
disregarding UI guidelines. PhoneGap uses a better approach by allowing plugins to run
native code and thus add platform-specific elements like the iOS tab bar. Regarding
performance, it is notable that Facebook switched from mostly HTML5-based mobile
applications (for Android and iOS) to native implementations and thereby achieved large
improvements in UI responsiveness and overall performance [Dan12] [Du12].

In general, cross-platform solutions offer many advantages, in particular code reuse and
quick setup for multiple platforms. If the mentioned usability and performance problems
can be considered minor for an application, we can recommend to employ Titanium or
PhoneGap for production use. Both frameworks can offer high performance16. Depending
on the use case, considerations of desired user interface design (customized vs. native) and
deployment as mobile web site, one framework has advantages over the other as described
above. However, native development is still the better choice for usability-centered
applications with a high focus on user experience. Also performance-critical applications,
e.g. software performing heavy background processing, should be implemented natively.
Nevertheless with modern devices, performance issues become less prevalent.

We expect the field of cross-platform mobile application frameworks to become appealing
to developers through their ongoing development. As only little research was conducted
in this area, many open questions exist: Will HTML5 become widely used when standards
for accessing device features are implemented? How much quantitative influence on
development/maintenance time and cost does the cross-platform approach have? Are
other types of frameworks more suited to port an application to another platform? For
instance, XMLVM provides translation of source code to a different target, and various
other concepts exist. Also, our evaluation criteria were mostly based on aspects important
for developers. Other viewpoints could be investigated as well. We could only test a small
set of available solutions, and more frameworks may become ready for production use.

References

[A+09] Rama Akkiraju et al. Toward the Development of Cross-Platform Business Applications
via Model-Driven Transformations. In SERVICES I, pages 585–592. IEEE Computer
Society, 2009.

16PhoneGap’s performance depends greatly on the HTML markup and related resources like CSS rules and
JavaScript code. A fast web application framework, if at all required, is recommended for use with PhoneGap.

375



[A+10] Sarah Allen et al. Pro Smartphone Cross-Platform Development: iPhone, BlackBerry,
Windows Mobile, and Android Development and Distribution. Apress, September 2010.

[Ado12] Adobe Systems Inc. PhoneGap. http://phonegap.com/, December 2012.

[App12] Appcelerator Inc. Appcelerator Titanium. https://www.appcelerator.com/
platform, December 2012.

[BD09] Bernd Brügge and Allen H. Dutoit. Object Oriented Software Engineering Using UML,
Patterns, and Java (Third Edition). Prentice Hall International, 2009.

[BH06] Judith Bishop and Nigel Horspool. Cross-Platform Development: Software that Lasts. In
Software Engineering Workshop, 30th Annual IEEE/NASA, pages 119–122, April 2006.

[Dan12] Jonathan Dann. Under the hood: Rebuilding Facebook for iOS.
https://www.facebook.com/notes/facebook-engineering/
under-the-hood-rebuilding-facebook-for-ios/
10151036091753920, August 2012.

[Du12] Frank Qixing Du. Under the Hood: Rebuilding Facebook for Android.
https://www.facebook.com/notes/facebook-engineering/
under-the-hood-rebuilding-facebook-for-android/
10151189598933920, December 2012.

[HHM12] Frederick Hirsch and Dominique Hazaël-Massieux. Device APIs Working Group.
http://www.w3.org/2009/dap/, December 2012.

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12,
1990.

[Int12] International Data Corporation (IDC). Android- and iOS-Powered Smartphones Expand
Their Share of the Market in the First Quarter, According to IDC. http://www.idc.
com/getdoc.jsp?containerId=prUS23503312, May 2012.

[jF12] The jQuery Foundation. jQuery Mobile. http://jquerymobile.com/, December
2012.

[MC08] Parastoo Mohagheghi and Reidar Conradi. An empirical investigation of software reuse
benefits in a large telecom product. ACM Trans. Softw. Eng. Methodol., 17(3), June 2008.

[Mot12] Motorola Solutions Inc. RhoMobile Suite. http://rhomobile.com, December
2012.

[Pas02] Alessandro Pasetti. Software frameworks and embedded control systems. Springer-
Verlag, Berlin, Heidelberg, March 2002.

[Sen12] Sencha Inc. Sencha Touch. https://www.sencha.com/products/touch,
December 2012.

[Syb11] Sybase Inc. Enterprise Mobility Guide 2011. http://www.sybase.de/
mobilityguide, 2011.

[Vis12] VisionMobile. Developer Economics 2012. http://www.visionmobile.com/
product/developer-economics-2012, June 2012.

[XML12] XMLVM. Overview: Android to iPhone. http://www.xmlvm.org/android,
December 2012.

376


