
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Migration of Artemis’
Architecture from Monolithic

to Microservices

Merlin Mehmed

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Migration of Artemis’ Architecture from
Monolithic to Microservices

Migration der Architektur von Artemis vom
Monolithen zu Microservices

Author: Merlin Mehmed

Supervisor: Prof. Dr.-Ing. Pramod Bhatotia

Advisors: M.Sc. Evgeny Volynsky

Prof. Dr. Stephan Krusche

Date: 15.12.2021

I confirm that this master’s thesis is my own work and I have documented
all sources and material used.

Munich, 15.12.2021 Merlin Mehmed

Acknowledgements

I would like to express my gratitude to everyone who has supported me
during this thesis.

First, I want to thank my advisors Evgeny Volynsky and Prof. Dr.
Stephan Krusche, for giving me the opportunity to write my thesis and al-
ways guiding me. This thesis was a challenge for me, but I had the chance
to gain knowledge in fields in which I had little experience. Thanks to my
advisors’ feedback, I also learned how to manage and organize my tasks more
efficiently and communicate more clearly. Both of them are people whom I
will always respect.

I would also like to thank the Artemis development team, who helped me
with many code reviews. We had a great time, and I wish them all great
success in their future endeavors. They were always so kind and willing to
help.

Last but not least I want to thank my family - my brother and my parents,
my boyfriend, and my friends. They always supported me and sent me
positive energy.

i

Abstract

Artemis is an open-source learning platform that uses a monolith ar-
chitecture for its server application. This architecture is beneficial at the
beginning of a project but causes problems in large projects. First, when
developers introduce code changes, they need to build the whole application
no matter how significant the difference is. This results in slow build and test
phases. Therefore, developers need to wait for them to complete until they
can deploy their changes, slowing down the development process as a whole.
Another drawback of this architecture is inefficient scaling. Artemis supports
horizontal scaling by running several Artemis instances to handle the higher
load during real-time quiz exercises or exams. The current implementation
does not allow scaling only part of the application, leading to inefficient use
of computational resources.

This thesis sets the foundations of the migration of the Artemis architec-
ture towards microservices. It helps speed up the development process and
support efficient building, testing and scaling. It discusses the new archi-
tecture and the roles of its new components. It also describes the services
extraction process from the Artemis monolith and updates to the deployment
pipeline.

During the thesis, we extract two microservices from the monolith. This
change allows scaling those services independently. The services have a small
size, therefore, the build and test processes run fast, leading to shorter waiting
times. It also has a positive effect on the availability of the system. Failure
in one service will not cause failure in other services. Additionally, we create
Kubernetes deployment resources for the new architecture to suit the future
deployment process. Deploying on a Kubernetes cluster makes scaling and
failure handling much easier as it provides autoscaling and containers self-
healing.

Zusammenfassung

Artemis ist eine Open-Source-Lernplattform, die eine monolithische Server-
Architektur hat. Diese ist in den Anfangsphasen eines Projekts von Vorteil,
verursacht jedoch bei größeren Projekten Probleme in späteren Phasen. Ent-
wickler müssen die ganze Anwendung erstellen, wenn sie Codeänderungen
vornehmen, egal wie groß die Änderung ist. Dies führt zu langsamen Erstellen-
und Testphasen. Daher müssen Entwickler jedes Mal warten, bis die Phasen
abgeschlossen sind, und erst dann können sie ihre Änderungen bereitstellen,
was den Entwicklungsprozess verlangsamt. Ein weiterer Nachteil dieser Archi-
tektur ist die eingeschränkte Skalierbarkeit. Artemis lässt sich horizontal ska-
lieren, indem mehrere Artemis-Instanzen ausgeführt werden, um die höhere
Auslastung bei Echtzeit-Quiz-Übungen oder Prüfungen zu bewältigen. Die
aktuelle Implementierung erlaubt es nicht, nur einen Teil der Anwendung zu
skalieren, was zu einer ineffizienten Nutzung von Rechenressourcen führt.

Diese Thesis legt die Grundlage für die Migrationsprozesse der monoli-
thischen Architektur hin zu Microservices. Die neue Anwendungsarchitektur
beschleunigt den Entwicklungsprozess und bietet effizientes Erstellen, Testen
und Skalieren. Die Arbeit stellt die neue Architektur und ihre neue Kom-
ponenten vor. Sie beschreibt auch den Service-Extraktionsprozess aus dem
Artemis-Monolithen und wie die Bereitstellungspipeline aktualisiert wird.

In der Thesis wird vorgelegt, wie zwei Microservices aus der Anwendung
extrahiert werden. Dadurch können diese zwei Elemente unabhängig skaliert
werden. Sie haben eine geringe Größe, und so laufen die Erstellen- und Test-
prozesse schnell, was zu kürzeren Wartezeiten führt. Das wirkt sich auch
positiv auf die Verfügbarkeit des Systems aus - in Ausfall von der einem
Service-Anwendung führt nicht zum Ausfall der Anderen. Zusätzlich werden
Kubernetes-Bereitstellungsressourcen für die neue Architektur erstellt. Die
Bereitstellung auf einem Kubernetes-Cluster vereinfacht die Skalierung und
die Fehlerbehandlung, da es Autoscaling und Container-Selbstheilung bietet.

Contents

1 Introduction 2

1.1 Problem . 2

1.2 Motivation . 4

1.3 Objectives . 4

1.3.1 Define a migration process 5

1.3.2 Identify microservices 5

1.3.3 Migrate two microservices 5

1.3.4 Deploy on Kubernetes 5

1.3.5 Implement a pattern related to microservices 6

1.4 Outline . 6

2 Background 7

2.1 Software Architectures . 7

2.1.1 Monolithic Architecture 7

2.1.2 Microservices Architecture 9

2.2 Microservices Patterns . 11

2.2.1 API Gateway . 11

2.2.2 Shared Database . 12

2.3 JHipster . 12

2.4 JHipster Registry . 12

2.5 ActiveMQ Artemis . 13

2.6 Docker . 14

2.7 Kubernetes . 14

3 Related Work 16

3.1 WETO and Plussa . 16

3.2 Netflix . 17

3.3 Zalando . 18

3.4 Conclusion . 18

ii

4 Requirements Analysis 19
4.1 Current System . 19
4.2 Proposed System . 21

4.2.1 Functional Requirements 22
4.2.2 Nonfunctional Requirements 23

4.3 System Models . 24
4.3.1 Scenarios . 24
4.3.2 Dynamic Model . 25

5 System Design 27
5.1 Overview . 27
5.2 Design Goals . 27
5.3 Subsystem Decomposition . 29

5.3.1 Service Registry . 29
5.3.2 API Gateway . 30
5.3.3 Message Broker . 31
5.3.4 User Management Microservice 33
5.3.5 Lecture Microservice 34
5.3.6 Artemis Application Server 35

5.4 Hardware Software Mapping 35
5.5 Persistent Data Management 36
5.6 Boundary Conditions . 37

5.6.1 Application Startup . 37
5.6.2 Application Shut Down 38
5.6.3 Failure Handling . 38

6 Migration to Microservices 40
6.1 Migration Strategy . 40
6.2 Decision on the Architecture 41

6.2.1 Artemis as a Gateway 41
6.2.2 Artemis Application in front of the API Gateway . . . 42
6.2.3 Artemis server as an independent application 44
6.2.4 Conclusion . 46

6.3 Decomposition into microservices 46
6.3.1 Creation of an API Gateway 46
6.3.2 Extraction of User Management Microservice 47
6.3.3 Extraction of the Lecture Microservice 50
6.3.4 Microservice Extraction Steps 51

6.4 Deployment . 57
6.4.1 Kubernetes Deployment 57
6.4.2 Virtual Machine Deployment 59

iii

6.5 Discussion . 61
6.5.1 Findings . 61
6.5.2 Limitations . 61

7 Summary 63
7.1 Status . 63

7.1.1 Realized Goals . 64
7.1.2 Open Goals . 66

7.2 Conclusion . 66
7.3 Future Work . 67

7.3.1 Continue with the Microservices Extraction 67
7.3.2 Production Kubernetes deployment 68
7.3.3 Migrate to micro frontends 69
7.3.4 Research the Availability of the Message Broker 70

iv

GUI Graphical User Interface

JSON JavaScript Object Notation

JWT JSON Web Token

REST Representational State Transfer

HTTP Hypertext Transfer Protocol

LMS Learning Management System

UML Unified Modeling Language

JMS Java Messaging Service

JDBC Java Database Connectivity

PR Pull Request

IP Internet Protocol

PVC Persistent Volume Claim

URL Uniform Resource Locator

1

Chapter 1

Introduction

Software architectures represent the structure and the behaviour of a system.
Therefore, they are essential for each software and the success of the system.

Artemis is an open-source web application for interactive learning. It
provides automated assessment tools which help to decrease the assessment
efforts of the tutors [KS18]. Multiple universities actively use Artemis for
their courses, some of which have more than 1000 participants1. The current
architecture of Artemis is monolithic. Therefore, a single large application
incorporates all functionalities. However, Artemis has grown and changed
over time, resulting in a need for a different architectural style.

This thesis sets the foundation for migrating the architecture of Artemis
from monolith to microservices. This change will solve problems that the
current architecture causes and will make further development easier.

1.1 Problem

The monolithic architecture deploys the code as a single process. There
might be multiple instances of this process deployed for scaling reasons, but
fundamentally all the code is packaged into a single process [New19].

This architectural style is excellent at the beginning of a project, but
it becomes problematic as it grows. We can improve several complications
caused by the current architecture.

Slow Build

The build of the Artemis application includes both the client and the server
applications as a single WAR file. Then we can deploy the WAR file on a

1https://github.com/ls1intum/ArTEMiS

2

https://github.com/ls1intum/ArTEMiS

1.1. PROBLEM

server. Therefore, when a developer makes a change and wants to test his
implementation on a test server, he needs to wait for the build to complete
until he can deploy his changes. Currently, the build of Artemis in a Bamboo
build agent continues for around 8 minutes. Therefore, developers need to
wait for the build to deploy their changes, which slows down the development
process. Suppose there is a bug that occurs only on test and production en-
vironments, and developers cannot reproduce the issue on their development
environments. In that case, they need to test their implementation on the
test servers. Therefore, they need to wait for 8 minutes for each change they
do until the build finishes to deploy and test their changes. Fixing this bug
will be highly inefficient and annoying for the developer.

Slow Server Tests Execution

An essential goal for Artemis developers is to keep the test coverage as high as
possible to find early regressions in the new feature implementation. As a re-
sult, there are numerous unit and integration server tests which the Bamboo
agents execute for more than 20 minutes. The Artemis developers develop
new features in draft pull requests in the GitHub repository2 of Artemis. Be-
fore labelling their PR as ”ready for review”, the developers need to ensure
that all the tests pass and there are no regressions in the implementation.
This leads to additional waiting, which also slows down the development
process.

Scaling

More than a thousand students, their tutors, and instructors use Artemis
during the semester period. The live quiz exercises and exam features sup-
ported by Artemis increase the load of the servers during such events.

In order to handle the load, the Artemis team has introduced support for
several Artemis instances. Almost all universities hold their courses online
since COVID-19 has been the reason to switch to online education. There-
fore, the load on Artemis has also increased because many instructors have
decided to use Artemis for their courses. According to statistics, Artemis
conducted around thirty exams at TUM in the last two semesters.

The live quiz and exam features receive more traffic than other features.
Different components of Artemis have different scaling requirements. Al-
though only several components are experiencing higher load, the whole
monolith needs to be scaled [DLL+18].

2https://github.com/ls1intum/ArTEMiS

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

The microservices architectural style solves the problems mentioned above.
It is an approach for developing a single application as a suite of small and
loosely coupled services, each of which runs in its own process and communi-
cates with lightweight mechanisms [PMA19]. Microservices are built around
business capabilities and are independently deployable by fully automated
deployment pipelines [PMA19]. Their size helps for their easier maintain-
ability and make them more fault-tolerant since if one of them fails, it will
not break the whole system, which could happen with a monolithic architec-
ture [PMA19]. Instead, the application will be still up and running, which
leads to a decrease in the application’s overall downtime. Therefore, this
style allows designing architectures that are flexible, modular and easy to
evolve [PMA19].

Compared to the monolithic architecture, the different services are sepa-
rate applications. Each of them is responsible for particular business logic.
Thus, developers are responsible for maintaining one or several services, and
there is no need to have context on the whole codebase anymore. Further-
more, the build and test phases are fast since the scope of the application is
small, and the build and tests executions are independent of unrelated fea-
tures. Moreover, we can scale services independently of other services. We
can scale only the services that many users will use simultaneously and not
the whole application.

1.3 Objectives

The main objective of this thesis is to define and start with the migration
process of Artemis from a monolithic architecture to microservices.

In order to achieve this, we will try to accomplish the following main
objectives:

1. Define a migration process

2. Identify microservices

3. Migrate two microservices

4. Deploy on Kubernetes

5. Implement a pattern related to the microservices architectural style

4

1.3. OBJECTIVES

1.3.1 Define a migration process

There are many ways to refactor an application to microservices. The first
objective is to research migration patterns and define the best migration
process in the case of Artemis.

1.3.2 Identify microservices

The current monolith architecture includes many different services in one
large application. In order to be able to migrate Artemis to microservices,
we need to identify small and loosely coupled services within the current
application, which we can later implement as separate microservices.

1.3.3 Migrate two microservices

The main objective is to migrate two of the microservices successfully. We
will do it by extracting them from the monolith. We will extract only two
microservices due to the complexity of the task and time reasons. Since we
also need to define the overall architecture, there will not be enough time to
extract more microservices.

The goal is to define the two microservices as standalone services that
work as a single system together with the monolith. We will also document
the results in order to help the migration of the rest of the microservices.

