
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

METIS: Multiplying
Engagement Through

Interacting Socially on the
Artemis Learning Platform

Lorena Schlesinger

FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

METIS: Multiplying Engagement Through

Interacting Socially on the Artemis Learning

Platform

METIS: Verstärkung des Engagements durch

Soziale Interaktion auf der Artemis

Lernplattform

Author: Lorena Schlesinger

Supervisor: Prof. Dr. Bernd Brügge

Advisor: Prof. Dr. Stephan Krusche

Date: 15.11.2021

I confirm that this master’s thesis is my own work and I have documented
all sources and material used.

Munich, 15.11.2021 Lorena Schlesinger

Abstract

Artemis is an interactive learning platform that is evolving towards a
powerful university course management system. Currently, Artemis only
supports basic communication features enabling users to ask questions on
specific exercises and lectures, which can be up- and down-voted. Instruc-
tors therefore complement Artemis with external communication platforms
such as Slack, Zulip, and Rocket.Chat which allow more elaborate course
discussions and information sharing. This causes redundancy and scattered
information, which bears the risk of worse learning experience, increased
moderation e↵orts, and decreased user engagement.

In this thesis, we address these problems by analyzing complementing
communication platforms, other course management systems, and popular
online class platforms. Based on the gained insights, we enhance Artemis’
current discussion capabilities. We add features for course-wide announce-
ments and duplication checks, as well as for pinning, archiving, moving,
resolving, searching, filtering, tagging, and referencing posts. Moreover, by
integrating emojis, we provide users with the ability to express reactions
and engage with their peers. The new capabilities allow for fast and intu-
itive information retrieval, e↵ective and e�cient discussion moderation, and
interactive conversations. They enhance Artemis’ capabilities with regard
to social interactions and information sharing to multiply the user engage-
ment. Our new communication features are currently actively used by 1,700
students in 9 university courses conducted with Artemis.

Zusammenfassung

Artemis ist eine interaktive Lernplattform, die sich zu einem vielseitigen
Kursmanagementsystem für den universitären Kontext entwickelt. Aktuell
unterstützt Artemis grundlegende Kommunikationsfunktionen. Studierende
können Fragen zu bestimmten Übungen und Vorlesungen stellen sowie für be-
stehende Fragen abstimmen. Um interaktive Diskussionen anzuregen und e�-
zienten Informationsaustausch zu gewährleisten, wird Artemis durch externe
Kommunikationsplattformen wie Slack, Zulip und Rocket.Chat ergänzt. Dies
führt zu Redundanz und verstreuten Informationen und birgt das Risiko von
schlechterer Lernerfahrung, erhöhtem Moderationsaufwand und geringerem
Engagement der Studierenden in Diskussionen.

In dieser Arbeit entwickeln wir Lösungen für dieses Problem, indem wir
ergänzende Kommunikationsplattformen, andere Kursmanagementsysteme
und beliebte Online-Kursplattformen analysieren. Basierend auf den gewon-
nenen Erkenntnissen verbessern wir die aktuellen Diskussionsmöglichkeiten
auf Artemis. Wir fügen Funktionen für kursweite Ankündigungen und einer
Duplikationsprüfung hinzu und ermöglichen das Anpinnen, Archivieren, Ver-
schieben, Auflösen, Suchen, Filtern, Markieren und Referenzieren von Bei-
trägen. Durch die Integration von Emojis bieten wir Studierenden außer-
dem die Möglichkeit, Reaktionen auszudrücken und auf einer non-verbalen
Ebene mit Mitstudierenden in Kontakt zu treten. Die neuen Funktionen un-
terstützen schnelle und intuitive Informationsbescha↵ung, e↵ektive und ef-
fiziente Moderation und Betreuung der Diskussion sowie lebendige und in-
teraktive Unterhaltungen. Sie erweitern die Möglichkeiten von Artemis im
Hinblick auf soziale Interaktionen und den Austausch von Informationen mit
dem Ziel, ein höheres Engagement der Studierenden auf der Lernplattform
zu erreichen. Die neuen Kommunikationsfunktionen werden derzeit von 1.700
Studierenden in 9 Universitätskursen aktiv genutzt, die auf der Lernplattform
Artemis abgehalten werden.

Contents

1 Introduction 2
1.1 Problem & Motivation . 3
1.2 Objectives . 8
1.3 Outline . 9

2 Comparison of State-of-the-Art 10
2.1 Compared Platforms . 10
2.2 Feature Comparison . 12

2.2.1 Topic Structuring and Organization 12
2.2.2 Post Discoverability . 13
2.2.3 Content Redundancy Reduction 15
2.2.4 Moderation E↵ort Reduction 16
2.2.5 Interaction . 17

2.3 Summary . 17

3 Requirements Analysis 19
3.1 Overview . 19
3.2 Current System . 19
3.3 Proposed System . 21

3.3.1 Functional Requirements 21
3.3.2 Nonfunctional Requirements 25

3.4 System Models . 26
3.4.1 Scenarios . 26
3.4.2 Use Case Model . 30
3.4.3 Analysis Object Model 32
3.4.4 Dynamic Model . 33
3.4.5 User Interface . 34

4 System Design 40
4.1 Overview . 40
4.2 Design Goals . 40

ii

4.3 Subsystem Decomposition . 41
4.3.1 Client Decomposition 41
4.3.2 Server Decomposition 43
4.3.3 Client-Server Communication 44

4.4 Persistent Data Management 45

5 Object Design 47
5.1 Reducing Content Redundancy 47
5.2 Reducing Text-based Moderation E↵ort 49

6 Discussion 51
6.1 Future Evaluation . 51
6.2 Design and Implementation Reflection 52

6.2.1 Search Bar . 52
6.2.2 Browsing Discussions 53
6.2.3 NLP for Post De-Duplication 54

7 Summary 56
7.1 Status of Requirements . 56
7.2 Future Work . 58
7.3 Conclusion . 59

iii

CMS Course Management System

IDE Integrated Development Environment

FAQ Frequently Asked Questions

FR Functional Requirement

HTTP Hypertext Transfer Protocol

METIS Multiplying Engagement Through Interacting Socially

MOOC Massive Open Online Course

NLP Natural Language Processing

NFR Nonfunctional Requirement

Q&A Question & Answer

UI User Interface

UML Unified Modeling Language

1

Chapter 1

Introduction

According to the annual report of Class Central1, “one third of the learners
that ever registered on a Massive Open Online Course (MOOC) platform
joined in 2020”. Courses in the field of computer science are particularly
making use of online learning advances2. The engagement of students in
online courses is key for achieving learning success, where engagement de-
pends, among other things, on social interaction and building a commu-
nity [RAB+18, FSP14]. For instance, there is evidence that the number of
students’ posts, e.g., in a discussion forum, is positively correlated with their
final grade [DRK20]. Similarly, prior research on MOOCs suggests that the
existence of a discussion forum has “a positive e↵ect on the probability to
partially complete a course” [Ada13]. Specifically for programming courses,
peer interaction has further been shown to be a significant factor for students’
motivation as peers can mutually support each other and share collectively
perceived struggles or successes [WRGW14].

Artemis is an automated assessment management system for interac-
tive learning that has been designed for large university courses and online
courses [KS18]. Since Artemis allows instructors to share course materials,
conduct examinations, and provide immediate, automated feedback for pro-
gramming exercises to students, it is evolving towards a versatile Course
Management System (CMS) [Mee03]. Such systems also require capabilities
to foster communication between students and instructors [WW07]. Artemis
currently only implements a basic set of communication capabilities initially
introduced by Meier [Mei19] and later enhanced by Gregurevic [Gre20]: The

1
Dhawal Shah. By The Numbers: MOOCs in 2020. https://www.classcentral.

com/report/mooc-stats-2020/, Nov 2020. Accessed: 2021-05-02
2
Dhawal Shah. The Second Year of The MOOC: A Review of MOOC Stats and Trends

in 2020. https://www.classcentral.com/report/the-second-year-of-the-mooc/,
Dec 2020. Accessed: 2021-05-01

2

https://www.classcentral.com/report/mooc-stats-2020/
https://www.classcentral.com/report/mooc-stats-2020/
https://www.classcentral.com/report/the-second-year-of-the-mooc/

1.1. PROBLEM & MOTIVATION

Question & Answer (Q&A) features enable users to ask questions on course
material, up- and down-vote questions, and, as a moderator3, approve an-
swers given by students. Yet, discussion forums are “not inherently e↵ec-
tive or engaging in themselves, [since] they are simply mechanisms” [CS18].
Hence, the mere existence of functionality to interact with peers without
further incentives is often not su�cient [Dix10].

