
Using Software Theater for the Demonstration of
Innovative Ubiquitous Applications

Han Xu
Technische Universität München

Boltzmannstr. 3, Garching, Germany
han.xu@tum.de

Stephan Krusche
Technische Universität München

Boltzmannstr. 3, Garching, Germany
krusche@in.tum.de

Bernd Bruegge
Technische Universität München

Boltzmannstr. 3, Garching, Germany
bruegge@in.tum.de

ABSTRACT
Software development has to cope with uncertainties and
changing requirements that constantly arise in the development
process. Agile methods address this challenge by adopting an
incremental development process and delivering working software
frequently. However, current validation techniques used in sprint
reviews are not sufficient for emerging applications based on
ubiquitous technologies. To fill this gap, we propose a new way of
demonstration called Software Theater. Based on ideas from
theater plays, it aims at presenting scenario-based demonstration
in a theatrical way to highlight new features, new user experience
and new technical architecture in an integrated performance. We
have used Software Theater in more than twenty projects and the
result is overall positive.

Categories and Subject Descriptors
D.2.1 [Requirements/Specification]: Elicitation methods D.2.2
[Design Tools and Techniques]: Evolutionary prototyping

General Terms
Design, Human Factors

Keywords
Informal models; Prototypes; Scenarios; Rapid iteration;
Demonstration; Design evaluation

1. INTRODUCTION
Requirements engineering is a creative process [1] that is filled
with uncertainties and changes. Dealing with uncertain and
changing requirements is particularly challenging in terms of
stakeholder communication and design validation [2]. Agile
methods address this challenge by adopting an incremental
development process and delivering product increments
frequently [3]. Prototyping is being used to evaluate design ideas
quickly. By focusing on only important aspects of the system and
ignoring irrelevant details, prototyping allows us to get feedback
from the stakeholders without having to fully implement the
system. As prototypes alone do not provide enough context of the
usage, scenarios can be used as a complement [4]. However, this

is still not sufficient when it comes to exploratory projects based
on emerging technologies (e.g. ubiquitous computing). These
projects are developing new products in the market and have to
deal with uncertainties coming from both the application domain
and the solution domain [5, p.41]. They require the exploration of
new features, new user experience and new technical architecture
as a combination, which we call integrated new design. In order to
provide an efficient and reliable evaluation of this integrated new
design with the stakeholders before entering the product
implementation process, we propose Software Theater, a new way
of demonstration. Software Theater borrows ideas from the
theater play, aiming to present scenario-based demonstration in a
theatrical way to highlight new features, new user experience and
new technologies as a whole. We have used Software Theater in
more than twenty projects ranging from wearable computing,
Internet of Things (IoT) to mobile applications and the result is
overall positive. Software Theater is reported as stimulating
insightful feedback and receiving more positive confirmation
about the design from stakeholders.

2. DEMONSTRATION AND EVALUATION
2.1 Demo Using Prototypes and Scenarios
One of the major activities of stakeholder involvement is the
evaluation of design. This is achieved by demonstrating the
functional and non-functional aspects of the current design to the
stakeholders and expecting feedback from them. The
demonstration can be conducted using prototypes of different
fidelity levels depending on which is appropriate in the given
situation. Ideally the design should be demonstrated and evaluated
when there is a change that may cause significant consequences.
Compared to fully implemented systems, prototypes allow us to
evaluate design ideas more quickly and at a lower cost. This is
achieved by defining appropriate focus and choosing the right
form of prototype for the given situation [6, p.115].