1.3.4 Deploy on Kubernetes

Once we finish migrating the services, we would like to deploy the new ar-
chitecture on Kubernetes.

Kubernetes is a portable, extensible, open-source platform for managing
containerized workloads and services that facilitate declarative configuration
and automation. It has a large, rapidly growing ecosystem. Thus, Kuber-
netes services, support, and tools are widely available.

Kubernetes provides service discovery and load balancing. It can load
balance and distribute the network traffic so that the deployment is sta-
ble. It also provides self-healing, which means it restarts containers that
fail, replaces containers, kills containers, and makes them unavailable to the
clients until they are ready to serve. What is more, it supports automatically
mounting of storage systems, such as local storage, public cloud providers,
and much more.3

3https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

5

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

CHAPTER 1. INTRODUCTION

1.3.5 Implement a pattern related to microservices

There are many patterns related to the microservices architectural style.
They are related to different fields - Data management, Transactions, Testing,
Deployment. We want to implement one of those patterns since they solve
the challenges that the microservices architecture introduces.

1.4 Outline

This thesis is structured as follows:
Chapter 2: Background describes concepts and technologies that are

important for the thesis. It introduces the difference between the monolith
and microservices architectural styles and design patterns and technologies
used in the thesis.

Chapter 3: Related Work describes how other projects have migrated
towards microservices and how their work can help us.

Chapter 4: Requirements Analysis discusses the current and the
proposed systems and the requirements of the new architecture.

Chapter 5: System Design introduces the new architecture, its com-
ponents and their responsibility.

Chapter 6: Migration to Microservices describes the whole migra-
tion process and the executed steps.

Chapter 7: Summary summarizes the work we did - the achieved and
the open goals, as well as a conclusion for the architecture migration and the
future work remaining on this topic.

6

Chapter 2

Background

This chapter introduces in detail essential for the thesis concepts and tech-
nologies. We first compare the Monolithic and the Microservices architec-
tural styles, including their benefits and drawbacks. After this, the chapter
introduces microservices patterns we implemented in the thesis. In the end,
we introduce details about different technologies that we used in the thesis
implementation.

2.1 Software Architectures

There are many definitions for software architecture. Some architects refer
to software architecture as the system’s blueprint, while others define it as
the roadmap for developing a system [RF20]. Architecture decisions define
the rules for how to construct a system [RF20]. As said before, the need
for a change in the already defined and implemented software architecture
may occur after the application has gradually evolved from its initial state.
Architecture matters because of how it affects the so-called quality of service
requirements, also called nonfunctional requirements and quality attributes
[Ric19]. There are many different architectural styles, but two are the ones
that are important for us, which we describe in the following subsections.

2.1.1 Monolithic Architecture

Software application with a monolith architecture works as a single, self-
contained unit [Ing18]. However, those application types are widely spread.
They include interconnected and interdependent components, which results
in tightly coupled code [Ing18].

7

CHAPTER 2. BACKGROUND

We base the following benefits and drawbacks sections on the ideas and
the examples in the Microservices Patterns book by Chris Richardson [Ric19].

Benefits

There are many benefits in the early days of a monolithic application when
the application is relatively small. Some of them include the following:

• Simple to develop

Developers are focused on building a single application. There is a
single code repository, and there is no need to navigate across different
projects. It is clear for the developers where to add the new code and
how to test it.

• Straightforward to test

It is relatively easy to develop integration tests that invoke the REST
API and check the returned result.

• Straightforward to deploy

A single deployment artifact includes the application, which is easy to
deploy in the production environment.

All of those characteristics eventually become a drawback over the time
when the application grows.

Drawbacks

• Complex and slow to develop

As the application becomes larger, so does the codebase, which makes
it hard for new developers to understand. In the end, there will be
only a few developers who understand the whole application, which
has several unfavourable effects, among which are resolving bugs and
proper implementation of new features.

• Harder to test

The testing of the application becomes more challenging when there is
a dependency between different features that wrongly depend on each
other. In those cases, testers define test data for objects related to
features unrelated to the one they want to test. Also, if developers
upgrade essential for the project dependencies, testers might have to
retest the whole application, taking them lots of time.

8

2.1. SOFTWARE ARCHITECTURES

• Longer to develop and deploy

The development and deployment is also affected since the build process
takes longer in a complex application. The usual style checks and
running tests also take longer, which slows down the development and
deployment processes.

• Difficult to scale

It is not possible to scale part of the application, which can lead to using
too many resources rather than scaling only the part which receives
more traffic.

2.1.2 Microservices Architecture

Microservices architecture is an architectural style that has gained signifi-
cant importance in recent years. It builds small, autonomous, independently
versioned, self-contained services [Ing18]. These services use well-defined
interfaces and communicate with each other over standard, lightweight pro-
tocols [Ing18].

We base the following benefits and drawbacks sections on the ideas and
the examples in the Microservices Patterns book by Chris Richardson [Ric19].

Benefits

• Services are small and easy to maintain

Each service is relatively small, which increases the performance of the
developer. The codebase is small. Therefore, it is easier to find bugs.
Also, the application starts faster than the one of a massive monolith.
All those factors speed up the development time and the performance
of the developer.

• Services are independently deployable

If one service changes, we can publish the changes by deploying only
this service and eventually the other services affected by the change.
Ideally, the changes will spread over a single service, but it is also a
typical case that they involve several services.

• Independently scalable services

We can scale only services that require it when the need for scaling is
recognised. In the case of horizontal scaling, the number of instances
for different services may vary depending on the needs.

9

CHAPTER 2. BACKGROUND

• Allows easy adoption of new technologies

It is possible to implement services using different technologies. If the
team wants to introduce new technology, they can migrate an existing
service or create a new one using it without the need to change the
whole application. This way, they can evaluate that technology with a
lower risk. It also helps when requirements are to implement specific
features using a particular programming language.

• Allows autonomous teams

The whole development team can split into smaller teams, each re-
sponsible for specific service(s). Each team will have expertise in their
microservice(s), which will also increase the performance of the de-
velopers. If teams are separated, the different teams should continue
working together closely, being aware of critical changes.

Drawbacks

• It is challenging to find the right set of services

There is still no concrete algorithm for decomposing a system into
microservices. Therefore, it is challenging to find the right services
of the correct size. Poorly designed boundaries can lead to increased
network communication [JPM+18]. A wrongly decomposed system will
lead to the distributed monolith with highly coupled services. As a
result, that system will have the drawbacks of both the monolith and
the microservices architecture.

• The system is more complex

Distributed systems add additional complexity for the developers. They
need to be aware of the different services and their responsibility. Com-
munication between services, also known as inter-service communica-
tion, is more complex and requires additional implementation. Testing
such communication is also more complex than testing a typical method
call.

• Deploying features that span multiple services require additional coor-
dination

Some changes will spread over more than one service, which will re-
quire additional coordination in the development and deployment. In
addition, we need to deploy all affected services according to their de-
pendencies, which requires a thoughtful deployment plan.

10

2.2. MICROSERVICES PATTERNS

2.2 Microservices Patterns

Patterns are known as solutions to commonly occurring problems. The fol-
lowing two sections discuss two important patterns for the microservices ar-
chitecture.

2.2.1 API Gateway

The API Gateway pattern is one of the most common patterns used in a
microservices architecture. It is a component used by all clients to interact
with the server. For this reason, it has to be highly available and scalable.
The API gateway is the entry point for the server application and is like
the Facade pattern. Similar to it, it encapsulates the application’s internal
architecture and handles all client requests [Ric19]. In addition, it has several
essential functions, which we discuss below.

Request Routing

The API gateway’s most important function is request routing. Every request
is routed to the corresponding server application using a routing map. For
example, the routing map may map the HTTP request type, and path to the
HTTP URL [Ric19].

API Composition

Another important function is API composition. In some cases, an operation
may require access to several microservices. Using API composition, the
client makes a single request to the API gateway, creating several requests
to the required microservices. After responses are delivered, the result is
composed in a single response returned to the client.

Benefits

• The gateway encapsulates the internal structure of the server applica-
tion, and the client send requests to a single entry point.

• Enhances the security of the overall architecture because it screens all
incoming requests for security [SD20].

Drawbacks

• It has to be highly available and scalable.

11

CHAPTER 2. BACKGROUND

• There is a risk that it becomes the bottleneck of the architecture.

The API gateway is part of the new Artemis architecture. It will be the
entry point for the server part of the application.

2.2.2 Shared Database

Another important pattern for the thesis is the Shared Database pattern.
Artemis is a large application that is important for its users. Migrating to
microservices is a vast and risky task. In order to reduce the risk, we decided
to use shared by the services database. Usually, microservices architecture
suggests that each service has its database. In some cases, though, multiple
services share the same database. This design pattern is suitable for a smaller
amount of services from two to four when they share similar database tables
[Sri21].

This pattern comes in great use during migration to microservices. It
is hard for some monolithic applications to split the database during the
migration process directly. Therefore, they initially use a shared database
and split it in a later phase [Sri21].

Although a shared database is easy to implement since it is easy to inte-
grate with the extracted services, it is a reason for higher coupling between
them.

2.3 JHipster

JHipster is a free and open-source development platform that we can use
to quickly generate, develop, and deploy web applications1. It also sup-
ports microservices architectures enabling the generation of a gateway and
microservice projects. Artemis is developed using JHipster, and we would
like to continue using it with the microservice architecture. JHipster, which
comes from Java Hipster, saves a significant amount of time providing the
project configurations by its generator. It takes only a couple of minutes to
create an end to end application using it.

2.4 JHipster Registry

The service registry is an essential aspect of a microservices architecture.
JHipster provides its open-source implementation for a service registry, called

1https://www.jhipster.tech/

12

https://www.jhipster.tech/

2.5. ACTIVEMQ ARTEMIS

JHipster Registry. It is a Java application consisting of a Netflix Eureka and
a Spring Cloud Config Server [SK20].

Netflix Eureka is a client-server application. It locates services and keeps
track of their count and status. Each service registers itself to the Eureka
server on application startup and sends its heartbeat [SK20]. Once the service
stops sending its heartbeat, the registry removes it from its database.

The Spring Cloud Config Server provides run-time configuration to all
services. Services are dynamic in a microservice architecture. Depending
on the traffic or other configurations, they will be started and then stopped
[SK20]. For this reason, there is a need for a highly available server that
holds configurations that services need to share [SK20]. The Spring Cloud
Config Server provides configuration values to all services. For example, this
includes the JWT secret value used to create the user tokens, which is very
important for the authentication between the applications.

The JHipster Registry also serves administration purposes by providing
administration dashboards to monitor and manage the registered applica-
tions, including the gateway and the services2.

2.5 ActiveMQ Artemis

Microservices architecture always requires communication between the appli-
cation. It can be both synchronous or asynchronous. Synchronous messaging
is easy to understand since it uses HTTP thread blocking request-response
calls. According to the ActiveMQ Artemis landing page3, this type of com-
munication provides good latency in low throughput use-cases but may cause
problems with scaling. Artemis supports large courses, including more than
thousand students. All of them should be able to use it during lectures with
no performance issues. Here comes the use of asynchronous communication.
One microservice can request another without waiting for its response. The
request will be placed in a message broker and consumed by the application.
The good news here is that if the consumer is down for some reason, the mes-
sage will not be lost and consumed once the application is up again. Artemis
is already using ActiveMQ Artemis as a message broker. It is an open-source
project under the Apache License. It supports asynchronous messaging with
high performance. The ActiveMQ Artemis documentation states that its
potential throughput is millions of messages per second and that it has the
performance and feature-set to bring these gains to the applications.

2https://www.jhipster.tech/jhipster-registry/
3https://activemq.apache.org/components/artemis/

13

https://www.jhipster.tech/jhipster-registry/
https://activemq.apache.org/components/artemis/

CHAPTER 2. BACKGROUND

2.6 Docker

The current section about Docker refers to the official Docker documenta-
tion4.

Docker is an open platform for developing, shipping, and running appli-
cations. It enables the separation of applications from their infrastructure
to achieve quick software delivery. Docker helps to significantly reduce the
delay between writing code and running it in production.

Docker runs an application in a loosely isolated environment called a
container. This isolation and security make it possible to run many containers
simultaneously on a given host. In addition, the container itself is lightweight
and contains everything needed to run the application, and does not depend
on installed technologies on the host.

Docker supports responsive deployment and scaling. The containers can
run on a developer’s machine, on physical or virtual machines in a data
center, and on cloud providers. In addition, the lightweight and portability
of the containers make it possible to quickly manage workloads scaling up or
down applications in real-time.

Moreover, Docker enables the running of several workloads on the same
hardware, which is possible due to the lightweight and isolation of the con-
tainers. This will reduce the cost and make it possible to save resources.

Docker simplifies running and deploying microservices. Docker images
package each service, which allows deployment on a Kubernetes cluster.

2.7 Kubernetes

The current section refers to the official Kubernetes documentation 5.
Kubernetes is an open-source platform for orchestration containerized

workloads and services. It helps to automate deployments, scale, and manage
the applications. It takes care of the scaling and the failure handling of the
application. If a container goes down, it can start automatically another
one. It also provides many different features, one of which is load balancing.
If the traffic to a container is high, it can distribute the traffic to keep the
deployment stable.

In order to deploy, we need a Kubernetes cluster. A cluster consists of
a collection of hosts, also called nodes, that run containerized applications.
There is at least one node in a cluster. The nodes run pods which are
the smallest units of work in Kubernetes [Say17]. Each pod contains one

4https://docs.docker.com/get-started/overview/
5https://kubernetes.io/docs/home/

14

https://docs.docker.com/get-started/overview/
https://kubernetes.io/docs/home/

2.7. KUBERNETES

or more containers [Say17]. Pods share the same IP address, port space,
and local storage. They can communicate using localhost or inter-process
communication [Say17].