1.1 Problem & Motivation

Due to Artemis’ limited communication capabilities, previous courses taught
on Artemis almost always extensively relied on external communication plat-
forms used in addition to Artemis [Mei19], such as Slack4. This bears ad-
ditional costs and requires labor-intensive moderating to manually sync the
communication activities between external platforms and Artemis Q&A. In
order to advance Artemis’ communication capabilities, two problem areas
need to be investigated: (1) problems identified in the usage of Artemis Q&A,
and (2) shortcomings of external communication platforms. In the following,
we describe the identified problems that are addressed by this thesis. They
are denoted by [Pi] to reference them throughout this document.

[P1] Insu�cient topic organization lacking course-wide topics. The
current implementation of Artemis Q&A is limited with regard to organizing
postings5 into contexts: Students can only add postings to specific exercises
or lectures, which implies that the posting is either associated to the exercise
or lecture context, respectively. However, especially during the first weeks of
a course, students have the need to ask organizational questions of course-
wide relevance or require technical support that is not related to a certain
exercise or lecture. During this phase, communication involves group form-
ing and expectation setting, whereas it shifts towards socializing, experience
sharing, and even celebration at the end of the course [PD16]. Due to the
shortcoming that students cannot converse on course-wide topics, courses
currently outsource these conversation types to other communication plat-
forms such as Slack and create dedicated channels (e.g., #announcements,
#organizational, #tools) to provide students with the required information.

3
We collectively refer to users performing moderation tasks, such as student support or

keeping the discussion content organized and up-to-date, as moderators. In the Artemis

context, these particularly comprise of tutors and instructors.
4https://slack.com/, Accessed: 2021-10-20
5
We collectively refer to posts and answer posts when we use the term posting. A post

marks the start of a discussion, where subsequent postings are answer posts.

3

https://slack.com/

CHAPTER 1. INTRODUCTION

Without providing an equally suitable space for discussing course-wide top-
ics on Artemis, instructors will refrain from using Artemis as the all-in-one
solution for their course.

Figure 1.1: Students’ confusion about topic organization on Slack [P1]

A related problem is a non-intuitive or overly fine-grained topic organi-
zation. For instance, if several channels with overlapping topics are used in
parallel, this can lead to improperly placed postings and ultimately confu-
sion of students [Hew18]. The real-world examples in Figure 1.1 showcase
the occurrence of this problem in Slack. If questions are posted to the wrong
discussion, channel, or, more generally, context, they might either be mis-
understood or get lost. As a matter of fact, relevant information being lost
in unstructured communication is one of the key challenges when designing
course communication [Luc20].

[P2] Insu�cient visibility and discoverability of posts. When analyz-
ing Slack channels used in addition to Artemis, the problem of information
overload becomes visible: Figure 1.2 shows how students report, that it was
hard for them to search for relevant information. Forum overload is the most
dissatisfying characteristics of MOOC [Hew18] and leads to insu�cient vis-
ibility of relevant information. Additionally, using the free version of Slack,
the access to team messages is limited to the 10,000 most recent ones6. With
course sizes of almost 2,000 students, discussion activity is only persisted
over a time span of some weeks, depending on the message volume. As a
consequence, visibility and discoverability clearly su↵er. This entails follow-
up problems such as redundancy, which is examined in [P3]. In summary, the
benefit of discussion forums is strongly bound to how content is searchable
and discoverable to avoid redundancy, misinformation, and confusion which
may ultimately lead to disengagement [DFCV15,GHG+20].

6https://slack.com/intl/en-de/pricing, Accessed: 2021-11-01

4

https://slack.com/intl/en-de/pricing

1.1. PROBLEM & MOTIVATION

Figure 1.2: Students’ di�culties to find information on Slack [P2]

[P3] Content redundancy. Prior research, such as work on Stack Over-
flow7, suggests that the increase of duplicated questions is accompanied by a
decline in information quality [SPD18,ZLXS15]. On Artemis, having redun-
dant and duplicated questions will lead to unnecessary e↵orts for moderators,
who have to read the post, identify and potentially mark it as duplication,
and link related posts. In the worst case, duplicated questions are answered
di↵erently causing inconsistencies and misunderstandings. This problem oc-
curs on both platforms, Artemis (see Figure 1.3a) and Slack (see Figure 1.3b)
as well as between them (see Figure 1.3c). We refer to this as intra-platform
redundancy [P3.1] and inter-platform redundancy [P3.2].

(a) Redundancy on Artemis

(b) Redundancy on Slack

(c) Redundancy between platforms

Figure 1.3: Intra-platform ([P3.1]) and inter-platform ([P3.2]) redundancy cap-

tured on Artemis and Slack

7https://stackoverflow.com/, Accessed: 2021-10-20

5

https://stackoverflow.com/

CHAPTER 1. INTRODUCTION

Furthermore, redundancy can occur due to private one-to-one conversa-
tions [P3.3]: Questions are (repeatedly) answered in private instead of tar-
geting everybody. Courses cannot benefit from shared knowledge in the
community, if conversations are held in private.

[P4] High, text-based moderation e↵orts. Moderating discussions on
Artemis can be both, resource and time intensive. The e↵ort is amplified by
the overhead induced through redundant posts and platform co-existence (see
[P3]). Yet, moderation is currently text-based only, meaning that moderators
have to textually describe links between posts or state if a post is resolved.

Figure 1.4 demonstrates two exemplary situations of text-based modera-
tion: (1) Instead of simply moving the misplaced posting to where it belongs
to, a moderator has to remind a student that the posting was added to the
wrong channel (see Figure 1.4a). (2) Instead of simply referencing an exist-
ing answer to the student’s question, a moderator verbosely explains that
the problem was solved elsewhere (see Figure 1.4b).

(a) Text-based moderation on Slack (b) Text-based moderation on Artemis

Figure 1.4: Text-based moderation e↵ort [P4]

Alongside, moderators not only spend time by answering questions, but
also by browsing through discussions to determine if their support is needed.
Currently, there is a mechanism to approve answers, where only moderators
can mark answers as approved that they perceive as correct. However, there
is no label that indicates if the problem that was raised in the author’s
original posting is actually resolved. Figure 1.5 exemplifies how moderators
rely on textual feedback if the provided answer resolves the problem under
discussion. Hence, Artemis Q&A misses to always involve the person that
raised the problem in the post resolution process.

6

1.1. PROBLEM & MOTIVATION

Figure 1.5: Text-based moderation to resolve problems on Artemis [P4]

[P5] Low interaction and emotional involvement. Artemis Q&A cur-
rently only supports social interaction to a limited degree: Agreement or
support can be expressed through up-voting, whereas all other reactions have
to be communicated via dedicated answer posts. According to research, on-
line conversations without using emojis bear the risk of an emotional gap,
making a dialog less vivid and nuanced [Hon20]. Figure 1.6 counteracts the
described problem by demonstrating the emotional involvement of students
in a course expressed by means of text-embedded emojis and emoji reactions.

Figure 1.6: Emotional involvement through emojis on Slack [P5]

Furthermore, users can neither reference other postings nor users. As can
be seen in Figure 1.4b this would also facilitate discussion moderation. Inter-
actively contributing to conversations on Artemis is currently only possible
when staying on the platform, notifications on certain topics or discussions
that a user is interested to follow cannot be received outside of Artemis.

Motivation. The described problems [P1�5] reveal several communication-
related limitations and ine�ciencies in Artemis. This motivates the devel-
opment of more elaborate communication capabilities for Artemis that are
aligned with existing research on e↵ective communication in CMSs [DFCV15,
GHG+20, Luc20]. To address the existing limitations, this thesis proposes
Multiplying Engagement Through Interacting Socially (METIS), a novel sub-
system for the open source Artemis project8.

8 https://github.com/ls1intum/Artemis, Accessed: 2021-11-11

7

https://github.com/ls1intum/Artemis

CHAPTER 1. INTRODUCTION

1.2 Objectives

After having outlined the prevalent problems due to Artemis’ limited com-
munication capabilities, we map the problems to objectives denoted by [Oj].