As prototypes alone do not provide enough context of the usage,
they are often used in combination with scenarios [4]. Scenarios,
as concrete description of the system usage, provide a bridge
between the usage world and the system world [7] and are helpful
in making sound design decisions by focusing on both the
problem space and the solution space [7][8]. Scenarios are
intuitive and suitable for communication and validation. As
Rolland et al. stated, “People react to ‘real things’ and ... this
helps in clarifying requirements.” [9] The story-like description
with context information makes it easier for stakeholders to
understand abstract concepts in the system design. Scenarios are
cost-efficient and enable quick iterations. In a changing
environment (as is nearly always the case in software
development), the design of the system often takes several
revisions to reach a “stable” state. Therefore, it could be costly if
an executable system were developed in every iteration. Instead,

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy

ACM. 978-1-4503-3675-8/15/08...

http://dx.doi.org/10.1145/2786805.2803207

894

scenarios are cheaper to create and modify; they provide an ideal
compromise between cost and efficiency, especially in the early
iterations of innovative projects. Apart from the economic factor,
scenarios are open-ended and stimulate the user’s imagination.
They enable the users to come up with more specific requirements
and help “the analysts to consider contingencies they might
otherwise overlook” [10]. There are different ways to use
prototypes with scenarios depending on who actually do the
demonstration. It can be either user-performed, where users are
provided with scenarios as description of task and are told how to
use the prototype to perform the task [11, p.459], or developer-
performed, where scenarios provide a context in which the
prototype is demonstrated how to achieve specific tasks [12]. As
Weidenhaupt et al. reported [4], combining the development of
scenarios and prototypes enable stakeholders to check, discuss
and update scenarios and prototypes at the ground level, and
provides better customer satisfaction.

2.2 Problems for Ubiquitous Applications
As little can be learned from the past, innovative applications
based on Internet-of-Things (IoT) and wearable computing
technologies are faced with more challenges in designing features,
user experience and system architecture. As Jarke et al. described:
“in these innovation-driven settings, requirements become part of
both the business solution and the system solution, and they
constantly bridge new solutions to organizational and societal
problems … revisiting requirements as implementation progresses
and emphasizes the dynamics and intertwining of these activities”
[13]. These applications are new in the market and often come
with new features, new user experience and new technical
architecture as a combination, which we call integrated new
design. In order to perform a cost-efficient but reliable
demonstration for these applications, we need to solve the
following problems:

• (P1) We need a prototype that can embody the integrated
new design (most likely a combination of new features, new
user experience and new technical architecture).

• (P2) We need a way to present this prototype in a specific
context to evaluate the applicability of the feature, the
usability of the user interface and the feasibility of the
architecture (e.g. the performance of the sensors and devices).

• (P3) Unlike desktop or ordinary mobile applications,
ubiquitous applications are supposed to react to or interact
with the environment. Thus the demonstration cannot work
out without the participation of the environment.

3. SOFTWARE THEATER
3.1 The Benefits of Theatrical Techniques
Combining prototypes and scenarios has been proved to be a
useful way to enhance design and user participation in the
demonstration session [4][12][14]. In a step further, theater plays
can be used as a way to present software design, which have the
benefits inherited from scenarios and role-playing [10][15][16],
and have been used in requirements elicitation and usability
studies [15][17]. The benefits of theatrical techniques can be
summarized as:

• Increase mutual understanding among stakeholders
• Stimulate imagination of team members
• Leave rooms for opened-ended improvisational performance
• Arose the empathy of the actors and the audience
• Highlight existing problems and benefits of the new design

3.2 What is Software Theater?
In response to P2 mentioned in Section 2.2, Software Theater is a
way to perform software demonstration in a theatrical way so that
stakeholders can evaluate the applicability of the feature, the
usability of the user interface and the feasibility of the technical
architecture. Traditionally, prototypes are presented in a non-
engaging way, generating only limited empathy with the
demonstrated system. However, presentations without a lifelike
context are too “dry” for the demonstration of innovative
applications based on Internet-of-Things (IoT) and wearable
computing technologies, because these applications are unseen in
the market before, it is hard for people to understand the purpose
and usage of the new application by just looking at the user
interface, etc. Software Theater, instead, creates a vivid
atmosphere, which, through the performance of the actors,
highlights how to use the new application to solve existing
problems and make everyday life easier. Software Theater can be
used with both partially-implemented prototypes and fully-
implemented systems depending on the stage the demonstration is
used, which will be discussed below.