Kubernetes goes hand in hand together with microservices deployment.
It is because Kubernetes enables the high availability of the application.
Its self-healing property by automatically restarting failed containers and
automatic scaling features help for the high availability that Kubernetes offer
[AVSTK18].

On the other side, it takes time to set up and configure a cluster. Since
Kubernetes provides such an extensive feature set, it has a steep learning
curve. Therefore, it is complex to learn and fully understand its capabilities.

15

Chapter 3

Related Work

There is a large amount of research on microservices. For this chapter, we
focused on projects which have migrated to microservices. Unfortunately,
there is not enough information about the migration of learning management
systems. The first section describes the migration research of a university
learning management system from Tampere University in Finland. It is not
clear whether they have implemented the migration, but we have mentioned
it in the related work because of the services decomposition they propose.
The other examples are not related to learning management systems but are
projects that have successfully implemented the migration to microservices.

3.1 WETO and Plussa

WETO, an acronym for Web Teaching Organizer, is a learning management
system (LMS) developed by Tampere University in Finland. As per [NH19]
which is a paper related to the migration of WETO towards a microservices
architecture, its core functionalities are:

• Basic content management - creating and editing course pages, where
images and files may be uploaded or linked.

• Student submission management: managing students’ homework or
exam submissions.

• Grade management: managing grading criteria or rules and student
grades.

• Automated grading: automatic grading of the student submissions us-
ing a built-in implementation for multi-choice questions and external
grader for programming tasks.

16

3.2. NETFLIX

• Peer-reviewing: anonymous peer-reviewing of submissions

• Basic discussion forum: discussion feature where teachers and students
can communicate issues or questions.

Plussa is another LMS responsible for authentication, grades storage, and
student code evaluation.

In the paper from P.Niemelä et al. [NH19] migration of learning man-
agement systems from monolith to microservices is reviewed, taking WETO
and Plussa as starting points. They identify the following core microservices:
authentication, user management, course information, grading and reports,
and analytic services [NH19].

Finally, they conclude that there are many benefits from the microservices
architecture. However, it includes many obstacles in the realization path,
which requires much work, good will and co-operation [NH19].

3.2 Netflix

We have all heard or used the services Netflix provides. Statistics from Octo-
ber 2021 state that Netflix has more than 210 million subscribers1. It is clear
that this amount of users generate huge traffic per day which require smart
solutions. Netflix is known as one of the pioneers in microservices. The Net-
flix team has started to move their Monolithic architecture to Microservices
Architecture in 2009. Back then, Netflix was only DVD rental company.
When operating on a monolithic architecture, they have had constant server
outages. [SGP19]

Currently, Netflix has more than 1000 microservices, each of which man-
ages a separate part of the application2. The entire migration has happened
for around 2-3 years. Netflix moved their architecture to microservices and
managed to open source many of the tools they have built and used for their
new architecture, which we all take advantage of. This is why we cannot go
without mentioning the work the team behind Netflix has done. They took
the risk to migrate their architecture to microservices which was considered
a crazy move but turned out to be a game-changer2.

1https://www.statista.com/statistics/250934/quarterly-number-of-netflix\

-streaming-subscribers-worldwide/
2https://www.geeksforgeeks.org/the-story-of-netflix-and-microservices/

17

https://www.statista.com/statistics/250934/quarterly-number-of-netflix\-streaming-subscribers-worldwide/
https://www.statista.com/statistics/250934/quarterly-number-of-netflix\-streaming-subscribers-worldwide/
https://www.geeksforgeeks.org/the-story-of-netflix-and-microservices/

CHAPTER 3. RELATED WORK

3.3 Zalando

Zalando is a fashion store company that sells fashion products in several
countries. They started as a shoe selling company and grew quickly, reach-
ing a point when the system could not handle the load. They also faced
developers’ productivity issues since many people worked on the same large
codebase. Another issue they faced was with new people coming to the team.
They have had difficulty getting confident with the code because it has been
too big.3

They have solved those issues by migrating towards microservices. How-
ever, they have faced several challenges during the process. The main chal-
lenge is a change in the team mindset both on the engineering and leadership
side. Developers need to build resilient systems, especially in a microservices
architecture. They need to make sure that they do not break dependant
services and what should happen when the dependant service s not avail-
able. They solved the challenge by giving end-to-end responsibility to the
developers - developing, testing, and operating what they have built.

3.4 Conclusion

Many projects have adopted microservices. Therefore, there are many ex-
amples of projects that have migrated their architecture, and it does not
make sense to mention more. However, there is not enough information on
migrating learning management systems which will be the contribution of
this thesis.

3From Monolith to Microservices at Zalando, https://www.youtube.com/watch?v=

gEeHZwjwehs

18

https://www.youtube.com/watch?v=gEeHZwjwehs
https://www.youtube.com/watch?v=gEeHZwjwehs

Chapter 4

Requirements Analysis

This chapter follows the structure of the Requirements Analysis Document
Template in [BD10]. It analyzes the current system and discusses the require-
ments that need to be fulfilled by the new Artemis architecture described as
the proposed system.

Section 4.1 describes the current state of the system and its architecture,
while Section 4.2 proposes a new system architecture and presents its re-
quirements. Finally, Section 4.3 describes scenarios and dynamic models to
clarify the requirements using modeling techniques presented in [BD10].

4.1 Current System

The current Artemis server application is a monolith application. The server
architecture uses the three-tier architectural style, as shown in Figure 4.1.
As of the Object-Oriented Software Engineering Using UML, Patterns, and
Java book by Bernd Bruegge and Allen Dutoit, the three-tier architectural
style organizes the subsystems into three layers - interface, application, and
storage. The interface layer, in our case, the web layer, includes all boundary
objects that deal with the user, which is the client application. The applica-
tion logic layer includes all control and entity objects, realizing the processing
required by the application. Furthermore, the storage or data layer realizes
the storage, retrieval, and query of persistent objects [BD10].

19

CHAPTER 4. REQUIREMENTS ANALYSIS

Figure 4.1: Simplified UML component diagram showing the current server ar-
chitecture of Artemis. The figure is adapted from the component
diagram in the GitHub Artemis documentation1

Currently, we build the Artemis client and server in one WAR file. Bam-
boo is responsible for building the application. Once the build finishes, we
can deploy it on one of the test, staging, or production servers. We deploy
the Artemis application as a single process. This means that we have to
redeploy the whole application when we want to redeploy it. Furthermore,
we have to scale the whole application when we want to scale. Therefore,
independent deployment and scaling are not possible.

1https://github.com/ls1intum/ArTEMiS

20

https://github.com/ls1intum/ArTEMiS

4.2. PROPOSED SYSTEM

4.2 Proposed System

Figure 4.2 illustrates the proposed architecture. It decomposes the current
server application and extracts two microservices from it. The first of them
is the User Management microservice which is responsible for operations
on users - creating, updating, deleting, and searching them. The second
microservice is the Lecture service which is responsible for managing lectures
and their content.

The reason behind choosing those two microservices is that they are not
so deeply integrated into the Artemis application. Therefore, they must be
easy to extract because they do not have high coupling with other features.
Furthermore, we think that it is beneficial to start with the extraction of
loosely coupled services because this will reduce the complexity of a task that
is already complex enough. Since we set the foundation of the microservices
architecture, we have to extract two microservices and also add additional
components to the new architecture. Moreover, we will learn about microser-
vices extraction, which will later help us use the experience we have gained
to extract more complex microservices.

The new architecture also includes three additional components required
by the microservice architecture. The first of them is the gateway which
serves as a single entry point to the microservices. Another component is the
service registry which registers all service instances and the gateway. The
latter uses the registry for retrieving the location of the services. Finally, we
have the message broker, which we use for inter-service communication be-
tween different services to exchange data. The microservices and the Artemis
server application share the same database.

21

CHAPTER 4. REQUIREMENTS ANALYSIS

Figure 4.2: UML component diagram showing the proposed server architecture
of Artemis. The Artemis client communicates with the gateway
which routes the request to the Artemis server, the User Manage-
ment microservice or the Lecture microservice. The Artemis server
and the two microservices communicate with each other through the
message broker using JMS and depend on the database. The gate-
way, the Artemis server application and the two microservices reg-
ister themselves in the service registry which keeps track of their
instances

4.2.1 Functional Requirements

This thesis is not related to implementing new features for the users in
Artemis. Instead, it moves the Artemis architecture from monolithic to mi-
croservices. For this reason, there are not many functional requirements.

FR1 Retain existing features: The migration should be transparent to
the user. Therefore, the existing features should not be changed, and
the user should use them in the same way he has done it before.

22

4.2. PROPOSED SYSTEM

FR2 Show a message about problems in microservices: Users should
receive a message to either wait or try again later if the microservice
he requests is unavailable or the communication between services takes
more time than the specified timeout or fails.

4.2.2 Nonfunctional Requirements

The nonfunctional requirements are categorized using the FURPS+ model
described in [BD10]. We omit the functionality category as it is not part of
this section.

Reliability

NFR1 Reliability: The system should not crash if one of the microservices
is unavailable.

NFR2 Fault Tolerance: The message broker should persist the asynchronous
communication between the microservices if the consumer is not avail-
able. Therefore, no communication will be lost.

NFR3 Security (JWT): Each microservice should use the same JWT secret
to authorize the user access.

NFR4 Security (Unauthenticated Access): Unauthenticated users should not
have access to application-specific data.

NFR5 Security (Inter-service Communication): Inter-service communication
should be possible only to authenticated microservices. Unauthenti-
cated ones should not be able to send messages using the message
broker.

Performance

NFR6 Current Performance: The new architecture should not decrease the
current performance.

NFR7 Caching Mechanism: The Artemis server and the microservices
should use the distributed cache that is already defined for the cur-
rent Artemis architecture.

23

CHAPTER 4. REQUIREMENTS ANALYSIS

Supportability

NFR8 Extensibility: The context of each microservice should be clear to
make it easy to add new features.

NFR9 Maintainability (Microservice’s Size): The microservice should be
small applications where it is easy to find bugs and fix them.

NFR10 Maintainability (Deployment): Each microservice should have an au-
tomated deployment pipeline.

NFR11 Scalability: The microservices should be able to scale both vertically
and horizontally.

Implementation requirements

NFR12 JHipster: We should use JHipster to generate the gateway and the
microservices.

Operations requirements

NFR13 Docker Compose files: We should create Docker Compose file for
each new component.

NFR14 Kubernetes resource files: We should create a Kubernetes deploy-
ment resource file for each component in the architecture.

Packaging requirements

NFR15 WAR packaging: We should use WAR packaging for the new com-
ponents.

4.3 System Models

4.3.1 Scenarios

The following scenarios show how Artemis should work after the migration.
They do not propose new functionality but show that the existing function-
ality should remain unchanged for the user.

24

4.3. SYSTEM MODELS

User Management

An admin user can create, update or delete users. Artemis supports internal
and external user management depending on the application configuration.
Currently, the implementation of those features are the Artemis Server Ap-
plication.

After extracting the User Management service from Artemis, the gateway
will forward those requests to the User Management service, which will han-
dle them according to internal or external user management configurations.
However, several cases exist when the extracted service needs to communi-
cate with the Artemis Server Application. This communication will happen
through an additional communication mechanism implemented by a message
broker.

Lectures

Students can access lecture resources. Each lecture may have several units
of a different type - text, exercise, video, or file. The lectures also support
the uploading of attachments. Like the first scenario, the Artemis Server
Application handles management and access to the lecture resources.

After the migration, the Lecture service will handle those actions. Again,
communication between the Lecture service and the Artemis Server Appli-
cation will happen using messaging through a message broker or HTTP re-
quests.

4.3.2 Dynamic Model

The following diagrams show simplified example communication between the
user and the system.

Figure 4.3 shows the communication procedure when a student registers
himself in the system. He does that using the user interface provided by the
client application, which sends the request to the API Gateway. The API
Gateway decides which service to route the request to. In the case of account
registration, the gateway sends the request to the User Management Service.
If the service successfully creates the user, the system has to send an account
activation email. This functionality is in the Artemis Server Application. For
this reason, the User Management service sends a message to the Artemis
Application, which sends the actual email to the user.

25

CHAPTER 4. REQUIREMENTS ANALYSIS

Figure 4.3: UML communication diagram depicting the communication between
instances in user account registration process. A student registers
himself an account in the system which sends a request to the API
gateway, then the API gateway redirects the request to the User
Management microservice. The microservice creates the account and
sends a message through the message broker to the Artemis server
application to send an account activation email.

Figure 4.4 describes the communication when a student wants to access
the details for a lecture. Again, he uses the Artemis Client, which requests the
API gateway. Depending on the defined rules, the API gateway decides where
to redirect the request. Since it is a lecture-related request, the gateway sends
it to the Lecture service.

Figure 4.4: UML communication diagram depicting the communication between
instances in retrieving lecture details. A student open a lecture in the
Artemis client application which sends a request to get the lecture
details from the API gateway, which then redirects the request to
the Lecture microservice.

26

Chapter 5

System Design

The current chapter follows the structure of the System Design Document
Template in [BD10]. It describes the proposed architecture in detail, pre-
senting the design goals, the separate subsystems, their purposes, and other
technical details.

5.1 Overview

Artemis should support several new components added by the proposed ar-
chitecture and the updated existing components. The new components are
the API gateway, the User Management service, and the Lecture service.
One of the updated components is the message broker. Currently, Artemis
uses it for WebSocket communication. The new architecture adds further
broker use related to communication between the services. In addition, we
also extend the use of the Service Discovery component. At the moment,
we use it when we deploy multiple Artemis instances. Later, it will also be
used in the development and test environment since it is essential for the new
architecture.