[O1] E↵ective and e�cient information retrieval. The e↵ectiveness
of a discussion forum depends on the information coverage and the filtering
capabilities that users can utilize to find relevant content [DFCV15]. The
information coverage includes all aspects of course communication, which
particularly also includes course-wide, more general topics. Since the profu-
sion of posts may impede or hinder finding relevant information [Hew18], we
aim to adopt established content structuring and querying features. METIS
should help students to find correct answers in one place, which has been
identified as an e↵ective means to prevent duplication [SPD18]. It is there-
fore a stated goal of METIS to optimize information retrieval in both aspects,
e↵ectiveness, i.e., users should find what they search for, as well as e�ciency,
i.e., they should not waste time and resources by doing so. This objective
thus addresses [P1], [P2], and [P3].

[O2] E↵ective and e�cient discussion moderation. We observe in-
creasing numbers of computer science course enrollments on Artemis. As
automated assessment management system for interactive learning, Artemis
specifically tries to enhance the individual learning experience of students
while keeping the e↵orts of instructors at a reasonable level [KS18]. This is
also a paradigm for designing METIS: Students’ assistance and moderation-
related tasks should be pursued by personnel resources e↵ectively and ef-
ficiently. Here, e↵ectiveness implies that moderators are enabled to o↵er
high quality support to students, by resolving their questions, as well as
highlighting relevant and discarding irrelevant information. E�ciency means
that moderators can complete these tasks as fast as possible and with low
personnel e↵ort. This specifically addresses [P3] and [P4].

[O3] Interactive conversations. A recent study reports that teams with
more “emoji engagement” are expected to be more e↵ective, underlining the
added value of emotionally nuanced conversation and nonverbal a�rmation
which forms team culture [AVWO20]. Reacting on postings with emojis
enables a better expression of a user’s a↵ective state [ZIFK17]. Addition-
ally, referencing postings, users, or other course content, such as specific
sequences of a lecture or tasks in a programming exercise, facilitates infor-
mation inter-connection. METIS aims to spur interactive conversations by

8

1.3. OUTLINE

providing features that add missing conversational aspects to Artemis, which
specifically addresses [P5].

1.3 Outline

At this point, we elucidated the problems inherent to the current state of
course communication while using Artemis as interactive learning platform.
We motivated the need for improvement and defined concrete objectives.

After we conduct the analysis of comparable communication platforms
in Chapter 2, we derive enabling features during the requirement analysis
in Chapter 3. In Chapter 4, we describe the system design for the commu-
nication capabilities that we introduce in this thesis. Chapter 5 describes
implementation details, whereas we discuss decisions that were taken as well
as evaluation aspects of METIS in Chapter 6. Finally, we summarize the
contributions made by this thesis and close with concluding remarks and
future work in Chapter 7.

9

Chapter 2

Comparison of State-of-the-Art

In this chapter, we assess the state-of-the-art by analyzing the communi-
cation capabilities of platforms from di↵erent domains. Therefore, we first
introduce the studied platforms, second, compare their communication fea-
tures, and third, summarize the insights. Upon this analysis, we will conduct
the requirement elicitation in Chapter 3.

2.1 Compared Platforms

In the following, we first investigate communication platforms that we find
to be used as complementary platforms alongside to Artemis courses at the
Technical University of Munich. These are Slack, Zulip1, RocketChat2, and
Moodle3. Second, Submitty4 and Aurora5 are considered, since they are
open source university CMSs that have a similar scope as Artemis. Third,
we analyze Stack Overflow as the leading global software development forum
and knowledge sharing platform. Last, in order to get diverse insights for
the system design developed within this thesis, we take into account the
communication features o↵ered by some of the most popular online course
providers, namely Coursera6, Udemy7, edX8, and FutureLearn9.

1https://zulip.com/, Accessed: 2021-10-20
2https://rocket.chat/, Accessed: 2021-10-20
3https://moodle.org/, Accessed: 2021-10-20
4https://submitty.org/, Accessed: 2021-10-20
5https://gitlab.iguw.tuwien.ac.at/aurora/aurora, Accessed: 2021-10-20
6https://coursera.org/, Accessed: 2021-10-20
7https://udemy.com/, Accessed: 2021-10-20
8https://edx.org/, Accessed: 2021-10-20
9https://futurelearn.com/, Accessed: 2021-10-20

10

https://zulip.com/
https://rocket.chat/
https://moodle.org/
https://submitty.org/
https://gitlab.iguw.tuwien.ac.at/aurora/aurora
https://coursera.org/
https://udemy.com/
https://edx.org/
https://futurelearn.com/

2.1. COMPARED PLATFORMS

Communication Platforms

• Slack: Slack is a commercial communication platform o↵ered by Slack
Technologies, a Salesforce company. As of 2019 Slack had more than
10 million users per day10.

• Zulip: Zulip is an open source communication platform maintained
by Kandra Labs, who have initiated the project and are also o↵ering
cloud-based Zulip hosting. By 2021, Zulip is used every day by Fortune
500 companies, leading open source projects, and thousands of other
organizations11.

• Rocket.Chat: Rocket.Chat is an open source communication platform
launched in 2015. Rocket.Chat Technologies further o↵ers enterprise
support for Rocket.Chat which is used by more than 12 million users
across 150 countries as of 202112.

University Course Management Systems

• Moodle: Moodle is an open source learning management system that
is used by roughly 300 million users worldwide as of 202113.

• Submitty: Submitty is an open source course management from the
Rensselaer Center for Open Source Software (RCOS). In spring 2020,
their software was used by more than 2,000 students and 242 professors,
teaching assistants, and mentors14.

• Aurora: Aurora is an open source learning platform developed and
used at the Human Computer Interaction Group at the Institute of Vi-
sual Computing & Human-Centered Technology at the Vienna Univer-
sity of Technology [Luc20]. As of 2020, three lectures with around 600–
800 participating students were conducted on that platform [Luc20].

10https://slack.com/intl/de-de/blog/news/slack-has-10-million-daily-
active-users, Accessed: 2021-10-28

11https://blog.zulip.com/2021/05/13/zulip-4-0-released, Accessed: 2021-10-28
12https://de.rocket.chat/enterprise, Accessed: 2021-10-28
13https://stats.moodle.org/, Accessed: 2021-10-28
14https://news.rpi.edu/content/2020/05/27/student-built-program-

supports-thousands-during-remote-learning-experience, Accessed: 2021-10-

28

11

https://slack.com/intl/de-de/blog/news/slack-has-10-million-daily-active-users
https://slack.com/intl/de-de/blog/news/slack-has-10-million-daily-active-users
https://blog.zulip.com/2021/05/13/zulip-4-0-released
https://de.rocket.chat/enterprise
https://stats.moodle.org/
https://news.rpi.edu/content/2020/05/27/student-built-program-supports-thousands-during-remote-learning-experience
https://news.rpi.edu/content/2020/05/27/student-built-program-supports-thousands-during-remote-learning-experience

CHAPTER 2. COMPARISON OF STATE-OF-THE-ART

Forum

• Stack Overvflow: Stack Overflow is a discussion and Q&A website
for programming content. As of 2021 Stack Overflow has more than 16
million registered users15.

Online Course Platforms

• Coursera: Coursera is a MOOC provider founded at Stanford Univer-
sity in 2012. As of 2021 roughly 8,000 courses are o↵ered on Coursera
by partners and universities from more than 54 countries16.

• Udemy: Udemy is a MOOC provider that has more than 44 million
registered students and more than 183,000 courses o↵ered in 75 lan-
guages17.

• edX: edX is an open source MOOC platform that has more than 35
million users as of 202118.

• FutureLearn: FutureLearn is an online education provider based in
the UK, that partners with around 175 top international universities
and specialist organisations to o↵er online courses and degrees since
201319.

2.2 Feature Comparison

To describe the state-of-the-art, we divide the features of the compared plat-
forms into five groups where each group is associated to one area of improve-
ment. We approach (at least) one of the problems identified in Section 1.1
per group.