3.3 Demo-Oriented Development Using
Tornado Model
In response to P1, when Software Theater is used with a prototype
in the middle of a project (Design Review in our case), we need
an executable demo system that “just fits”, representing the
integrated new design under evaluation (features, user experience,
and technical architecture) “no more no less”. The basic tenet is to
use higher fidelity prototypes for the relevant parts under
evaluation and lower fidelity prototypes for irrelevant parts. In
order to support creation of this demo system, we propose using
Tornado Model [18][19].

The Tornado model is a demo-oriented development process
aiming to deliver “touchpoints” (see Figure 1), a metaphor for
creating executable prototypes in order to evaluate design ideas
and obtain feedback from the stakeholder. The Tornado model
stresses the role of informal models in closing the gap between the
design model1 and the user model [18][20]. Informal models, as a
means for communicating with stakeholders, focus on the look-
and-feel and user interaction of the system. Examples of informal
models include sketches, paper prototyping, low-fidelity user
interfaces, storyboards, text-based scenarios and video-based

1 Note that the design model used here is a mental model of the

designer and should not be confused with the "design model" in
object-oriented design.

Figure 1. Tornado model: Wide in analysis, narrow in
implementation [18]

895

scenarios [22]. In this sense, Software Theater is yet another type
of informal model.

The Tornado model employs different kinds of evaluation
techniques at different stages of software development. Figure 1
shows a process that starts with visionary scenarios and funnels
down to demo scenarios. Visionary scenarios represent the design
ideas of the future system and are used for requirements
brainstorming. In practice, they often require several rounds of
iterations to reach a stable version. As the main task at this stage
is exploring the problem space, low-fidelity prototypes are
sufficient; visionary scenarios are created using textual
description. Demo scenarios are refinements of visionary
scenarios for reviews and presentations. They provide a
demonstration of how the problem is addressed when using the
system and can be played out in a demo. Demo scenarios are
based on a working (or partially working) system, and often take
advantage of mockups for cost-efficiency reasons.
The Tornado process is an evolutionary scenario-based design
process. The initial version of the design is depicted using low-
fidelity prototypes (for example, a sketchy user interface created
on paper, see Figure 2, left). Low-fidelity prototypes are used in
the early stages in an effort to get user feedback about the user
interaction design as early as possible. This enables the user to
explore possible design alternatives and reformulate the initial
requirements. In the middle of the project, as only promising
alternatives are left, interactive prototypes (for example, software
mockups created with Balsamiq as shown in Figure 2, middle) are
used for a more tangible and reliable evaluation of the
requirements, user experience and system design. At the end of
the project, the finally adopted design is implemented and
delivered (as shown in Figure 2, right). A tornado is wide in the
clouds, but only a part of it funnels down and hits the ground at its
touchpoint. The touchpoint is where an executable demo system is
created and presented. It is by this metaphor that we give it the
name Tornado Model.

3.4 The Workflow of Software Theater
Similar to performing a prototype based on predefined scenarios,
Software Theater is performed based on a screenplay. The
screenplay describes the event flow of the demo, the cast (that is,
the participating actors), and the props required for the demo. The
purpose of Software Theater is to demonstrate how end users
would benefits from the new product in the real world context.
We take the following workflow to create the demo, prepare the
screenplay and perform the demonstration (see Figure 3). The first
activity is that the team identifies visionary scenarios to be

demonstrated and then turn them into formalized scenarios (if not
yet exist). A formalized scenario describes the same content as the
visionary scenario, but in a structural way. “Formalization helps
to identify areas of ambiguity as well as inconsistencies and
omissions in a requirements specification” [5, p.174]. Next, the
team creates the screenplay by deriving the event flow as well as
the participating actors from the formalized scenario and
identifying the props and stage directions needed for the
performance. Then, they identify the subsystems and services that
are required to realize the demo. While services that require
technical evaluation (e.g. performance-critical or user experience-
significant features) should be added in the demo backlog as
action items for actual implementation, other services could be
mocked for both environment simulation (as a response to P3
mentioned in Section 2.2) and cost-efficiency reasons. The demo
backlog contains all the action items to realize the demo. When
the demo is delivered, it is presented by the actors according to
the screenplay. After the demonstration, feedback is collected and
incorporated to update visionary scenarios and the design.