5.2 Design Goals

Reliability

First of all, Artemis should be reliable. The system should still be available
if one of the services is down. Failure in one service should not lead to failure
in other services. This goal is derived from NFR1 and has a high priority
because if the students and the instructors cannot rely on the system, they
would not want to use it. Additionally, we can increase the availability by

27

CHAPTER 5. SYSTEM DESIGN

deploying multiple instances of the extracted microservices. Artemis already
supports that, therefore, it should not be a problem for the User Management
and Lecture service.

Fault Tolerance

Another important design goal is related to fault tolerance. In some cases,
two services need to communicate with each other. An example would be
when a user registers a new account in the User Management microservice.
The system should send an account activation email to the user on success-
ful registration. The Artemis application handles this action. Therefore, the
User Management microservice has to send a message to the Artemis ap-
plication to notify it to send an email. Suppose the Artemis application is
unavailable at that moment. The message broker should persist the commu-
nication so that the Artemis instance can send the email when the instance
is back. It also has significant importance because we do not want to lose
communication or data. We derive this design goal from NFR2. The mes-
sage broker handles it. If a service that needs to consume a message is not
available, the message is persisted in the queue until it is delivered. If there
is a problem during the message consumption, the message remains in the
queue. There is a limit to the delivery times of each message. If the broker
reaches the limit, it moves the message to a dead letter address queue where
the message stays, but it is not the broker’s responsibility to deliver it to the
consumer.

Security

Further design goal is that the system should be secured. The addition of
more components to the architecture requires additional security rules. Com-
munication with other components should not be allowed for unauthorized
entities or components. We derive this design goal from NFR3, NFR4,
NFR5. It also has a high priority because we should grant access only to
authorized users. Currently, we handle security through JWT tokens which
remains the same in the new architecture. The system will authorize access
to each microservice by checking the JWT. The critical part here is to verify
the JWT by using the same secret. Here comes the Service Discovery, which
has the responsibility to share the secret that the system will use to create
and verify the JWTs. Therefore, the services can verify the tokens using
that secret. The message broker will handle the security of the inter-service
communication. Only authorized entities can connect, write and read from
it.

28

5.3. SUBSYSTEM DECOMPOSITION

Maintainability

Maintainability is a design goal derived from NFR9. It can help to easily
maintain the new components in the changed architecture of Artemis. In
addition, the size of the services should be relatively small makes finding and
fixing bugs easier. Thus, the developers’ performance will increase, and they
can maintain the system faster and easier.

5.3 Subsystem Decomposition

5.3.1 Service Registry

The primary role of the Service Registry is to behave like a database for
service instances to which every service and the gateway registers on appli-
cation start. Then the gateway uses the registry to get this data and know
the location of the services that it will redirect requests.

Another role of the Service Registry is to provide all registered applica-
tions with the same run-time configurations. For example, it provides the
JWT secret the system uses to validate and generate the access tokens to all
instances.

Last but not least, the registry provides an administration dashboard for
all service instances, giving access to application metrics, logs, and health
checks.

Figure 5.1 presents the communication between the services, the gateway,
and the service registry using a UML Communication Diagram. Each service,
as well as the gateway, registers in the service registry shortly after their start-
up. First, the gateway fetches data from the registry about the registered
service instances and their locations. Then it uses this data for request
routing and load balancing.

29

CHAPTER 5. SYSTEM DESIGN

Figure 5.1: UML communication diagram illustrating the communication be-
tween the service registry and the gateway, the Artemis server ap-
plication, the User Management microservice and the Lecture mi-
croservice. All components register their instances in the registry.
The gateway fetches the registered instances including details about
their location.

5.3.2 API Gateway

The gateway component implements the ”API Gateway” design pattern and
acts as a single entry point to the server application. Its primary responsi-
bility is to do request routing for the incoming requests from the client. We
define the routing map in yml format in the application.yml file of the gate-
way application. The route definition is shown below in Listing 5.1. There
are several definitions with the same structure: id defines the identifier of
the application to which the gateway will route the request, the uri defines
the link to the application. lb://serviceId means that the system will obtain
the path to the service from the service registry. Finally, the path predi-
cate defines the paths which the component supports. If there is a need to
handle concrete request type, it is possible to define it by using the method
predicate. We can add several definitions with the same id if that is needed.

There is also a separated definition for WebSocket routes because the
request protocol is different. The definition itself is similar to the other ones
with a difference in the uri. It is in the form of lb:ws://serviceId which means
that the service path will come from the service registry, but this time it uses
the WebSocket protocol.

Listing 5.1: Gateway routes definition example

1 route s :
2 − id : gateway
3 u r i : lb : // gateway

30

5.3. SUBSYSTEM DECOMPOSITION

4 p r e d i c a t e s :
5 − Path=/api /gateway /∗∗
6 − id : usermanagement
7 u r i : lb : // usermanagement
8 p r e d i c a t e s :
9 − Path=/api / users , / api / u s e r s /∗∗ ,

10 / api / account , / api / account /∗∗ ,
11 / api / guided−tour−s e t t i n g s /∗∗
12 − id : usermanagement
13 u r i : lb : // usermanagement
14 p r e d i c a t e s :
15 − Path=/api / authent i ca t e
16 − Method=GET
17 − id : l e c t u r e
18 u r i : lb : // l e c t u r e
19 p r e d i c a t e s :
20 − Path=/api / l e c t u r e s /∗∗
21 − id : ar temis
22 u r i : lb : // artemis
23 p r e d i c a t e s :
24 − Path=/api /∗∗ ,/ time , / websocket / t r a c k e r / in fo ,
25 / websocket / t r a c k e r / i n f o /∗∗ ,/ management /∗∗ ,
26 / pub l i c /∗∗
27 # Websocket route
28 − id : ar temis
29 u r i : lb : ws : // artemis
30 p r e d i c a t e s :
31 − Path=/websocket /∗∗

5.3.3 Message Broker

The message broker handles the communication between microservices. It
provides asynchronous communication through messages. The service that
sends the message is the producer of the message, while the service receiv-
ing it is the consumer. The producer sends a message to a specific queue
used to transport all the messages of a certain type. The consumer will
subscribe to that queue, and when a message is placed in the queue, it will
send it to the consumer. The queue naming convention defined in Artemis is
service name queue.action name where the service name is the name of the
microservice and action name is unique name for the action which needs to
be handled by the receiver i.e. user management queue.send activation mail.

As already described in section 5.2, messages that the consumer does not

31

CHAPTER 5. SYSTEM DESIGN

successfully receive are kept in the queue until there is an available consumer
for them. Suppose the action performed by the consumer fails and throws
an exception. Then the queue still handles the message as an unreceived
message and tries to redeliver it until it reaches the delivery limit. After that,
it moves the message to a Dead Letter Address, where it keeps unreceived
messages1. The message broker is no longer responsible for their delivery.
System administrators can use the message broker administration console to
check for failing communication or find the reasons for that.

In some cases, we want to receive a result for a message sent through
the message queue. This is possible by using a result queue. The nam-
ing convention for the result queue is similar to the one we already de-
fined. We use the same queue name as the one when ending the mes-
sage but adding result in the end service name queue.action name result,
i.e. user management queue.send activation mail result. Here, it is essential
to ensure that there is no difference in which instance should receive the
result message. This type of communication can be error-prone if the devel-
opers misuse it. If there is a need of request-reply communication where it
is important which instance consumes the response, we can use temporary
queues.

Figure 5.2 is an example of communication between two services when
a response is required. First, the Artemis Application sends a message to
check whether the user group is available using the message producer. The
message is put in the queue and consumed by the User Management service
consumer. Once the User Management service checks whether the group is
available, it uses a producer to send the response in a result queue. The
broker puts the response message in the result queue and then sends it to
the available consumer in Artemis to consume it.

1https://activemq.apache.org/components/artemis/documentation/1.1.0/undelivered-
messages.html

32

5.3. SUBSYSTEM DECOMPOSITION

Figure 5.2: UML communication diagram showing example communication be-
tween the Artemis server application and the User Management mi-
croservice through the message broker where response is required.
The Artemis server application puts a message in a queue which the
message broker sends to the User Management microservice. The
microservice puts the response message in a response queue which
the broker delivers to the Artemis server application.

5.3.4 User Management Microservice

The User Management microservice includes functionality related to user
management. It handles the creation, update, deletion, read, and searching
of users. It communicates with the Artemis application server using queues
in the message broker. It also communicates using REST with external User
Management systems.

Figure 5.3 is a component diagram of the extracted microservice, present-
ing the moved or split classes from Artemis and their relationship. We have
split the InstanceMessageSendService and moved only the parts relevant for
our microservice. We have moved the user, account, and guided tour setting
resources and the two services related to users and user creation. There is
a mail service producer which sends messages to Artemis to send emails to
the user. The implementation also includes consumer that receive messages
from Artemis but we have omitted it for simplicity.

33

CHAPTER 5. SYSTEM DESIGN

Figure 5.3: UML component diagram illustrating the User Management mi-
croservice

5.3.5 Lecture Microservice

The Lecture microservice contains functionality related to lecture features. It
includes managing lectures and lecture units, including all CRUD operations.
It communicates with the Artemis Application using queues in the message
broker.

Figure 4.4 is a component diagram of the extracted microservice, present-
ing the moved classes from Artemis and their relationship. In this microser-
vice we have moved the lecture, lecture units, exercise units, attachment
units, text units and video unit resources. Moreover, we have moved the
lecture and lecture units services. There is a producer which sends messages
to Artemis related to retrieving details about exercises. The implementa-
tion also includes consumer that receive messages from Artemis but we have
omitted it for simplicity.

34

5.4. HARDWARE SOFTWARE MAPPING

Figure 5.4: UML component diagram illustrating the Lecture microservice

5.3.6 Artemis Application Server

The Artemis application server contains the server-side logic which we have
not extracted in the two microservices. It communicates with both of the
microservices using the message broker. The communication with the exter-
nal User Management, Version Control and Continuous Integration systems
remains unchanged.

5.4 Hardware Software Mapping

Hardware software mapping describes how we assign software components to
hardware components and how they communicate with each other. [BD10]
We complement it with a deployment diagram that represents those relation-
ships. [BD10]

Figure 5.5 proposes the deployment of the microservices architecture.
There are three new components - the API Gateway, the User Management

35

CHAPTER 5. SYSTEM DESIGN

Microservice, and the Lecture Microservice. In this diagram, we intentionally
omit some details, focusing only on the components interesting for the thesis.

On application, start-up each service and the gateway communicates with
the service registry and registers itself. Then, the gateway gets the data about
all available instances from the registry. The Artemis Application Client is
dependent on the API Gateway and the services. The client sends REST
API requests to the gateway, which routes the request to the appropriate
service by checking its routing map definition and the available instances.
When communication between the services is needed, we use queues in the
message broker. All services have access to the same database server.

Figure 5.5: UML deployment diagram of the microservices architecture. The
diagram is adapted from the deployment of the monolith application
described in Securing and Scaling Artemis WebSocket Architecture
by Simon Leiß [Lei20]

5.5 Persistent Data Management

Usually, the microservices architecture proposes a separate database for each
microservice. Since this thesis lays the foundation of the migration towards
microservices, we initially decided not to decompose the database. We de-
cided that this task would be too time-consuming and risky. Furthermore,
it would have complicated the migration even more. Therefore, all services
currently use the same database and the same database schema to persist
data. This use can be changed in the future if the database becomes the

36

5.6. BOUNDARY CONDITIONS

bottleneck of the architecture. There are also other solutions than decom-
posing the database. One would be to create several database replicas, some
of which support write actions and others read actions.

5.6 Boundary Conditions

Boundary conditions describe how the system is started, shut down and how
to deal with system failures if they occur. [BD10]

5.6.1 Application Startup

Figure 5.6 illustrates the start-up dependencies between the subsystems. The
only strict dependency is between the Artemis application server, the two
services, and the database. That is because the services cannot start if they
cannot connect to the database. The server application and the services also
depend on the broker and the registry, but this will not fail the application
start. There will be errors in the logs until starting those two components
because the applications will try to connect to them in a defined period of
time. The gateway also depends on the service registry, and it also depends on
the server application and the two services to be able to complete the received
requests. So again, the gateway will not fail on start if those components are
not available, but it will not be able to handle any client request. It is not
able to save requests for later execution. Therefore, we recommend following
this order so that no user actions or data are lost.

37

CHAPTER 5. SYSTEM DESIGN

Figure 5.6: Dependency Graph describing the order to startup the subsystems.
The gateway depends on the Artemis application server and the two
microservices. The Artemis application server and the two microser-
vices depend on the message broker, the database, and the service
registry. The diagram is adapted from the dependency graph for
the monolith application described in Securing and Scaling Artemis
WebSocket Architecture by Simon Leiß [Lei20]

5.6.2 Application Shut Down

In order to stop the application, we can use the reverse order of the startup.
First, we should stop the gateway so that the clients accept no more requests
because otherwise, they will not get a response and will be lost forever. After
that, the Artemis server and the two microservices followed by the service
registry, message broker, and database.

5.6.3 Failure Handling

If we have started all of the applications and an error occurs, the first thing
to do is open the service registry and check the status of the service instances.
We should first check whether all of them are up and running or any of them
has stopped working. The next thing to do is to check the application logs
that have crashed. If they all seem to be okay, we check all the logs. We
can start from the logs of the gateway application. There we find which

38

5.6. BOUNDARY CONDITIONS

request has failed. If it is related to users, the problem must be related to
the user management service. If the problem is related to lectures, then the
problem is related to the lecture service. The problem should be related to
the Artemis server application for all other cases. Knowing this information,
we can check the logs of the respective application. The application logs will
help to find the reason for the error.

We can use the ActiveMQ Artemis Console to track lost messages. For ex-
ample, it allows to see messages waiting for delivery for each queue. Also, we
can use it to access dead messages that the broker delivered several times, but
the consumer did not consume them successfully. This could help to identify
problems with inter-service communication and even with the microservices.