2.2.1 Topic Structuring and Organization

We checked the selected platforms for features to structurally separate or-
ganizational from content-related discussions. The results are summarized
in Table 2.1. The communication platforms Slack, Zulip, and Rocket.Chat
o↵er the possibility to create dedicated channels for certain topics, where

15https://stackexchange.com/sites?view=list#users, Accessed: 2021-10-28
16https://www.coursera.org/about/partners, Accessed: 2021-10-28
17https://about.udemy.com/, Accessed: 2021-10-28
18https://www.edx.org/about-us, Accessed: 2021-10-28
19https://www.futurelearn.com/partners, Accessed: 2021-10-28

12

https://stackexchange.com/sites?view=list#users
https://www.coursera.org/about/partners
https://about.udemy.com/
https://www.edx.org/about-us
https://www.futurelearn.com/partners

2.2. FEATURE COMPARISON

one of them could also be the course organization. In Moodle, course ad-
ministrators can create posts either in a general discussion forum or in an
announcements forum, which allows to distinguish between bi-lateral discus-
sion and uni-lateral information sharing of organizational character. While
Submitty does not provide a separate space to discuss organization-related
content, Aurora has dedicated discussion boards for general information and
frequently asked questions. All MOOC providers, except for FutureLearn,
also provide capabilities for course-wide announcements or separated organi-
zational discussion topics.

Topic Structuring and Organization

Platform Structural Separation of Organizational Topics

Slack Dedicated channels
Zulip Dedicated channels

Rocket.Chat Dedicated channels
Moodle Announcements forum

Submitty -
Aurora 3

Stack Overflow -
Coursera Dedicated discussion forum
Udemy Announcement section

edX Discussion topics
FutureLearn -

Table 2.1: Platform comparison – Features approaching [P1]

2.2.2 Post Discoverability

In this section, we compare the selected platforms with regard to features
that increase the discoverability of posts.

The first set of features addresses discoverability by providing means to
filter and sort posts. Table 2.2 lists features including text search and o↵ered
sort and filter options. We find that besides Aurora and FutureLearn, all
platforms o↵er a text search to the user, which can be seen as the most
e�cient way to query existing discussions for specific content. If sort options
are provided, a user can always choose to sort the posts chronologically. In
the case of edX, this refers to the most recent activity that is related to a post
and not the timestamp of creation. Stack Overflow provides this sort option
in addition to the creation date. Other platforms additionally o↵er to sort by
topics (Moodle), number of answers or comments (Moodle, Submitty, Stack
Overflow), and votes (Stack Overflow, Coursera, Udemy, edX, FutureLearn).
Slack is the only pure communication platform that o↵ers sorting, but only
after querying or filtering the Slack workspace. The filter options depend
on the features o↵ered on the platform: If users can tag their posts, this

13

CHAPTER 2. COMPARISON OF STATE-OF-THE-ART

can also be used as filter criterion (Submitty, Stack Overflow). The same
applies to bookmarked or followed discussions (Zulip, Rocket.Chat, Udemy,
FutureLearn). Communication platforms typically do not follow the Q&A
concept. Hence, these platforms o↵er filtering in channels, whereas on most
other platforms users can filter based on if a question was already answered
(Stack Overflow, Coursera, Udemy, edX). On the Submitty platform users
can filter posts that are not yet resolved.

Post Searching, Filtering, and Sorting

Platform Text Search Sort Options Filter Options

Slack 3 Relevance | Date Channels | User | Date | Reaction
Content Type | Message Type

Zulip 3 - Channel | Topic | Private | Own |
Post ID | Bookmarked | Only New |
Content Type | Message Type

Rocket.Chat 3 - Channel | Bookmarked
Moodle 3 Date | Topic | Answers -

Submitty 3 Date | Answers Tags | Problem State
Aurora - - New

Stack Overflow 3 Date | Activity | Votes |
Not answered | Frequent

Not answered | Accepted answer |
Tags

Coursera 3 Date | Votes Answered | Not answered
Udemy 3 Date | Recommended | Votes Own | Followed | Not answered

edX 3 Activity | Votes New | Not answered | Topics
FutureLearn - Date | Votes Bookmarked | Own | Followed

Table 2.2: Platform comparison – Features approaching [P2]

The second set of features adds metadata to posts to facilitate their dis-
covery. As shown in Table 2.3, this includes post bookmarking, pinning, and
tagging, as well as providing meta titles to posts. Bookmarking allows a
certain user to mark a post of personally perceived relevance that should be
accessible very fast, e.g., through filtering options. Pinning a post is only
allowed for authorized users because it will lead to a change of the post vis-
ibility for all users, i.e., by listing it at the top of a view or in a dedicated
section. We observe that on all platforms one of those two options is pro-
vided, indicating that users seek for features to highlight and mark content.
Furthermore, to enhance visibility and discoverability, several platforms al-
low users to tag posts or add summarizing meta titles. The concept of titles
is used on every platform except for Slack, Rocket.Chat, Aurora, and Future-
Learn. For the communication platforms Slack and Rocket.Chat a possible
explanation could be, that titles would visually and logically interrupt the
reading flow of a chat-like dialog. Tagging a post is a crucial feature on Stack
Overflow. Stack Overflow states that: “Tags are a means of connecting ex-
perts with questions they will be able to answer by sorting questions into

14

2.2. FEATURE COMPARISON

specific, well-defined categories”20. Tags are also used for recommendations,
duplication checks, and platform analysis [MMM+11,ZLXS15,SPD18]. Sub-
mitty forces users to label each discussion thread with one or more so-called
categories which can be customized21.

Discoverable Post Metadata

Platform
Book-

mark

Pin Thread /

Post

Post

Title
Tags

Slack 3 3 - -
Zulip 3 3 Thread topic -

Rocket.Chat 3 3 - -
Moodle 3 - 3 -

Submitty 3 3 3 3
Aurora - 3 - -

Stack Overflow 3 - 3 3
Coursera - 3 3 -
Udemy - Dedicated section 3 -

edX - 3 3 -
FutureLearn 3 - - -

Table 2.3: Platform comparison – Features approaching [P2]

2.2.3 Content Redundancy Reduction

Features that reduce content redundancy are rarely integrated in the com-
pared platforms as can be seen in Table 2.4. The communication platforms
Slack, Zulip, and Rocket.Chat do not entail such features because they in-
herently do not care about duplicated content. The course management
platform Submitty tries to restrict the number of duplicated posts by provid-
ing moderators the feature to merge discussion threads with similar content.
Submitty also allows users to write posts as anonymous author, for which
only the moderators are able to access the username. Thereby, questions
including sensitive information can be posted publicly, but do not hurt rules
with regard to data protection. This prevents redundant private conversa-
tions. Stack Overflow incorporates elaborate algorithms to detect duplica-
tion, on the one hand, and actively prevent the creation of question clones,
on the other hand. During the creation of a question, the user is automati-
cally suggested similar questions. Only if the user actively confirms that the
identified, similar questions di↵er, they22 can proceed with creating the new
question. Although online course platforms have large numbers of posts due

20https://stackoverflow.com/help/tagging, Accessed: 2021-11-01
21https://submitty.org/student/communication/forum, Accessed: 2021-11-01
22
We use the gender-neutral singular-they when referring to a person of either or un-

known gender.

15

https://stackoverflow.com/help/tagging
https://submitty.org/student/communication/forum

CHAPTER 2. COMPARISON OF STATE-OF-THE-ART

to the high number of participants in MOOCs, they seem to not explicitly
prevent duplication. Among the compared platforms, only edX and Aurora
make use of a Frequently Asked Questions (FAQ) section to answer the most
common questions.

Content Redundancy Reduction

Platform
Post Similarity

Comparison

Merge Threads/

Posts
FAQ Anonymous Posts

Slack - - - -
Zulip - - - -

Rocket.Chat - - - -
Moodle - - - -

Submitty - 3 - 3
Aurora - - 3 -

Stack Overflow 3 - - -
Coursera - - - -
Udemy - - - -

edX - - 3 -
FutureLearn - - - -

Table 2.4: Platform comparison – Features approaching [P3]

2.2.4 Moderation E↵ort Reduction

We investigated how the selected platforms attempt to reduce moderation
e↵ort and list the relevant features in Table 2.5. These features comprise of
adding non-textual question state indication, that facilitate understanding if
a question was already resolved and allow users to report posts that violate
discussion rules. Since the online communication platforms Slack, Zulip, and
Rocket.Chat serve the purpose of chatting, but not necessarily host forum-
like discussions, they do not provide any dedicated features to indicate a non-
textual question state indication. When being used in addition to Artemis,
we observe that students as well as moderators use emoji reactions to indicate
whether a question is resolved on Slack (e.g., the thumbs-up emoji).