4. CASE STUDY
We regularly conduct a capstone course called iOS Praktikum,
which takes up to 100 computer science students to develop
innovative applications for industry partners in separate teams.
Our multi-project organization, which was explained in detail in
[18], permits several software engineering projects to run in
parallel. These projects are often expected to create new features,
new user experience or to use new technologies (such as wearable
devices, smart home sensors etc.). In general, the main objective
of these pilot projects is to develop an executable prototype
proving the practicability of the application. Therefore, Software
Theater was adopted on the one hand to evaluate the feasibility of
the design and on another to communicate with the customers
with different technical background. Software Theater was used in
two major presentations: Design Review that takes place after two
thirds of the project, and Customer Acceptance Test as the final
presentation of the project [18]. On both occasions, the
participants should perform a live demonstration of their
applications using Software Theater. Recordings of these
presentations are available on the project website [23]. The result
of applying Software Theater technique in these projects is overall
positive according to our preliminary stakeholder survey. In the
following we share our findings regarding the technique:

• Software Theater strengthens the benefits inherited from
scenarios by presenting scenarios using real people according
to the screenplay in a lifelike scene – this puts the audience
personally “on the scene” and gives them more empathy with
the demonstration.

Figure 3. Software Theater activities
Figure 2. Evolution of the user interface, from rough
sketch (left) to the delivered application (right) ([21])

896

• Software Theater leads to insightful feedback on the new
feature and new user experience.

• The screenplay is very important and has significant impact
on the quality of the demonstration. When creating a
screenplay, the team should take advantage of the theatrical
nature of the demonstration and try to highlight the existing
problems (e.g. the pain points of the user) and the benefits of
the new application by using appropriate props and stage
montage (such as projectors and audio effects).

• When we demonstrated prototypes without Software Theater
in the past, customers seemed to hesitate to verify “I know
this is what I want”, even when it was actually the case; their
feedback was more about falsification: “I am sure this is not
what I want”. Software Theater seems to make customers
more comfortable to give positive verification about the
design. However, this requires further study in the future.

5. RELATED WORK
Mahaux and Maiden proposed using Improvisional Theater to
support team-based innovation in the requirements engineering
process [1][15]. The commonality of Improvisional Theater and
Software Theater is that they both employ the form of theater as
an effort to improve stakeholder communication and increase
mutual understanding. But they differ in several aspects. First, the
purpose of Improvisional Theater is to generate creative ideas in
the requirements engineering process, while the purpose of
Software Theater is to demonstrate and evaluate design ideas for
innovative software projects. Second, Improvisional Theater, as it
name suggests, takes advantage of unplanned improvisional
performance to stimulate the creativity of team members, while
Software Theater emphasizes a predefined screenplay to set a
framework for the demonstration. Third, Software Theater
presents not only the applicability of user requirements, but also
the feasibility of system requirements such as architecture design
and hardware performance. To support this, Software Theater
needs to be used in combination with specific software process
and prototyping techniques (Tornado Model in our case).

6. CONCLUSION AND FUTURE WORK
In this paper we introduced Software Theater, a new way of
demonstration for innovative applications based on emerging
technologies such as wearable computers and Internet-of-Things
(IoT). According to our experience of applying this technique in
more than twenty projects, it is useful in evaluating new features,
new user experience and new technical architecture (or integrated
new design) that come as a combination with innovative
ubiquitous applications. In future work, we plan to investigate
different variations of performing Software Theater (e.g. allowing
people outside the development team to be actors) and identify
more guidelines to direct practice. We also want to conduct a
more rigorous evaluation of this demonstration technique.