39

Chapter 6

Migration to Microservices

6.1 Migration Strategy

There are several migration approaches defined as migration patterns. Each
of them is used accordingly to the concrete situation. There are no uni-
versally ”good” ideas. [New19] Artemis is being actively developed at the
moment by around 20 people. It is not possible to stop the development and
rewrite the application. This thesis will also not enhance the feature set of
Artemis. Thus, we cannot implement new features directly as microservices.
Therefore, we should incrementally refactor Artemis by extracting services
from the monolith.

Strangler Fig Application is a modernization strategy. The name comes
from a rain forest plant called Strangler Fig, which grows upward around a
tree trying to get more sunlight while the tree slowly dies [LML20]. This
concept represents the gradual refactoring of an existing application by cre-
ating a new system around the old one and letting it grow until the old one
is gone [LML20].

This is the strategy that we use during the migration process of Artemis.
We will create a new application made out of extracted from the monolith
services. The strangler application will gradually grow while the monolith
becomes smaller over time. Figure 6.1 shows exactly this process. The
monolith application will become smaller with each microservice we extract
while the count of microservices grows.

40

6.2. DECISION ON THE ARCHITECTURE

Figure 6.1: Migration Strategy for migrating the Artemis server application to
microservices. The diagram describes the microservices that could be
extracted over 1.5 years. The diagram is adapted from the ”Strangler
application” migration strategy described by Chris Richardson in
[Ric19].

6.2 Decision on the Architecture

We develop Artemis using JHipster, which also supports Microservices Archi-
tecture. It enables the generation of gateway and microservice applications.
There are several ways to organize a microservices architecture, and we had
to choose which one is the best for our case.

The Artemis application is located in a single repository and is a single
JHipster project, containing both client and server parts. As already said,
there are many people actively contributing to the project. This fact re-
stricts us from splitting the monorepo and the existing JHipster application.
Therefore, we had to think about possible solutions.

We discussed the following approaches with their benefits and drawbacks:

6.2.1 Artemis as a Gateway

This approach updates the monolith Artemis application to include JHip-
ster Gateway features. Since the generated by default JHipster Gateway
includes server code for authentication, converting the monolith to a gate-

41

CHAPTER 6. MIGRATION TO MICROSERVICES

way is technically possible. New microservices will be extracted from the
Gateway application until there is no more server code to be extracted there.
We illustrate the approach in Figure 6.2.

Figure 6.2: Proposed architecture where Artemis application serves also gate-
way features. It handles the server requests and redirects only the
requests related to the microservices.

Benefits:

• JHipster supports the approach.

• Easy way to start with the migration since we will do little project
configuration changes and almost or no changes to the current code.

Drawbacks:

• The API gateway is an API management tool supposed to sit between
the client and the collection of services. Therefore, this approach will
conflict with the API gateway definition.

• The API gateway is a component that has to be highly available. Trans-
forming the monolith into an API Gateway will decrease the availability
since there are more places where the application may fail. The routing
functionality may fail due to failure in Artemis, and vice versa Artemis
application may fail due to failure in the routing or other gateway-
specific functionality.

6.2.2 Artemis Application in front of the API Gateway

This approach includes the creation of a JHipster API gateway without any
client and server code. The gateway, as supposed, will be responsible for
request routing and load balancing.

42

6.2. DECISION ON THE ARCHITECTURE

As illustrated in Figure 6.3, the Artemis application will stay unchanged.
The gateway will not route the Artemis Server requests. It will route only
extracted to microservices endpoints. The microservices extraction will grad-
ually remove server code from the Artemis application until an application
where only the client code is left is reached and the API Gateway does the
routing for all of the microservices.

Figure 6.3: Proposed architecture where the Artemis Application is in front of
the gateway. It routes only requests to the extracted microservices.

Benefits:

• Jipster still supports and allows to generate a gateway without client
code.

• The API Gateway is responsible only for what it is supposed to do.

• We expect no changes to the Artemis application’s code and project
configurations.

• We expect no changes in the deployment of the Artemis software com-
ponent.

Drawbacks:

• The gateway will not route Artemis server requests which we have not
extracted in a microservice. Therefore, the gateway will not be able to
do load balancing for the Artemis server instances, resulting in a need
for an additional load balancer in front of the Artemis server.

• The gateway is supposed to be a single entry point for the server-side
of the application, which is not fulfilled in this architecture

43

CHAPTER 6. MIGRATION TO MICROSERVICES

6.2.3 Artemis server as an independent application

The approach is illustrated in Figure 6.4 and includes the creation of a JHip-
ster API gateway between the client and the services. The gateway will be
responsible for request routing and load balancing. The Artemis application
code will remain unchanged. However, we will change the build procedure.
We will build the Artemis server in a WAR file that does not include the
client application. Moreover, we will build the client application with the
gateway, which will also serve it.

Artemis client requests will always go through the gateway, which will
route them to the correct service. We will extract services from the server
code, gradually reducing the Artemis server application until no further ex-
traction is possible.

44

6.2. DECISION ON THE ARCHITECTURE

Figure 6.4: Proposed architecture where the Artemis server is an independent
application which registers to the service registry similarly to the
extracted User Management microservice. The client sends the re-
quests to the gateway which redirects them to the proper server
application.

Benefits:

• Supported by JHipster

• No changes in the client and server code

• A relatively easy approach to start with

45

CHAPTER 6. MIGRATION TO MICROSERVICES

• The client and the server are built and run separately

• The gateway is a single entry point to the server-side of the application

Drawbacks:

• Developers will be confused why the client application is located in the
same project as the server application but is built together with the
gateway application

6.2.4 Conclusion

We decided to continue with the approach defined in section 6.2.3 because it
has the most benefits and most minor drawbacks and is also most relevant
to the microservices architecture. The client uses the gateway as an entry
point for the server-side, and we cannot access it without the gateway. We
build the Artemis client and server separately. Therefore, they can also be
deployed and scaled individually.

6.3 Decomposition into microservices

6.3.1 Creation of an API Gateway

JHipster provides the great feature to generate a Gateway for a microservice
architecture. As already said, the API Gateway is a crucial component of
the microservice architecture that has to be highly available and scalable.
Except, routing client requests to the microservice, the JHipster generated
gateway can include a client application and handle the user authentication.
[SK20]

Our requirements are different, though. We want to package the client
application in the gateway, but we do not want to move the client code to
the Gateway application structure. Also, we do not want to change the
Artemis server. Therefore we do not want to handle the authentication in
the gateway. Thus, we need to change the generated application according
to those requirements.

We first removed the database configurations and the authentication and
user management features from the gateway. After that, we updated the
build configurations to run the client build and copied the build files to
the gateway’s build resources. This way, the client application packaging is
possible in the Gateway application.

46

6.3. DECOMPOSITION INTO MICROSERVICES

We already said that the gateway needs to be highly available since it is an
entry point for the server architecture, and every single request goes through
it. The JHipster Gateway handles this requirement by using Spring WebFlux.
The Spring WebFlux framework complements the Spring MVC and allows re-
active programming in Java applications. WebFlux is a non-blocking frame-
work built to take advantage of multi-core processors and handle massive
numbers of concurrent connections with a small number of threads. This
helps the system to scale with fewer hardware resources. To compare, Spring
MVC uses synchronous blocking architecture with a one-request-per-thread
model1. The gateway was generated by JHipster using WebFlux by default.
The gateway is supposed to handle all the input traffic. As per Matt Raible
and ”Reactive Java Microservices with Spring Boot and JHipster” article
linked as 1, there is a general rule of thumb that WebFlux will make a dif-
ference compared to Spring MVC if you have >500 requests/second which
will most likely be fulfilled by Artemis when running exams, quizzes for large
courses (i.e. EIST). There is no change to any configurations or REST end-
points in Artemis. We enable WebFlux only for the gateway project. The
gateway redirects all requests from the client to the Artemis application,
which still uses Spring MVC. The difference is that when the gateway redi-
rects a request, it can handle another request with the same thread instead
of waiting for an answer. Once Artemis sends back a response, the gateway
will know about that, and it will finalize the request and send the response
to the client.

6.3.2 Extraction of User Management Microservice

The first microservice we extract is the User Management microservice. Its
domain is to manage users and their accounts by providing them the func-
tionality to reset passwords and register themselves and updating settings
for the guided tour that Artemis supports.

Knowing the context of the microservice, we can start with the extrac-
tion. First, we need to generate a new JHipster project. We do it using the
configurations in Figure 6.5.

1https://developer.okta.com/blog/2021/01/20/reactive-java-microservices

47

https://developer.okta.com/blog/2021/01/20/reactive-java-microservices

CHAPTER 6. MIGRATION TO MICROSERVICES

Figure 6.5: Configuration for the generation of the User Management microser-
vice

Once created, we then need to align the project configurations with
Artemis. The first thing we need to do is to update the Artemis settings.gradle
file and include the new project in the project structure. After that, we can
share dependencies between projects and reuse source code. We then modify
the build.gradle file of the user management service and change dependency
versions using the ones used in Artemis and update tasks definitions applying
the tasks.gradle file with reusable tasks. We also use source sets to define
sources that we will reuse from Artemis. The sources include some configu-
ration files, i.e. Liquibase and database configurations, the database entities,
repositories, and data transfer objects. We also remove duplicated configu-
rations from the user-management project to reduce code duplication. Next,
we update security configurations, JWT configurations and filters, and the
token provider to be similar to the implementation in Artemis. Finally, we
also update the application resources. Accordingly to the changes, we also
need to update the automatically generated unit tests.

After we have aligned application configurations, we can start with ex-
tracting features from Artemis to the new service. We first need to make
sure which classes implement the features we want to move and which other
classes are using the ones that we will move. If many classes use the one
we want to move, we may need to split the class or implement inter-service
synchronous or asynchronous communication.

Once we know which classes we are going to move, we can copy them
and their tests. In some cases, existing integration tests can break because
they also test features not included in the new service. Thus, we need to
update the tests accordingly, making sure to keep high test coverage. We
add @Deprecated annotation to all of the classes or methods that we move
to find them easily later when we remove them from the Artemis server
application.

Figure 5.3 illustrates a component diagram of the user management mi-
croservice. The endpoints that we extracted are listed in Table 6.1.

48

6.3. DECOMPOSITION INTO MICROSERVICES

Request Type Endpoint

POST api/register
GET api/activate
GET api/authenticate
GET api/account
GET, PUT api/account/password
POST api/account/change-password
POST api/account/reset-password/init
POST api/account/reset-password/finish
GET, POST, PUT api/users
GET api/users/search
GET api/users/authorities
GET, DELETE api/users/{login}
PUT api/users/notification-date
PUT api/guided-tour-settings
DELETE api/guided-tour-settings/{settingsKey}

Table 6.1: Endpoints extracted in the User Management microservice

After copying the resources and services, we identify the need for bro-
ker communication. The User Management service has to send messages
to Artemis in order to send emails to the user on account registration or
password reset request. Therefore, we implement a producer in the User
Management service and a consumer in the Artemis Server application.

The next step is to update the gateway routes definition by adding the
routes that we defined in 6.1. We show the exact definition in Listing 5.1.

After integrating the gateway and the new service, we can continue man-
ually testing the existing features. If we do not find regressions, we can
continue with the next step to remove the duplicated code from the Artemis
server application.

The removal of the copied code from Artemis is the last one but also
error-prone. After deleting the copied classes, we might have to implement
additional implementation of service communication, or we can even notice
that we have wrongly moved over some of the classes or methods. The
good news here is that we have not yet removed anything from the monolith
application. Therefore, we can quickly correct our mistakes by removing the
code from the extracted microservice. Besides, more integration tests may
break. Therefore, we need to take care of fixing them as well.

Once we complete the Artemis refactoring, we should again test the ap-
plication manually. If everything works, we are good to go.

49

CHAPTER 6. MIGRATION TO MICROSERVICES

6.3.3 Extraction of the Lecture Microservice

The lecture service is the second service extracted from Artemis. The scope
of this service includes managing lectures and the lecture units included in
a lecture, among which are video units, text units, attachment units, and
exercise units. The video units are linked or embedded videos as part of a
lecture. The text units allow to write a text in a markdown editor and link
it to the lecture. The attachment units allow uploading file attachments as
part of the lecture. Finally, the exercise units are links to exercises in the
context of the given lecture. Figure 5.4 illustrates a component diagram of
the Lecture service.

After we have defined the scope of the microservice, we can continue with
the creation of the JHipster microservice application. Figure 6.6 represents
the application generation configurations. They are similar to the ones used
for the user management service. The port and the package name are the
only different configurations.

Figure 6.6: Configuration for the generation of the Lecture microservice

After creating the project, we applied the same configuration changes as
we did for the User Management microservice. The next task is to copy the
implementation and test classes. We copied all classes together during the
extraction of the User Management service. This time, we decided to try
an iterative approach by copying a small group of classes with low coupling.
This approach will simplify testing and overall extraction by decomposing
the task into smaller tasks. We define the following iterations: first, copy the
management of attachment units, then the text units, the video units, the
exercise units, overall management of lecture units, and in the end, manage-
ment of lectures.

We start each iteration by copying the implementation and test classes.
Then identify whether we need to implement communication between services
in the context of the classes we copied. If not, we then check whether we
need to refactor the copied code, i.e., if tests are breaking, we need to refactor
them. Then we need to update the gateway routes if we have moved any

50

6.3. DECOMPOSITION INTO MICROSERVICES

endpoints. At the end of the iteration, we test our changes. If there are
regressions, we need to refactor the code. If not, we can continue with the
next iteration.

We show the whole list of endpoints that we moved to the Lecture mi-
croservice in Table 6.2.