Only on the platforms Submitty and Stack Overflow, users can state that
the problem or question described in a post is resolved. If a Stack Overflow
user accepts one of the given answers, they indicate, that the provided so-
lution worked for them. Submitty o↵ers a checkmark icon next to the post
that can be activated to mark the associated question as resolved.

The online course platforms as well as Rocket.Chat provide users with
the possibility to report a post, e.g., if it violates established communication
or course rules. This also reduces the e↵ort of moderators, who would need
to manually check the plethora of postings for such violations.

16

2.3. SUMMARY

Moderation E↵ort Reduction

Platform Non-Textual Question State Report Post

Slack Emoji reaction -
Zulip - -

Rocket.Chat - 3
Moodle - -

Submitty Resolved icon -
Aurora - -

Stack Overflow Accepted answer 3
Coursera - 3
Udemy - 3

edX - 3
FutureLearn - 3

Table 2.5: Platform comparison – Features approaching [P4]

2.2.5 Interaction

As summarized in Table 2.6, interaction between platform users is a key
requirement of all the compared platforms. On all platforms except for Moo-
dle, Submitty, and Aurora, users can express (dis-)agreement or opinions on
other posts by voting or reacting with emojis. The communication platforms
integrate so-called reaction bars to select emojis as a reaction to some mes-
sage. On the other hand, the Stack Overflow forum as well as the course
management platform Aurora and the online course platforms rely on simple
up- or down-voting mechanisms.

When it comes to referencing other posts, we can state that FutureLearn
does not o↵er such a feature. Submitty and Aurora are not publicly available,
but they do not advertise this feature. Yet, all other platforms included in the
comparison allow referencing other posts. Directly referring to other users
is a common feature on online communication platforms that therefore rely
on the commonly used and intuitive pattern of prefixing the username with
‘@’. This in turn leads to a notification for the referenced user. On Stack
Overflow, user referencing is only allowed in comments to prevent questions
from being asked to specific users rather than the community. To inform
involved users on updates on a certain post or thread, almost all platforms
o↵er a feature to enable such notifications and follow an ongoing discussion.

2.3 Summary

The resulting groups of features per area of improvement as well as their
popularity in platforms of di↵erent domains build the basis for the require-
ments elicitation and analysis that is carried out in the following Chapter 3.
We draw the following conclusions from our state-of-the-art analysis:

17

CHAPTER 2. COMPARISON OF STATE-OF-THE-ART

Interaction

Platform Up-vote Down-vote
Emoji

Reactions

Single Post

References

User

References

Follow

Discussion

Slack - - 3 3 3 3
Zulip - - 3 3 3 3

Rocket.Chat - - 3 3 3 3
Moodle - - - 3 - 3

Submitty - - - ? - 3
Aurora 3 3 - ? - ?

Stack Overflow 3 3 - 3 In comments 3
Coursera 3 - - 3 - 3
Udemy 3 - - 3 - 3

edX 3 - - 3 - 3
FutureLearn 3 - - - - 3

Table 2.6: Platform comparison – Features approaching [P5]

• It is important to create space for uni-lateral information sharing, e.g.,
for organizational matters or technical issues and separate this commu-
nication from content-related discussions.

• Features for querying existing content e�ciently such as filters or text
search are widespread. Users expect to be able to narrow down the
vast amounts of content according to their needs.

• Contributions on platforms are not restricted to pure content. They
include metadata such as titles, tags, or other forms of highlighting
that increase discoverability.

• The more contributions a platforms contains, the more important are
features that reduce or facilitate moderation e↵ort. Platforms rely on
visual instead of textual indication for the quality of an answer, the
state of a question, or the role of a user.

• Content redundancy can be tackled in di↵erent ways but seems to be
neglected at most parts. We find the duplication check that is employed
on the Stack Overflow as the most promising attempt to prevent du-
plicated questions.

• Users are provided with mechanisms to express their agreement, dis-
agreement, or other types of reactions on posted content. Emojis can
be used for that purpose.

18

Chapter 3

Requirements Analysis

3.1 Overview

In this chapter, we analyze the current system 3.2 and describe the purpose
of the proposed METIS subsystem 3.3. We elicit requirements that are fur-
ther translated into a so-called system models which ensure that developers
communicate their understanding of the system under construction to the
users properly [BD09].

3.2 Current System

Artemis Q&A (at Artemis version 4.12.4) evolved through contributions by
Meier [Mei19] and Gregurevic [Gre20]. It provides basic functionality for
students to ask questions, and moderators or other students to provide an-
swers to these questions. In the current system, the used terminology hence
knows the two entities Questions and Answers. For our new implementa-
tion, i.e., for the METIS subsystem, we replaced the terminology by more
general terms: A Discussion starts with a Post–which is not a question per
se–that can be responded to through Answer Posts. However, for describing
the current system (Artemis 4.12.4), we stick to the old terminology in this
section.

For courses that activate the Artemis Q&A feature, each exercise and
lecture page is integrated with a collapsible side panel listing the according
Questions and Answers. Figure 3.1 captures the described discussion section
for a modeling exercise. Within that panel, questions are sorted by up-
votes and chronologically. Editing or deleting a question or answer is only
permitted to authors and moderators. In Figure 3.1, the student Alice is
only allowed to modify the question she posted. This is indicated by the

19

CHAPTER 3. REQUIREMENTS ANALYSIS

icons at the top right corner. For adding or editing questions and answers,
users are provided with an integrated markdown editor as exemplary shown
in Figure 3.2.

Figure 3.1: Exercise with one question on Artemis 4.12.4

Figure 3.2: Integrated markdown editor to add a question on Artemis 4.12.4

The most relevant of the basic discussion capabilities on Artemis 4.12.4
are depicted by Figure 3.3: Students can up- and down-vote questions to
give them higher or lower priority by clicking on up or down arrows next to
the questions where the number of resulting votes is displayed. The answers
of a question can further be collapsed and expanded (see Figure 3.3a). Mod-

20

3.3. PROPOSED SYSTEM

(a) Question with collapsed answer (b) Approved answer

Figure 3.3: Interacting with questions and answers on Artemis 4.12.4

erators can approve given answers to mark them as correct. This is visually
reflected by a green coloring of the according answer (see Figure 3.3b).

3.3 Proposed System

3.3.1 Functional Requirements

The open source character of the Artemis software project implies that users
can actively request new features or adjustments for shortcomings of the
current system. This ensures that Artemis’ developers address changing
needs as well as usability issues. During the requirements elicitation phase
we not only analyzed the state-of-the-art in Chapter 2, but also specifically
tried to collect requirements from Artemis users with di↵erent roles such as
students, tutors, or instructors. Consequently, the Functional Requirements
(FRs) that are not included in the tables provided in Section 5.1 originate
from direct user input.

We divide the FRs into five areas of improvements that map to the prob-
lems identified in Section 1.1: Topic Structure and Organization, Post Dis-
coverability, Content Redundancy Reduction, Moderation E↵ort Reduction,
and Interaction.

Topic Structuring and Organization

The following FRs base on the feature comparison summarized in Section 2.2.1
and the analysis of external communication platforms used in parallel to

21

CHAPTER 3. REQUIREMENTS ANALYSIS

Artemis. These FRs aim to improve the currently insu�cient topic organi-
zation which lacks course-wide topics ([P1]).

FR1.1 Post content of course-wide relevance: Users are enabled to create
postings of course-wide relevance, detached from specific exercises or
lectures.

FR1.2 Choose between predefined course-wide topics for a course
post: Users can select one of the predefined course-wide topics to create
posts of course-wide relevance.

Post Discoverability

We further derive FRs that improve the visibility and discoverability of posts
([P2]). State-of-the-art features are described in detail in Section 2.2.2.

FR2.1 Summarize a post by title: Post authors can summarize the content
of their post by providing a title that enables other users to grasp the
content of the post very quickly.

FR2.2 Tag a post: Post authors can tag their post to classify the content
by creating new tags or reusing tags from existing posts. This enables
other users to search for related posts by tag.

FR2.3 Provide a course discussion overview listing all posts: There
is one view that serves as course-wide discussion overview and lists
all posts within the course, regardless of their context, i.e., exercise,
lecture, or course-wide.

FR2.4 Navigate to a posting: Users can navigate to a posting in any con-
text.