7. REFERENCES
[1] Mahaux, M. and Maiden, N.. 2008. Theater improvisers

know the requirements game. IEEE Software.

[2] Xu, H., Creighton, O., Boulila, N., and Bruegge, B. 2012.
From Pixels to Bytes: Evolutionary Scenario Based Design
with Video. In Proceedings of FSE 2012.

[3] Beck, K., Beedle, M., Van Bennekum, A., et al. 2001.
Manifesto for Agile Software Development. [Online]
Available: http://agilemanifesto.org/.

[4] Weidenhaupt, K., Pohl, K., Jarke, M., et al. 1998. Scenarios
in system development: current practice. IEEE Software.

[5] Bruegge, B. and Dutoit, A. H. 2010. Object-Oriented
Software Engineering: Using UML, Patterns, and Java
(Third Edition). Prentice Hall.

[6] Arnowitz, J., Arent, M., and Berger, N. 2010. Effective
Prototyping for Software Makers. Morgan Kaufmann.

[7] Jarke, M. and Pohl, K. 1993. Establishing Visions in Context:
Towards a Model of Requirements Rrocesses. In
Proceedings of ICIS 1993.

[8] Jarke, M., Klamma, R., Pohl, K., and Sikora, E. 2010.
Requirements Engineering in Complex Domains. In Graph
Transformations and Model-Driven Engineering. Springer.

[9] Rolland, C., Ben Achour, C., Cauvet, C., et al. 1998. A
Proposal for a Scenario Classification Framework.
Requirements Engineering.

[10] Carroll, J. M. 2000. Making Use: Scenario-Based Design of
Human-Computer Interactions. The MIT Press.

[11] Pohl, K. 2010. Requirements Engineering: Fundamentals,
Principles, and Techniques. Springer.

[12] Sutcliffe, A. 1997. A Technique Combination Approach to
Requirements Engineering. In Proceedings of RE1997.

[13] Jarke, M., Loucopoulos, P., et al. 2011. The Brave New
World of Design Requirements. Information Systems.

[14] Sutcliffe, A. G. and Sawyer, P. 2013. Requirements
Elicitation: Towards the Unknown Unknowns. In
Proceedings of RE2013.

[15] Mahaux, M., Heymans, P., and Maiden, N. 2010. Making it
all up: Getting in on the Act to Improvise Creative
Requirements. In Proceedings of RE2010.

[16] Grudin, J. 2006. Why Personas Work: The Psychological
Evidence. In The Persona Lifecycle: Keeping People in Mind
Throughout the Product Design. Morgan Kaufmann.

[17] Newell, A. F., Carmichael, A., Morgan, M., and Dickinson,
A. 2006. The use of theatre in requirements gathering and
usability studies. Interacting with Computers.

[18] Bruegge, B., Krusche, S., and Wagner, M. 2012. Teaching
Tornado: From Communication Models to Releases. In
Proceedings of the 8th edition of the Educators’ Symposium.

[19] Bruegge, B., Krusche, S., and Alperowitz, L. 2015. Software
Engineering Project Courses with Industrial Clients
ACM Transactions on Computing Education.

[20] Norman, D. 1996. Cognitive Engineering. In User Centered
System Design: New Perspectives on Human-Computer
Interaction. Lawrence Erlbaum Associates Publishers.

[21] Dzvonyar, D., Krusche, S., and Alperowitz, L. 2014. Real
Projects with Informal Models. In Proceedings of the 10th
Educators’ Symposium.

[22] Xu, H., Creighton, O., Boulila, N., and Bruegge, B. 2013.
User Model and System Model: the Yin and Yang in User-
Centered Software Development. In Onward! 2013.

[23] Krusche, S., Alperowitz, L. and Bruegge, B. iOS Praktikum,
Technical Universität München. 2014. [Online]. Available:
http://www1.in.tum.de/ios14.

897