Request Type Endpoint

GET api/courses/{courseId}/lectures
POST, PUT api/lectures
GET, DELETE api/lectures/{lectureId}
GET api/lectures/{lectureId}/details
GET api/lectures/{lectureId}/title
GET api/lectures/{lectureId}/attachment-units/{unitId}
PUT, POST api/lectures/{lectureId}/attachment-units
GET, POST api/lectures/{lectureId}/exercise-units
GET api/lectures/{lectureId}/text-units/{unitId}
PUT, POST api/lectures/{lectureId}/text-units
GET api/lectures/{lectureId}/video-units/{unitId}
PUT, POST api/lectures/{lectureId}/video-units
PUT api/lectures/{lectureId}/lecture-units-order
DELETE api/lectures/{lectureId}/lecture-units/{unitId}

Table 6.2: Endpoints extracted in the Lecture microservice

The final task is to remove the extracted code from the Artemis applica-
tion server. Here we need to add additional communication with the Lecture
microservice when the user requests the deletion of a course that includes lec-
tures. In this case, the Artemis application sends a message to the Lecture
microservice to delete the lecture. On the other side, the microservice returns
a response whether the action was successful so that Artemis can continue
with the deletion of the course. Since we use a shared database, we need a
response that the microservice has deleted the lecture. Otherwise, if we try
to delete a course without having deleted the lectures, this would lead to an
exception on a database level which violates the foreign key constraints.

6.3.4 Microservice Extraction Steps

After extracting two microservices, we can generalize the steps needed to
extract a microservice. We also think that the iterative approach that we used
and described for the Lecture microservice is a better extraction approach.
It is simpler because we decompose the whole task into smaller subtasks by

51

CHAPTER 6. MIGRATION TO MICROSERVICES

copying small parts of the implementation. This also results in easier testing
and less chance to skip a test case.

We present a UML activity diagram (Figure 6.7) to illustrate the steps
needed to extract a microservice using an iterative approach. We have
grouped the tasks into three groups by the effort required to finish them.
The groups are low, medium, and high effort. Each group represents the
overall time consuming and complexity of the task. However, we cannot
specify how much time they take because it will be different for each ex-
tracted microservice. We describe details about the different steps below the
diagram.

52

6.3. DECOMPOSITION INTO MICROSERVICES

Figure 6.7: UML activity diagram illustrating the steps for extracting a microser-
vice from the monolith.

53

CHAPTER 6. MIGRATION TO MICROSERVICES

1. Define the scope of the service

The first step is to define the scope of the service. We must define which
features we want to extract and skim through the classes implementing
those features to check the coupling in the current implementation. In
case there is a high-coupling, we either consider whether the coupled
features can be part of the microservice or refactor the existing code.
This task is labeled as high effort because it takes time to define the
scope, and it is also crucial for the future of the microservice. We need
to make sure that there is a loose coupling between the microservice
we will extract and the rest of the microservices and the monolith
application.

2. Create and configure the microservice project

We use JHipster to generate a project of type microservice, using JHip-
ster Registry as service discovery, JWT authentication type, MySQL
database, Hazelcast cache, and Gradle as a build tool. After the project
generation, we need to add the new project in the Artemis project struc-
ture and reuse dependencies versions and Gradle tasks. We can also
reuse some of the configuration files defined in Artemis, i.e. LiquibaseC-
onfiguration, DatabaseConfiguration and JacksonConfiguration. We do
it by defining them as source sets. Similarly, we also add as source sets
all database entities and repositories. This approach helps to reduce
code duplication. Later, we can extract the common classes to a com-
mon project shared between all microservices. The next configuration
step is to update security configurations and filters to provide the same
authorization implementation as Artemis. This also leads to the need
to update the generated by JHipster tests. The generation of the mi-
croservice project is easy and quick, but the configuration takes some
time because we need to align with the Artemis application. Therefore,
we label this task as a medium-effort task.

3. Define least coupled group of classes

We know the scope of the service, and we know which classes we need to
move. In order to start the iterative microservice extraction approach,
we need to start with the classes that have the lowest coupling among
those which we will move. In this step, we need to define the group of
classes that we will copy in this iteration. It could be a group of one,
two, or more classes. We also need to add the test classes to the group.
The important part is that the group implements features that we can
test. This task is another medium-effort task because we need to find

54

6.3. DECOMPOSITION INTO MICROSERVICES

the easiest classes to copy, which can be more complex if the scope of
the service is large.

4. Copy related implementation and tests

After defining the group of classes, we can continue copying them.
After each copying of a class, we can use the @Deprecated annotation,
including a comment, to mark the copied code. This is also helpful
for other developers who want to change this code so that we do not
accidentally remove changes in the code we copied. Since this task
includes only copying of classes, it is easy to execute a low-effort task.

5. Set up communication between services

This step is executed if there is a need for inter-service communica-
tion. It happens when one class uses another class that is not in our
microservice’s scope. Therefore, we need to identify what communi-
cation type we need in this case. We use synchronous communication
when we do not expect a response, or if we do, we need to ensure the
proper implementation of the communication. For example, we imple-
ment asynchronous communication by implementing message broker
producers and consumers and sending messages over a queue defined
for specific needs. In other cases, when we decide that we can create
a new endpoint for the specific use, we can use synchronous communi-
cation. Synchronous communication can be done via HTTP requests,
directly requesting the service, or using API composition in the gate-
way. The effort for this task depends on how much communication we
need to implement. We label it as a medium effort because the imple-
mentation of producers and consumers is straightforward but is more
complex than just copying code.

6. Refactor code

Several cases require code refactoring. The first of them is when we
have implemented communication between services. In this case, we
need to refactor the two microservices that communicate to use the
consumers and producers, which we implemented in the previous step.
Another reason to refactor the code is failing tests. For example, some
of the integration tests may fail because they also test features that are
now in another service. Therefore, we need to ensure that all tests pass
by refactoring the tests. Furthermore, we may need to refactor some
of the implementation classes if we need to split them and move only
part of their functionality. Since there are several reasons to refactor

55

CHAPTER 6. MIGRATION TO MICROSERVICES

the code, we label this task as a high-effort task because we may face
all the reasons and need extensive refactoring.

7. Update gateway routes

If the classes we copied include endpoints, we want to route incoming
requests for those endpoints to the new microservice. In order to do it,
we need to update the gateway routes definition in the gateway/appli-
cation.yml file as described in Section 5.3.2 and Listing 5.1. This is a
low-effort task because updating the routes definition is straightforward
and includes several examples.

8. Test changes manually

Now we can manually test the features we have copied. We need to
make sure we test all the features we have moved. This is a medium-
effort task because testing can be straightforward if we have tiny groups
of features in each iteration or very extensive in the case of large groups.
If some of the features do not behave as they do in the monolith appli-
cation, we need to refactor the code and fix the issues. In case we have
covered all iterations, we continue with step 9. Else we can continue
with the next iteration starting again from step 3.

9. Remove extracted functionality and tests from the Artemis monolith

The next step is to remove the extracted functionality and tests from
Artemis. Here, we use the @Deprecated annotations we added before,
and we can easily find the classes which we need to remove. Removal
of the classes may also result in a need to implement additional inter-
service communication. It can also break tests referring to the extracted
functionality. Furthermore, we can find out that the defined scope of
the microservice is wrong, and we need to update it. In this case, we
go back to step 1. to update the scope. Else, we have finished the
service extraction and can continue with the update in the deployment
pipeline. This is another medium-effort task because it can either be
quick and easy or take a considerable amount of time.

10. Update deployment workflow

In order to deploy the new microservice on a server, we need to up-
date the deployment workflow and add the new component. We need
to create or update the Dockerfile of the microservice and configure
the create, push and pull operations of the Docker image of the new
component in the GitHub workflow, which we will describe in the next

56

6.4. DEPLOYMENT

chapter. We also need to update the Docker Compose file of the mi-
croservices architecture, which we will also describe in the next chapter.
We label this task as a medium-effort task because it might be more
time-consuming for people who do not have experience with GitHub
workflows, and it also has to be tested.

11. Create Kubernetes deployment resources

A parallel task to the previous one is the creation of Kubernetes deploy-
ment resources. The previous task can also be obsolete in the future
when Artemis fully migrates to Kubernetes deployment. In order to
deploy the new component on Kubernetes, we need to create deploy-
ment resources for the new microservice. This includes the creation
of a new workload, config map, secrets configuration, and persistent
volume claim (PVC) if the microservice needs data volume.

6.4 Deployment

The new architecture requires changes in the deployment process. This sec-
tion explains the work we did regarding deploying the microservices archi-
tecture. We want to deploy Artemis on Kubernetes, but this is not possible
right away. We explain the reasons why in the following subsection. Since it
is not yet possible to deploy on Kubernetes, we create a deployment pipeline
to deploy on a virtual machine described in the second subsection.

6.4.1 Kubernetes Deployment

Unfortunately, it was not possible to deploy on a Kubernetes cluster during
this thesis. There were challenges to creating and configuring the Kuber-
netes cluster on TUM’s infrastructure. The Artemis team currently works
on providing an on-premise Kubernetes cluster for deploying the Artemis ap-
plication [Lin21]. There are several challenges that the Artemis team faces.
The first of them is that the deployed containers need both IPv4 and IPv6
IP addresses in order to provide intra- and inter- Kubernetes communica-
tion [Lin21]. They also need to choose a solution for persistent storage and
implement a backup strategy [Lin21]. Moreover, they need to handle the cer-
tificate management process, and support secure HTTPS connection [Lin21].
Those are only part of the challenges that the Artemis team faces. Matthias
Linhuber describes them in his thesis proposal cited as [Lin21].

For this reason, we deployed Artemis and the new microservice archi-
tecture on a local Kubernetes cluster. We create a local cluster using k3d,

57

CHAPTER 6. MIGRATION TO MICROSERVICES

which is a lightweight wrapper to run the minimal Kubernetes distribution2.
According to the k3d documentation2, we can easily create and remove Ku-
bernetes clusters with k3d. The clusters run on Docker. We also use Rancher,
which is an open-source cluster management platform3. It provides a user
interface that helps us to start quickly, stop, (re)deploy, scale, and get de-
tails about our applications [SK20]. Another tool we use is kubectl. It is a
command-line tool that allows running commands against a Kubernetes clus-
ter4. Using kubectl, we can deploy our multi-component architecture with
a single command. It is possible due to the Kustomize tool, which is the
native configuration management for Kubernetes and built-in kubectl5. This
tool helps to reuse the resources in order to deploy them in different envi-
ronments [Mar20]. Kustomize uses a kustomization.yaml file, which declares
paths to all resources that kubectl needs to apply on the cluster.

The resource files define Kubernetes objects which are persistent entities
in the Kubernetes system6. They describe which applications are running,
how they are configured and how they behave6. There are different types of
objects that we use in our Kubernetes deployment.

The first of them is the workload. It is an application that runs on
Kubernetes pods which are the smallest units of work on Kubernetes. There
are several types of workload resources among which we use Deployment
and StatefulSet. The Deployment is a high-level resources which makes it
easy to deploy and update applications. We define the configurations in
the Deployment resource and Kubernetes takes care of the low-level actions
[Luk18]. We use deployments for stateless applications which includes the
Artemis monolith, the microservices and the gateway. Other workload type
we use is the StatefulSet. It takes care of stateful resources such as the
database. StatefulSet provide persistent hostname to each replica with a
unique increasing index [BBH19]. This is useful when we remove replicas
because we know which pod will be removed. We create StatefulSets for the
JHipster Registry and the MySQL database.

Furthermore, we use load balancing objects. The object type we use to
expose the gateway, the service registry and the ActiveMQ Artemis console
is Ingress. Ingresses are equivalent to virtual hosts which is a mechanism
to host many HTTP websites on a single IP address [BBH19]. When we
define the Ingresses we also define the host that we will use for our services.

2https://k3d.io/v5.2.1/
3https://rancher.com/
4https://kubernetes.io/docs/tasks/tools/#kubectl/
5https://kustomize.io/
6https://kubernetes.io/docs/concepts/overview/working-with-objects/

kubernetes-objects/

58

https://k3d.io/v5.2.1/
https://rancher.com/
https://kubernetes.io/docs/tasks/tools/##kubectl/
https://kustomize.io/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/

6.4. DEPLOYMENT

We use the following form {applicationName}.artemis.rancher.localhost, i.e.
jhipster-registry.artemis.rancher.localhost.

Other objects we create are the Persistent Volume Claims. They are
storage resources that we link to the workloads to store persistent data. We
create PVCs for the MySQL database StatefulSet and the Artemis server
application Deployment. We define both read and write access and allocate
3GB of memory. This will be insufficient for a production environment.
Therefore, we should change it when deploying on production.

All applications require application-specific environment variables. We
define them using ConfigMaps. ConfigMaps are key-value pairs that we link
to the specific workload they configure. There are separate files for each
workload. They contain values for the database URL, the JHipster Registry
URL, the host of the ActiveMQ Artemis instance, and other configuration
data. ConfigMaps help us deploy the same image on different environments
by updating their values [BBH19].

Other similar objects are the Secret. They also define key-value pairs,
but they keep sensitive data. Therefore, we use them to store passwords.
For example, we use them to store JHipster Registry and the message broker
passwords. Kubernetes stores the secrets base64 encoded [BBH19].

Those are the objects we have defined in our local cluster. Using them,
we have a running on Kubernetes microservices architecture. We can quickly
deploy all components on the cluster using the kubectl apply command and
the Kustomization file. Moreover, if we update one of the objects and rerun
the same command, it will alter only the object we want to update. Kuber-
netes will not recreate the rest of the objects since they already exist and
have not changed. On the other side, we notice that the Artemis application
runs slower on the local Kubernetes cluster. The machine we used for de-
velopment has 16GB of RAM and 2.60GHz Intel Core i7-6700HQ processor
with eight threads. The OS installed on the machine is Ubuntu which is a
Linux distribution. Therefore, we should measure the performance of the
Artemis application on a production cluster to make sure we do not impact
the current performance.