FR2.5 Search a post by text: Users can search all posts within a course by
providing a search term (i.e., text-based search) that refers to the title,
content, or tag of a post.

FR2.6 Search a post within a certain context: Users can restrict their
text-based search to a certain context.

FR2.7 Filter posts by context: Users can filter all posts within a course by
selecting a certain context that they are interested in.

FR2.8 Filter posts by answer state: Users can filter posts by the answer
state, that is, if there are any answers or not, or if there is a resolving
answer among the provided ones.

22

3.3. PROPOSED SYSTEM

FR2.9 Filter posts to own posts only: Users can filter posts to only see
posts they have created.

FR2.10 Filter posts to posts that the user answered or reacted on:
Users can filter posts by contribution state, i.e., if they authored an
answer post or reacted to the discussion.

FR2.11 Sort postings by date: Users can sort postings by creation date.

FR2.12 Sort posts by votes: Users can sort posts by a popularity metric
such as number of votes.

FR2.13 Sort posts by answers: Users can sort posts by answer count.

FR2.14 Pin a post: Moderators can pin posts in order to list them at the top
in the according context i.e., give them a higher visibility.

FR2.15 Archive a post: Moderators can archive posts in order to list them
in any view at the bottom of any rendered list of posts i.e., give them
a lower visibility.

FR2.16 Bookmark a post: Users can bookmark posts that are of special
interest for them and that should be found quickly.

Content Redundancy Reduction

The identified problem of redundant, duplicated content ([P3]) that limits
e�cient and e↵ective information retrieval is addressed by the FRs suggested
in the following. Those base on the approaches used on other platforms as
compared in Section 2.2.3.

FR3.1 Conduct a similarity check during post creation: During the
creation of a post, the author should be automatically informed about
the similar posts that already exist to avoid duplication of questions.

FR3.2 Merge duplicated posts: Moderators can merge posts that con-
tribute to the same discussion.

FR3.3 Provide a FAQ section: Moderators can provide an FAQ section
that anticipates common questions that are expected to arise during
the course

FR3.4 Write a post anonymously: Students can publish posts anony-
mously instead of relying on private one-to-one conversations with mod-
erators.

23

CHAPTER 3. REQUIREMENTS ANALYSIS

FR3.5 Import postings of previous courses: Instructors can import exer-
cises, lectures, or courses together with their accompanying discussions,
i.e., posts and answer posts.

Moderation E↵ort Reduction

The following FRs specifically aim at reducing moderation e↵orts ([P4]). Re-
sults of the state-of-the-art analysis that concern platform moderation e↵ort
are presented in Section 2.2.4.

FR4.1 Mark a post as resolved: Post authors can mark their problem
as resolved by marking the answer that solved the origin problem as
correct, i.e., resolving.

FR4.2 Change the context of a post: Moderators can change the context
of a post when the edit this post.

FR4.3 Enable internal communication for moderators: Moderators have
a dedicated communication channel, where they can organize and com-
municate topics that are private within that authorized group.

FR4.4 Report a posting: Users can report a postings if the content violates
certain communication rules.

Interaction

Within Section 2.2.5 of the state-of-the-art analysis, we investigate if other
platforms have mechanisms in place that increase social engagement. The fol-
lowing FRs capture enhancements for user interaction and more emotionally
involved communication ([P5]).

FR5.1 Use emojis within a posting: Users can embed emojis within the
post content they create to express a broader range of a↵ective states.

FR5.2 React on a posting with emojis: Users can (emotionally) react on
postings with emojis.

FR5.3 Use emojis to up-vote a post: Users can react with dedicated emojis
to express agreement or consent with posts.

FR5.4 Reference a user: Users can reference other users that participate in
the course.

24

3.3. PROPOSED SYSTEM

FR5.5 Reference a posting: Users can reference other postings to create
links between postings.

FR5.6 Reference a course entity: Users can reference course entities such
as lecture units or certain exercise tasks inside postings.

FR5.7 Reward a user for discussion contributions: Users that have most
communication activity and whose answers resolved posts are rewarded.

FR5.8 Notify a user on discussion events outside Artemis: Users can
follow a discussion to stay informed about updates via notification
mechanisms (e.g., email or push notification message).

3.3.2 Nonfunctional Requirements

As part of the requirements elicitation, we also define requirements that cover
nonfunctional aspects of the system [BD09]. We make use of the established
FURPS+ model [JBR99] to list the identified Nonfunctional Requirements
(NFRs) for the proposed system.

Usability

NFR1.1 Understandability: Users should be able to easily understand how
to use the newly introduced features and how to improve their learning
or moderation experience by making use of them.

NFR1.2 Documentation: Users should be able to access comprehensive doc-
umentation and tooltips that explain features in simple language.

NFR1.3 Consistency: The system should depend on readily available coloring
and font schemes to not break with existing design patterns.

Reliability

NFR2 Security: The system should prevent malicious user input from caus-
ing harm or leaking data to unauthorized users. Besides, the new
communication capabilities should not ease so-called Denial of Service
(DoS) attacks.

25

CHAPTER 3. REQUIREMENTS ANALYSIS

Performance

NFR3.1 Real-time Support: The system should support real-time updates
of the User Interface (UI) in case of newly added, deleted, or updated
postings or reactions.

NFR3.2 Response Time: The system should immediately respond to a user
interaction. This could be a loading spinner within the clicked button
indicating that the client is waiting for the server response or, in case
of a quick server response, immediately show the updated UI.

Supportability

NFR4 Maintainability: The current implementation of Artemis Q&A suf-
fers duplication in client and server code which makes it di�cult to
consistently refactor code and fix bugs as they occur in multiple places.
[NFR4] aims at modularized code design by following the SOLID prin-
ciples [Mar14]. This reduces code clones, which imply manual syncing
e↵orts, and eases code refactoring and bug fixing.

3.4 System Models

3.4.1 Scenarios

In this section, we provide two types of scenarios: visionary scenarios and
demonstration scenarios. Each scenario represents an instance of a use case
and describes a flow of events [BD09]. The visionary scenario prototypes
an idea of the future system, whereas the demo scenarios, also called as-is
scenario, describe the current situation and can be validated by users [BD09].

26

3.4. SYSTEM MODELS

Visionary Scenarios

Scenario name Targeted notification and smart moderator responsibility

Participating actor
instances

Alice : Student in course Patterns of Software Engineering
Bea : Tutor, that previously answered questions covering the

topic JavaFX in programming exercises

Charlie : Tutor, that previously answered questions related

to exercises on architectural patterns

Donald : Tutor, that previously answered questions related to

exercises on behavioral patterns

Flow of events 1. Alice is working on an exercise on the architectural pattern

Model View Controller and is not able to run the project in

her Integrated Development Environment (IDE)

2. Alice creates a post with the content “When running the

project, I get the Error: JavaFX runtime components are

missing, but are required to run the application”

3. Alice uses the tags ‘JavaFX’ and ‘Eclipse’ to indicate that

her problem is related to the JavaFX framework and she is

using the Eclipse IDE

4. Bea receives a mobile push notification about a new question

targeting her area of expertise, as her answers to questions

involving JavaFX always resolved the students’ problems

5. Charlie receives a mobile push notification about a new ques-

tion targeting an exercise that he previously answered ques-

tions for

6. Bea clicks the provided link in her push notification and is

navigated to Alice’s question

7. Bea answers the question with the hint that Alice should

import the exercise as a Maven project in Eclipse

8. Alice is notified via mobile push notification that her ques-

tion was answered and clicks the provided link to navigate

to Bea’s reply

9. Alice follows Bea’s instructions and confirms that the de-

scribed error is gone by marking Bea’s answer as resolving

10. Charlie logs into Artemis later to check the questions that

Artemis recommended him to answer and sees that Alice’s

problem is already resolved

11. Donald logs into Artemis later to check any questions that

Artemis recommended him to answer based on his previous

engagement in discussions; he does not see Alice’s post

Table 3.1: Visionary scenario 1

27

CHAPTER 3. REQUIREMENTS ANALYSIS

Demo Scenarios

Scenario name Exercise specific question with reference

Participating actor
instances

Alice : Student in course Patterns of Software Engineering
Bea : Tutor responsible for technical support

Charlie : Tutor responsible for Template Method Pattern
exercise

Flow of events 1. Alice is working on a Template Method Pattern program-

ming exercise and does not manage to achieve 100% with

her implementation, even though she is sure that everything

is implemented correctly and there has to be a general, tech-

nical issue

2. Alice creates a post with the content “Could someone from

the tutors please check my code? I really do not think that

I have a mistake but I am still missing 5 percent... Maybe

something went wrong with the test?” and assigns it the

course-wide topic ‘Tech Support’

3. Alice uses the tag ‘Tests’ to indicate that there might be a

problem with the automatic test runs

4. Bea reads this post when checking for new posts in her daily

routine by filtering for unresolved posts in this context

5. Bea knows, that this is not a general, or course-wide prob-

lem but rather specifically related to the template method

pattern exercise; she edits the post and changes the context

to ‘Template Method Exercise’

6. Charlie reads this post when checking for new posts in his

daily routine by filtering for unresolved posts in this context

7. Charlie knows that other students faced similar problems in

that exercise, which he solved along the discussion of the

post with id 30; he simply uses the post reference (‘#30’) to

answer Alice’s post in a very short reply.

8. Alice is notified about the new reply to her post and checks

the proposed solution on the exercise page the post was

moved to by Bea

9. Alice marks the answer post from Charlie as resolving after

having checked that all tests passed when following the steps

described in the post with id 30

Table 3.2: Demo scenario 1

28

3.4. SYSTEM MODELS

Scenario name Course organization without duplicated questions

Participating actor
instances

Alice, Bob: Students
Charlie : Tutor responsible for organizational issues

Donna : Instructor

Flow of events 1. Alice is interested in participating in a repetitorium for the

software engineering course she took this semester

2. Alice visits the course discussion overview of that course and

filters the posts to those addressing organizational questions

by setting the context filter accordingly

3. Alice does not find any information on an upcoming repeti-

torium among the filter matches

4. Alice creates a post with the course-wide topic ‘Organization’

including a title ‘Retake Repetitorium’

5. Bob, one day later, wants to ask if there is a repetitorium

o↵ered in that same course

6. Bob navigates to the course discussion overview and imme-

diately starts to create a new post

7. Bob enters a post title including the term ‘Repetitorium’

8. Bob is automatically provided a list of similar posts right

below the title input field

9. Bob browses the suggested posts and finds the post created

by Alice having a similar title

10. Bob expands the question content, which turns out to ad-

dress the same issue

11. Bob navigates to the post by clicking the title and recognizes

that there is no answer yet

12. Bob votes for question with a ‘+’ emoji to express, that he

is also interested in getting information on the repetitorium

13. Bob reacts with the ‘nerd’ emoji to make other people laugh

reading this post

14. Charlie visits the course discussion overview, filters on or-

ganizational questions, and checks the option to only show

unresolved posts as he wants to know, which students require

organizational information

15. Charlie sees Alice’s post at the top having one vote

16. Charlie starts the discussion and provides a short information

on the preliminary plans for holding a repetitorium

17. Charlie marks his answer as resolving and thereby sets Alice’s

post to resolved

18. Donna realizes that students are interested in this topic as

the retake exam approaches and decides to create an an-

nouncement including all relevant information

19. Alice, Bob and all other course students automatically re-

ceive an email that notifies them about the new announce-

ment

Table 3.3: Demo scenario 2

29

CHAPTER 3. REQUIREMENTS ANALYSIS

Scenario name Real-time updates of ongoing discussions on multiple clients

Participating actor
instances

Alice : Student
Donna : Instructor

Flow of events 1. Donna uses filters to browse the course discussion overview to

search for unresolved, organizational questions that require

her input

2. Alice creates a post with the course-wide topic ‘Organization’

as she wants to know if there will be on-site tutorials during

the semester

3. Donna’s filtered view on course discussion posts is updated

automatically and Alice’s post pops up on Donna’s screen

4. Donna answers Alice’s question by creating an answer post

5. Alice, who filtered the list of course discussions to posts that

she created, instantly sees that Donna has added an answer

to her post

6. Alice marks Donna’s answer post as resolving

7. Donna’s filtered view is updated and does not display Alice’s

post anymore as it is now resolved

Table 3.4: Demo scenario 3

3.4.2 Use Case Model

In the following, we illustrate use cases implemented as part of this thesis.
They describe the system’s behavior from an actor’s point of view [BD09].
Thereby, actors are defined as external entities which interact with the sys-
tem [BD09]. We restrict the use case models to those use cases that describe
new functionality derived from the formulated FRs. The actors involved in
the following use cases are:

• Instructor: User, that is primarily responsible for a course

• Tutor: User, that operationally supports the instructor by providing
support for students and participates in the discussions to share infor-
mation and answer questions

• Student: User, that participates in a course and discussions to seek
information and ask questions

Notably, use cases applicable for students are applicable for tutors and
use cases applicable for tutors are also applicable for instructors. In order
to stick to our convention, we use the term moderator, if referring to tutors
and instructors.

The use cases shown in Figure 3.4 include FRs of three di↵erent areas
of improvements. Moderators can change the display priority. If they want

30

3.4. SYSTEM MODELS

to change the default visibility, they can either chose to make a post more
visible by pinning it to the top of a view or archiving it to always list it at
the bottom of a view. Those actions specifically increase or decrease the post
visibility if required. To allow more e�cient discussion moderation, modera-
tors can change the post context, that is the page at which a post is shown,
namely a lecture or exercise page, or the course discussion overview. When
moderators edit a post and select a di↵erent, more suitable post context,
they e↵ectively move the post. Moderators can mark their own but also
answers of students as resolving. To other moderators and the post author,
this indicates that the given answer is approved and thereby the original
post is resolved. Finally, an instructor can post an announcement which is
a post with the specified course-wide topic ‘Announcement’ in the course
context. Per definition, announcements are posts of particular relevance and
are therefore created with a high display priority as pinned posts.

Figure 3.4: New use cases for instructors and tutors as UML use case diagram

Figure 3.5 shows use cases from a student’s perspective. A student can
search all existing postings in a course discussion overview through filters,
sorting options, and text- and id-based search for faster information retrieval
and better post discoverability. Regarding the topic structure, students can
choose from course-wide topics ‘Tech Support’ or ‘Organization’ that allow
having the course as context rather than a specific exercise or lecture. More
specifically, in addition to existing exercise or lecture posts that have to be
created on the exercise and lecture page, respectively, course-wide content
can be posted on the course discussion level. Additionally, students can mark
answer posts to their question as resolving, to indicate that the initial problem
is resolved and no further support is required. To expand the possibilities
to interact with peers, students can react on postings by choosing from the
commonly known emoji palette. Furthermore, referencing postings allows
users to communicate more interactively and spread discussions over multiple
posts or even contexts without sacrificing structuredness and readability.

31

CHAPTER 3. REQUIREMENTS ANALYSIS

Figure 3.5: New use cases for students as UML use case diagram

3.4.3 Analysis Object Model

The analysis object model captures properties and relationships of individual
concepts that are manipulated by the system [BD09]. The visualization
given in Figure 3.6 represents and structures the main concepts visible to the
user [BD09]. We briefly describe newly introduced objects and their relations
in the following.

Figure 3.6: Analysis object model as UML class diagram

Every Posting is either a Post, which starts a discussion, or an Answer

Post which is every Posting in response to a Post. These discussions have
to be related to one of three possible contexts, that are Exercise, Lecture,
or Course. Posts that are created in the Course context will cover exactly
one of the provided CourseWideTopics, such as ‘Organization’.

Answer Posts can be marked as the one resolving the problem stated in
the original Post. A Post, as starting point of a discussion on any topic,

32

3.4. SYSTEM MODELS

exhibits some additional operations that facilitate the discoverability of such
topics, i.e., through pinning (upgrade the priority with which a Post is dis-
played in its context) and archiving (downgrade the priority), bookmarking,
and following. If Users follow a discussion, they will be notified on updates.
In order find similar posts and ultimately decrease the amount of duplicated
content, a Post is compared to other Posts.

Users can react to a Posting with multiple emoji-based Reactions, sort
a list of Postings by a certain criteria such as creation date, or report it
to moderators if its content violates course discussion rules. Additionally, a
User can navigate to a single-view of a Posting. Within the content of a
Posting, (multiple) other Postings can be referenced. Postings can further
refer to other types of CourseContent outside the context which might be
a certain slide of the course material (e.g., “[Page 6 of the syllabus] states
that...”), sequences of a lecture video (e.g., “The concept is well explained at
[30:54 min of Introduction Lecture]...”), or a specific task in a programming
exercise (e.g., “I fail to get 100% for [task 3 of Programming Exercise 1]...”).