6.4.2 Virtual Machine Deployment

Since deploying on Kubernetes is not possible yet, we deployed the microser-
vices architecture on a virtual machine. We do it using GitHub actions.
GitHub actions are a sequence of actions that create a GitHub workflow
which allows us to automate development workflows in a project reposi-
tory [CH21]. Workflows are triggered when a developer creates a pull request,
creates commits to the pull request, and when the pull request gets merged

59

CHAPTER 6. MIGRATION TO MICROSERVICES

[KWGT21]. We should create workflows in YAML, and we should place them
in the .github/workflows/ directory in the project repository [KWGT21].

There are already defined workflows in the Artemis repository. They
are responsible for building the application, running the server and client
tests, and static code analysis. In order to deploy the new architecture on a
test server, we need to create a new workflow that will deploy the required
components using Docker images.

Before doing that, we should create a Docker Compose file, including
container configurations for all components we want to deploy. Therefore,
we create a file including the service registry, the gateway, the Artemis server
application, the User Management microservice, the message broker, and the
database. We also need to adapt the Dockerfiles for the gateway and the
microservice.

Now that we have the Docker Compose file ready, we start creating the
new workflow. It consists of several actions, also called jobs. The first is
to build WAR files for the Artemis application server, the gateway, and the
User Management microservice. Then we upload the artifacts so that we can
use them in the following job 7.

The following job downloads the uploaded artifacts and builds the artemis-
service, artemis-gateway, and artemis-usermanagement-service Docker im-
ages. Next, it adds a tag to the image, which we use when deploying artifacts
from a specific PR. In the end, it logs in to the GitHub Container Registry
and pushes the images we build.

The last job is the deployment job. We have an additional test server
(artemistest6) allocated for deploying the microservices architecture. The
other available test servers still deploy only the monolith application. The
first thing we do in the deploy job is to compute the tag we need to use
to pull the Docker images. The tag will be ”pr-” when deploying artifacts
created in a pull request or latest, if we want to deploy the develop branch.
Then we check the lock of the test server. We need the lock to be able to
deploy on the test server, and we check it to make sure that another PR is
not using it. Then we need to install the required software for establishing
a VPN connection to the test server. In the end, we run docker-compose
commands first to stop the already running containers, pull the new images
and finally start the containers using the new images.

7https://github.com/actions/upload-artifact

60

6.5. DISCUSSION

6.5 Discussion

This section discusses interesting findings of the new microservice architec-
ture and limitations it causes.

6.5.1 Findings

The first finding is that microservice extraction is time-consuming, especially
for developers who do not have previous experience with the extraction of
microservices. Furthermore, it is even more complex if the developer does
not fully understand the features that the newly extracted microservice will
implement. Therefore, it will take a significant amount of time to migrate
the whole application. Additionally, it takes time to thoroughly test the
new microservice, which is another reason to use the iterative approach for
extraction which we described in section 6.3.4 and Figure 6.7.

Another finding is that the role of the message broker grows. The mono-
lith uses the broker for WebSocket communication, but the microservices
architecture extends its usage. As we already described, we use the broker
to implement inter-service communication. Therefore, we need to make sure
that the broker is highly available to avoid losing messages and communica-
tion delays.

6.5.2 Limitations

There are also several limitations which the microservices architecture leads
to. The first is that the local development environment becomes more com-
plex than before, and developers need to run several applications in their
development environment. They always need to run the service registry and
the gateway. They also need to start the Artemis monolith, the User Man-
agement microservice, and the Lecture microservice. If they want to test
changes to one of the microservices or the Artemis monolith, they do not
need to start all three applications but only the one they develop. They also
need to start the message broker in order to use the communication between
services. To simplify the start of all applications, we can create an IntelliJ
Compound configuration that allows us to run several applications together.
Another complexity for the developers is that they need to understand the
new architecture and the role of each component. They also have to under-
stand the scope of each microservice in order to be able to identify which
microservice they need to work on to implement their changes. Moreover, it
is hard to implement integration tests that test more than one microservice.
There are no such tests currently, which we should improve in the future.

61

CHAPTER 6. MIGRATION TO MICROSERVICES

Additionally, the deployment is more complex as well. There are more
components that we need to deploy and scale. It is also essential to start the
applications in the correct order described in section 5.6.1, to avoid losing
user requests.

62

Chapter 7

Summary

This chapter summarizes the work that was done in this thesis. We discuss
the status including realized and open goals, we conclude the thesis contri-
bution and outline future work ideas.

7.1 Status

The section describes the status of the work done in the thesis. We assess
the completeness of the requirements realization. We group them in three
categories:

Not implemented

G# Partially implemented, additional work is needed

 Fully implemented and tested requirements

Requirement Status

FR1 Retain existing features G#
FR2 Show a message about problems in microservices #
NFR1 Reliability
NFR2 Fault Tolerance
NFR3 Security (JWT)
NFR4 Security (Unauthenticated Access)
NFR5 Security (Inter-service Communication)
NFR6 Current Performance #
NFR7 Caching Mechanism G#
NFR8 Extensibility G#

63

CHAPTER 7. SUMMARY

Requirement Status

NFR9 Maintainability (Microservice’s Size) G#
NFR10 Maintainability (Deployment) G#
NFR11 Scalability G#
NFR12 JHipster
NFR13 Docker Compose files
NFR14 Kubernetes resource files G#
NFR15 WAR packaging

Table 7.1: Status of requirements implementation

7.1.1 Realized Goals

We tried to keep the existing features [FR1] without introducing regressions
during the migration of the two microservices. We have implemented the
migration of the microservices. However, the implementation of the Lecture
microservice is still in review. Furthermore, we need to implement the last
step in the migration process - removing the duplicate code from the Artemis
monolith. Therefore, since we have not fully finished the migration yet, we
have partially implemented this part.

The main benefit of microservices is reliability [NFR2]. If one of the
microservices is down, the others will continue working. It is the same in
Artemis. For example, if the User Management microservice fails for some
reason, the other features that are not related to managing users will continue
working.

Fault Tolerance [NFR3] is another goal we realized. The message broker
we use ensures that the messages are kept in the queue until it delivered
them. ActiveMQ Artemis handles the message persistence using a journal
which consists of a set of files on the disk1.

Security is another important topic for each web application. We man-
aged to fulfill all requirements about security. The microservices, the Artemis
application, and the gateway [NFR3] share the same JWT secret, which the
applications use to authorize the requests coming from the client. Moreover,
we have secured each microservice and the gateway. As a result, unauthen-
ticated users do not have access to application-specific data [NFR4]. The
communication between microservices and the Artemis server application
is also secured [NFR5]. They cannot send a message through the message
broker if they have not authenticated themselves to the broker.

1https://activemq.apache.org/components/artemis/documentation/1.0.0/

persistence.html

64

https://activemq.apache.org/components/artemis/documentation/1.0.0/persistence.html
https://activemq.apache.org/components/artemis/documentation/1.0.0/persistence.html

7.1. STATUS

The Artemis application uses a distributed cache the available Artemis
instances share. Since the microservices and the Artemis application share
the same database, the microservices should also use the distributed cache
[NFR7]. We have partially implemented this goal because we have config-
ured the microservices to connect to the cache, but we have not tested the
implementation’s correctness. Therefore, we might need to add additional
implementation to fulfill this requirement.

We have tried to fulfill the extensibility [NFR8] and maintainability [NFR9]
requirements of the microservices by providing them with clear names and
making them small with easy-to-understand scopes. However, we have not
measured them, which is why we mark them as partially implemented.

Another maintainability requirement is related to the deployment pipeline
[NFR10]. We should have an automated deployment pipeline for the new
microservice architecture. We have partially implemented this requirement.
We deployed the new architecture components - the gateway, the User Man-
agement microservice, the service registry on a test server, but we have not
deployed it on other environments. Moreover, we still need to add the Lecture
microservice to the pipeline.

Scalability is another essential requirement for Artemis [NFR11]. The
scalability of the Artemis server application remains unchanged. Theoreti-
cally, we can also scale the gateway and microservices, but we need to do
additional work there since we have not tested it.

Artemis uses JHipster to develop the monolith application, and we wanted
to use it as well for the microservices architecture. Therefore, we used it to
generate the gateway and the microservices applications [NFR12].

An essential requirement for the deployment of Artemis is the Docker
Compose files [NFR13]. We created Docker Compose files for each new com-
ponent and the whole architecture which we use to deploy on a test server.
Another related to the deployment requirement is the creation of Kuber-
netes resource files [NFR14]. We have created resource files for the Artemis
monolith and the microservice architecture. The ones for the microservice
architecture are still in review, which is the reason for the partially imple-
mented status.

The last requirement is about the packaging of the new components. We
package the Artemis monolith in a WAR file. We wanted to package the
microservices and the gateway in a WAR file [NFR15]. This is possible for
each microservice and the gateway.

With regards to the objectives we have defined at the beginning of the
thesis, we have fully completed the definition of a migration process and iden-
tifying microservices. We have described both of them in section 6.1. We
have partially implemented the migration of two microservices. Because of

65

CHAPTER 7. SUMMARY

time reasons, the implementation of the Lecture microservice is still in review.
Moreover, as we already discussed, we still need to remove the code which
we copied to the two new microservices from Artemis. We will complete this
task after the submission of the thesis. There is one more partially imple-
mented objective related to the Kubernetes deployment. We have prepared
the Kubernetes deployment resource files for the microservices architecture,
also in review. Unfortunately, we deployed the architecture only on a local
cluster while creating the resources. The last objective we have defined is
implementing a pattern related to the microservice architectural style. We
have realized this objective. We have implemented at least two microservices
patterns. The first is the ”API Gateway” pattern which defines the usage of
a gateway as a single entry point to the server-side of the application. We
discuss the pattern and the solution in sections 2.2.1, 5.3.2, and 6.3.1. The
second is the ”Shared Database” pattern which states that the microservice
access and write to the same database. We discuss it in sections 2.2.2 and
5.5.

7.1.2 Open Goals

In some cases, the microservices and the communication between them may
fail. Therefore, we think it is good to show the user a message about such
problems [FR2] so that he can try again later. Unfortunately, we did not
have time to implement this feature, and it remains an open goal.

Another open goal is measuring the performance of the new architecture
[NFR6]. Unfortunately, we did not have time to fulfill this requirement.
However, it will be a measurement that will be interesting to the developers.

7.2 Conclusion

This thesis sets the foundation of the migration of Artemis’ architecture to-
wards microservices. We defined the components in the new architecture as
well as their roles. We also defined which implementations for service reg-
istry and message broker the microservices architecture will use. We created
a gateway which is the entry-point to the server-side of the architecture. We
also extracted two microservices from the Artemis server monolith applica-
tion. This helped us to define the generic microservice extraction process.
Other developers can use this process to extract other microservices without
doing the same research. Another thing we did was to prepare the deployment
resource files of the microservices architecture for Kubernetes deployment.
They include all objects that need to be created in a Kubernetes cluster to

66

7.3. FUTURE WORK

have a working application.

7.3 Future Work

This section describes the work that remains after finishing this thesis.

7.3.1 Continue with the Microservices Extraction

The microservices migration is a process that takes a huge amount of time.
Therefore, it is natural that continuing the work started in this thesis is the
first point of the future work section. There are still several services which
we can extract from Artemis which will have an even better effect on the de-
velopment pace and independent scaling. The more microservices we extract
from Artemis, the more lightweight each application will be. It will most
likely take long until we completely decompose the Artemis server applica-
tion. However, using microservices will be beneficial for the developers, the
system administrators, and the users.

Figure 6.1 illustrates microservices that we could extract from the Artemis
monolith in the future. The first of them is the METIS microservice. It is
responsible for the course communication between course students, tutors,
and instructors via posts, post answers, and reactions. Another potential
microservice is the Notifications microservice. It takes care of sending and
receiving notifications and managing notification settings. Then, we have the
Exercise microservice, which is the biggest microservice among all because it
is responsible for managing all exercise types, the assessment of the exercises,
and managing exams. Next, the Statistics microservice is responsible for
creating all statistics in the application. Last is the Admin microservice,
responsible for all administration actions - audit logs, course management
and server logs, health, and metrics.

Other developers can from the migration steps we described in section
6.3.4 and Figure 6.7. They can follow them to migrate the rest of the mi-
croservices, which can help them start faster with the migration rather than
defining new steps. They can also modify them if they find a better approach.
Similarly, they can modify the scope of the proposed potential microservices.
Moreover, they can define more microservices if the scope is not correctly
defined.

67

CHAPTER 7. SUMMARY

7.3.2 Production Kubernetes deployment

Another future goal is to deploy the Artemis application on a Kubernetes
cluster. We already described the challenges to do it in the university infras-
tructure. The Artemis team has already started working on this topic. Once
the team solves the challenges and have a functioning Kubernetes cluster,
they can deploy Artemis on Kubernetes for each environment. They can
use the Kubernetes resource files which we created in this thesis and create
copies by modifying them for each environment - test, staging, production.

They can also configure automatic scaling of the components of the archi-
tecture. Considering the current state of the architecture, the gateway and
the Artemis server application are the components which will require scal-
ing. Therefore, those two components that the team can start configuring.
Unfortunately, we did not have time to configure the automatic scaling.

Additionally, the storage that we currently allocate to the persistent vol-
ume claims may not be sufficient. Therefore, the team should review it and
decide whether it is enough. If not, they should reduce or increase it. The
storage for the persistent volume claim of the MySQL database workload
is currently 3GB which is not enough. We have defined 3 GB because we
deployed on a local cluster, and the machine we used did not have enough
memory to allocate more storage.

Furthermore, the Artemis team needs to review the configuration values
we extracted in ConfigMaps and Secrets. There could be more values that
they should add there or even some that they should move from ConfigMaps
to Secrets and vice versa. The need for changes will most likely occur during
deployment to the different environments. Since we deployed only on a local
environment, we have most likely missed some of the configurations.

Finally, the Artemis team should also review the update strategies of
the workloads for the different environments. The strategy that we used
for all workloads is the RollingUpdate. This is the default strategy when
creating Deployments. This strategy aims to update without downtime by
first creating a new replica with the new version of the component [Mar20].
When the replica is in good health, the old version is marked as not ready
and removed from the available instances [Mar20]. There are other update
strategies available. For example, another available strategy in Rancher is
the Recreate strategy. The Recreate strategy is the simplest one. Kubernetes
will stop the old version and start the new one, and the two versions will not
run simultaneously [Mar20]. It is also possible to define a custom strategy
in Rancher. The Artemis team may decide to change the strategies to use
another more suitable one.

68

7.3. FUTURE WORK

7.3.3 Migrate to micro frontends

The Artemis client application takes several minutes to build and run on a
development environment. We also faced an issue with slow client test exe-
cution, which we are gradually solving by optimizing the existing client tests.
Therefore, the client application faces similar issues as the monolith server
application. Thus, we can migrate the client application to micro frontends.
The micro frontends architecture is similar to the microservices architecture
concept but in terms of the client application. It involves separating the client
application into smaller ones that lead to faster development and better ap-
plication performance [PAMM20]. Table 7.2 describes a visionary scenario
of migration of the Artemis client application to micro frontends.

Scenario name Migration to micro frontends

Participating actor
instances

alice,bob,john: Developer

Flow of events 1. Alice starts with the migration of the client
application to micro frontends. She changes the
architecture and extracts two micro frontend
applications from the client application. First,
she extracts a Lecture micro frontend application
that is responsible for managing lectures and
lecture units. Then she extracts a Discussion
micro frontend application that takes care of the
discussions between the course participants,
including creation, answering and reacting to
posts.

2. Bob is a new developer in Artemis and his task
is to continue with the migration Alice already
started. He also extracts two micro frontend
applications from the client application. First,
he extracts a Notifications micro frontend
application that is responsible for showing user
notifications. Then he extracts a Statistics
micro frontend application that renders and
shows all charts in Artemis.

3. John is the next developer who is interested
in migration to micro frontends. He has the
task of extracting the last micro frontend
application responsible for managing the
exercises, assessments and exams. He already has

69

CHAPTER 7. SUMMARY

Scenario name Migration to micro frontends

examples from the work of Alice and Bob which
he can use to finish the migration to micro
frontends process.

Table 7.2: Migration to micro frontends visionary scenario

7.3.4 Research the Availability of the Message Broker

The message broker is an essential part of the microservices architecture.
Therefore, we need to ensure that it is a highly available component. Ac-
cording to the ActiveMQ Artemis documentation2 which is our main source
for this section, we can provide high availability by creating groups of live
- backup instances. This means that each broker has one or more backup
brokers. They call the first broker the live broker. It is also the only broker
that servers ActiveMQ Artemis clients. The backup brokers are waiting for a
failure to occur. Suppose it happens, one of the backup brokers becomes the
live broker. If the live broker that has failed becomes again in good health,
it has a priority over the other backup brokers, and it is the next one that
will become the live broker.

There are also three strategies for the creation of backup brokers. The
first is replication, where the live and the backup brokers do not share the
same data storage. Instead, the backup brokers will duplicate the persistent
data they will receive over the network. Therefore, when a backup broker
starts up, it should synchronize the data, leading to a delay before it becomes
fully operational.

The second strategy is the shared store in which the live and backup
server share the same data directories. Therefore, this strategy eliminated
the need to synchronize the data. However, on the other side, it requires a
file system that is accessible by both the live and backup broker. Moreover,
when the backup broker starts up, it needs to load the journal from the
storage, which can also take some time if the amount of data is significant.

The third strategy is live only, which means there are no backup brokers.
There is an ongoing development in ActiveMQ Artemis related to Broker

Balancers3 which allows distributing the load among different available bro-
kers. This feature is still experimental, but we can keep an eye on it because
it is something we can use in the future.

2https://activemq.apache.org/components/artemis/documentation/1.0.0/ha.html
3https://activemq.apache.org/components/artemis/documentation/

70

List of Figures

4.1 Simplified UML component diagram showing the current server
architecture of Artemis. The figure is adapted from the com-
ponent diagram in the GitHub Artemis documentation1 20

4.2 UML component diagram showing the proposed server archi-
tecture of Artemis. The Artemis client communicates with the
gateway which routes the request to the Artemis server, the
User Management microservice or the Lecture microservice.
The Artemis server and the two microservices communicate
with each other through the message broker using JMS and
depend on the database. The gateway, the Artemis server ap-
plication and the two microservices register themselves in the
service registry which keeps track of their instances 22

4.3 UML communication diagram depicting the communication
between instances in user account registration process. A stu-
dent registers himself an account in the system which sends a
request to the API gateway, then the API gateway redirects
the request to the User Management microservice. The mi-
croservice creates the account and sends a message through
the message broker to the Artemis server application to send
an account activation email. 26

4.4 UML communication diagram depicting the communication
between instances in retrieving lecture details. A student open
a lecture in the Artemis client application which sends a re-
quest to get the lecture details from the API gateway, which
then redirects the request to the Lecture microservice. 26

71

LIST OF FIGURES

5.1 UML communication diagram illustrating the communication
between the service registry and the gateway, the Artemis
server application, the User Management microservice and the
Lecture microservice. All components register their instances
in the registry. The gateway fetches the registered instances
including details about their location. 30

5.2 UML communication diagram showing example communica-
tion between the Artemis server application and the User Man-
agement microservice through the message broker where re-
sponse is required. The Artemis server application puts a
message in a queue which the message broker sends to the
User Management microservice. The microservice puts the
response message in a response queue which the broker deliv-
ers to the Artemis server application. 33

5.3 UML component diagram illustrating the User Management
microservice . 34

5.4 UML component diagram illustrating the Lecture microservice 35

5.5 UML deployment diagram of the microservices architecture.
The diagram is adapted from the deployment of the monolith
application described in Securing and Scaling Artemis Web-
Socket Architecture by Simon Leiß [Lei20] 36

5.6 Dependency Graph describing the order to startup the sub-
systems. The gateway depends on the Artemis application
server and the two microservices. The Artemis application
server and the two microservices depend on the message bro-
ker, the database, and the service registry. The diagram is
adapted from the dependency graph for the monolith appli-
cation described in Securing and Scaling Artemis WebSocket
Architecture by Simon Leiß [Lei20] 38

6.1 Migration Strategy for migrating the Artemis server applica-
tion to microservices. The diagram describes the microservices
that could be extracted over 1.5 years. The diagram is adapted
from the ”Strangler application” migration strategy described
by Chris Richardson in [Ric19]. 41

6.2 Proposed architecture where Artemis application serves also
gateway features. It handles the server requests and redirects
only the requests related to the microservices. 42

6.3 Proposed architecture where the Artemis Application is in
front of the gateway. It routes only requests to the extracted
microservices. 43

72

LIST OF FIGURES

6.4 Proposed architecture where the Artemis server is an indepen-
dent application which registers to the service registry simi-
larly to the extracted User Management microservice. The
client sends the requests to the gateway which redirects them
to the proper server application. 45

6.5 Configuration for the generation of the User Management mi-
croservice . 48

6.6 Configuration for the generation of the Lecture microservice . 50
6.7 UML activity diagram illustrating the steps for extracting a

microservice from the monolith. 53

73

List of Tables

6.1 Endpoints extracted in the User Management microservice . . 49
6.2 Endpoints extracted in the Lecture microservice 51

7.1 Status of requirements implementation 64
7.2 Migration to micro frontends visionary scenario 70

74

Bibliography

[AVSTK18] Leila Abdollahi Vayghan, Mohamed Aymen Saied, Maria To-
eroe, and Ferhat Khendek. Deploying Microservice Based Ap-
plications with Kubernetes: Experiments and Lessons Learned.
2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), 2018.

[BBH19] Brendan Burns, Joe Beda, and Kelsey Hightower. Kubernetes:
Up and Running, 2nd Edition. O’Reilly Media, Inc., 2019.

[BD10] Bernd Bruegge and Allen H Dutoit. Object Oriented Software
Engineering Using UML, Patterns, and Java. Prentice Hall,
2010.

[CH21] Chaminda Chandrasekara and Pushpa Herath. Hands-on
GitHub Actions: Implement CI/CD with GitHub Action Work-
flows for Your Applications. APress Media, LLC, 2021.

[DLL+18] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel
Mazzara, Ruslan Mustafin, and Larisa Safina. Microservices:
How To Make Your Application Scale. Springer International
Publishing AG, 2018.

[Ing18] Joseph Ingeno. Software Architect’s Handbook: Become a suc-
cessful software architect by implementing effective architecture
concepts. Packt Publishing Ltd, 2018.

[JPM+18] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James
Lewis, and Stefan Tilkov. Microservices: The Journey So Far
and Challenges Ahead. IEEE Software, 2018.

[KS18] Stephan Krusche and Andreas Seitz. Artemis - An Auto-
matic Assessment Management System for Interactive Learning.
SIGCSE ’18, 2018.

75

BIBLIOGRAPHY

[KWGT21] Timothy Kinsman, Mairieli Wessel, Marco A. Gerosa, and
Christoph Treude. How Do Software Developers Use GitHub
Actions to Automate Their Workflows? 2021.

[Lei20] Simon Leiß. Securing and Scaling Artemis WebSocket Architec-
ture. 2020.

[Lin21] Matthias Linhuber. Towards a Kubernetes Supported Learning
Infrastructure at Scale. Master’s Thesis Proposal, 2021.

[LML20] Chia-Yu Li, Shang-Pin Ma, and Tsung-Wen Lu. Microservice
Migration Using Strangler Fig Pattern: A Case Study on the
Green Button System. IEEE, 2020.

[Luk18] Marko Lukša. Kubernetes in Action. Manning Publications,
2018.

[Mar20] Philippe Martin. Kubernetes: Preparing for the CKA and
CKAD Certifications. APress Media, LLC, 2020.

[New19] Sam Newman. Monolith to Microservices: Evolutionary Pat-
terns to Transform Your Monolith. O’Reilly Media, Inc., 2019.

[NH19] Pia Niemelä and Heikki Hyyrö. Migrating Learning Management
Systems Towards Microservice Architecture. 2019.

[PAMM20] Andrey Pavlenko, Nursultan Askarbekuly, Swati Megha, and
Manuel Mazzara. Micro-frontends: application of microservices
to web front-ends. Journal of Internet Services and Information
Security (JISIS), volume: 10, number: 2 (May 2020), pp. 49-66,
2020.

[PMA19] Francisco Ponce, Gastón Márquez, and Hernán Astudillo. Mi-
grating from monolithic architecture to microservices: A Rapid
Review. 38th International Conference of the Chilean Computer
Science Society, 2019.

[RF20] Mark Richards and Neal Ford. Fundamentals of Software Ar-
chitecture. O’Reilly Media, Inc., 2020.

[Ric19] Chris Richardson. Microservices Patterns. Manning Publica-
tions Co., 2019.

[Say17] Gigi Sayfan. Mastering Kubernetes. Packt Publishing Ltd, 2017.

76

BIBLIOGRAPHY

[SD20] Prabath Siriwardena and Nuwan Dias. Microservices Security
in Action. Manning Publications Co., 2020.

[SGP19] Chellammal Surianarayanan, Gopinath Ganapathy, and Raj
Pethuru. Essentials of Microservices Architecture: Paradigms,
Applications, and Techniques. Taylor Francis, 2019.

[SK20] Deepu Sasidharan and Sendil Kumar. Full Stack Development
with JHipster - Second Edition. Packt Publishing, 2020.

[Sri21] Rajiv Srivastava. Cloud Native Microservices with Spring and
Kubernetes: Design and Build Modern Cloud Native Applica-
tions using Spring and Kubernetes. BPB Publications, 2021.

77

	Introduction
	Problem
	Motivation
	Objectives
	Define a migration process
	Identify microservices
	Migrate two microservices
	Deploy on Kubernetes
	Implement a pattern related to microservices

	Outline

	Background
	Software Architectures
	Monolithic Architecture
	Microservices Architecture

	Microservices Patterns
	API Gateway
	Shared Database

	JHipster
	JHipster Registry
	ActiveMQ Artemis
	Docker
	Kubernetes

	Related Work
	WETO and Plussa
	Netflix
	Zalando
	Conclusion

	Requirements Analysis
	Current System
	Proposed System
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Scenarios
	Dynamic Model

	System Design
	Overview
	Design Goals
	Subsystem Decomposition
	Service Registry
	API Gateway
	Message Broker
	User Management Microservice
	Lecture Microservice
	Artemis Application Server

	Hardware Software Mapping
	Persistent Data Management
	Boundary Conditions
	Application Startup
	Application Shut Down
	Failure Handling

	Migration to Microservices
	Migration Strategy
	Decision on the Architecture
	Artemis as a Gateway
	Artemis Application in front of the API Gateway
	Artemis server as an independent application
	Conclusion

	Decomposition into microservices
	Creation of an API Gateway
	Extraction of User Management Microservice
	Extraction of the Lecture Microservice
	Microservice Extraction Steps

	Deployment
	Kubernetes Deployment
	Virtual Machine Deployment

	Discussion
	Findings
	Limitations

	Summary
	Status
	Realized Goals
	Open Goals

	Conclusion
	Future Work
	Continue with the Microservices Extraction
	Production Kubernetes deployment
	Migrate to micro frontends
	Research the Availability of the Message Broker