3.4.4 Dynamic Model

Since dynamic models focus on the behavior of the proposed system [BD09],
this section presents a dynamic model of an essential use case introduced
in this thesis: the de-duplication of posts. Figure 3.7 captures the event
flow in an activity diagram. The actors in this process are a Student that
has a question and therefore interacts with the Artemis System through the
Artemis UI.

The event flow is initiated as the Student starts to create a post to for-
mulate the question. Simultaneously, the Artemis System creates a list of
posts that are similar to the one that is currently being created. The Student
is provided with that list in the UI during the creation process. The Student
can browse the previewed posts and decide whether one the suggested posts
matches what they want to ask or not. If there is no matching post among
the suggestions, the Student can proceed with creating a new post. The new
post is added to the existing posts by the Artemis System as soon as the
creation is finished. In case the student finds one of the suggested posts to
be similar, they can navigate to the post to get more information. We fur-
ther refer to that post as SimilarPost. If SimilarPost is not yet answered,
the Student can up-vote SimilarPost to indicate their interest in it being
answered. As the Student subscribes to the answers of SimilarPost, they
will be automatically notified on updates. The process of creating a new
post is not continued but ended with finding SimilarPost that is subscribed
to. If SimilarPost has been marked as resolved, the Student will find the

33

CHAPTER 3. REQUIREMENTS ANALYSIS

correct answer among the given answers and might or might not react on it.
Again, the process of creating a new post is not continued but ended with
finding the answer without posting a duplicate question. If SimilarPost is
already answered but has not yet been marked as resolved, the Student can
read the given answer(s). In case one of the given answers solves the Stu-
dent ’s problem, they can react on this answer. Otherwise, the Student may
up-vote SimilarPost as if they do when there are no answers provided yet.
According to the logic described in the activity diagram, a new post is pub-
lished only if it does not duplicate an existing post in the course, regardless
of whether the existing post has been replied to or not.

Figure 3.7: Dynamic model for post de-duplication as UML activity diagram

3.4.5 User Interface

During the analysis phase of the proposed METIS subsystem, we created
mock-ups and click-prototypes to communicate on ideas and test them against
the usability NFRs. Since the implemented features and new components are

34

3.4. SYSTEM MODELS

already integrated in the current Artemis version 5.3.0, we refrain from past-
ing mock-ups but instead share screenshots of the actual UI as it is currently
actively used. For each of the contexts that a discussion can be associated
with, we present how the FRs were translated into features of the novel
METIS subsystem.

Context: Exercise Discussion Section

Figure 3.8 displays how a discussion is integrated with a problem statement
of a programming exercise in the pre-existing side panel style. The listed
posts have a summarizing title, and tags such as ‘Grading’ and ‘MergeSort’
([FR2.1], [FR2.2]). As the first post was up-voted by adding the dedicated
emoji reaction ([FR5.2]) it is listed at the top of the list. The second post
has an answer that was marked as resolving the problem stated in the post
([FR4.1]).

Figure 3.8: Discussion section of an exercise page on Artemis 5.3.0

If a user clicks the button to add a new post, the modal containing a
form to be filled is shown as depicted by Figure 3.9a. During the process of
creating a new post, METIS determines and displays similar posts to prevent
duplication ([FR3.1]). The post de-duplication is discussed in detail in Sec-
tion 5.1. Similarly, a modal is opened when editing an existing posting. In
contrast to students, moderators can not only change title, tags and content

35

CHAPTER 3. REQUIREMENTS ANALYSIS

of an existing post, but they are also allowed to change the context ([FR4.2])
as shown in Figure 3.9b. This enables moderators to move posts between
contexts.

(a) Creating a post on an exercise page (b) Editing a post as moderator

Figure 3.9: Creating and editing exercise posts on Artemis 5.3.0

Context: Course Discussion Overview

Artemis 5.3.0 exhibits a dedicated discussion overview to host conversations
with course-wide topics but also includes all posts on exercises and lectures
in this course. Hence, when users enter the tab ‘Discussion’ shown in the
course discussion overview as captured by Figure 3.10, they are provided
with a searchable and filterable list of all posts in the course ([FR2.3]).

Figure 3.10: Reacting on post with course-wide topic on Artemis 5.3.0

36

3.4. SYSTEM MODELS

The post that is shown in the screenshot addresses a technical issue that
was raised by a student and is not associated to a certain exercise or lec-
ture. For this purpose, the student used the course-wide topic ‘Tech Support’
([FR1.1]). Users can react on postings by clicking the according button that
toggles a component to select an emoji ([FR5.2]).

Figure 3.11: Filtering and sorting course discussion posts on Artemis 5.3.0

Figure 3.11 delineates other aspects of the course discussion overview: A
search bar allows users to find posts exhibiting specific buzzwords ([FR2.5]).
Users can select a specific context ([FR2.6], [FR2.7]) from the list of pre-
defined, course-wide topics ([FR1.2]) as well as every course lecture and
exercise to narrow down the displayed list of posts. Besides, filters that
reflect other post criteria such as if a post is unresolved ([FR2.8]), was au-
thored ([FR2.9]), answered or reacted by the current user ([FR2.10]), can be
applied. To change the order of displayed posts, users can select a sort crite-
rion ([FR2.11], [FR2.12], [FR2.13]). When browsing the posts in the course
discussion overview, all post titles are prefixed with the post’s context. For
example, the second post in the previewed list in Figure 3.11 was created on

37

CHAPTER 3. REQUIREMENTS ANALYSIS

the exercise page ‘Modeling with Patterns’ which is reflected by having the
exercise name prepended to the post title. The context name is clickable and
navigates the user to the exercise or lecture accordingly ([FR2.4]).

The posts included in the screenshot shown in Figure 3.11 also illustrate
how emojis are used to express emotional reactions ([FR5.2]). The feature
is strongly based on other implementations of so-called reaction bars, i.e.,
a horizontal list of emojis with according counts, as integrated in Slack for
example.

Moreover, one of the course-wide topics that only an instructor is autho-
rized to choose for a post is ‘Announcement’. Posts of these types have a
bullhorn icon at the beginning of their header including the ‘Announcement’
label and the title. Furthermore, their content visually stands out by its
colored background as can be seen in Figure 3.12a. By default, an announce-
ment is pinned, meaning that it is shown at the top of the course discussion
overview. Regarding a configurable display priority of any post, moderators
are provided with the means to pin ([FR2.14]) or archive ([FR2.15]) posts.
As shown in Figure 3.12b these options are represented by dedicated but-
tons with according emojis to respectively increase or decrease visibility, i.e.,
moving the post to the top or the bottom of a discussion list.

(a) Announcement (b) Pinning or archiving a post

Figure 3.12: Display priority of posts on Artemis 5.3.0

Context: Lecture Discussion Section

Posts can also target a certain lecture. The answer provided in Figure 3.13,
uses the identifier of a lecture post encapsulated in a defined pattern ‘#4’
to reference another post ([FR5.5]). By clicking this reference, the user is

38

3.4. SYSTEM MODELS

navigated to the so-called single-post view as shown in Figure 3.14. Instead of
listing all posts in the context, the referenced post and its expanded answers
are displayed. The user can easily choose to see all posts within the lecture
context by clicking on the arrow label ‘Show all posts’.

Figure 3.13: Using a reference to another post on Artemis 5.3.0

Figure 3.14: Single post view in a discussion section of a lecture page on Artemis

5.3.0

39

Chapter 4

System Design

4.1 Overview

System design involves transforming the analysis object, that is the artifact
resulting from Chapter 3, into a system design model [BD09]. We first de-
scribe design goals that we take into account during designing the proposed
METIS subsystem [BD09]. Second, we provide models of the decomposed
system.

4.2 Design Goals

We derive the design goals from the NFRs introduced in Section 3.3.2. As
the system design involves trade-o↵s with regard to the stated design goals,
the following prioritization of NFRs guides the decisions.

First, we find the requirements summarized by Usability ([NFR1.1-1.3])
as most important. The newly added communication capabilities introduced
by the METIS subsystem will only achieve the desired e↵ects if we ensure
high usability standards to motivate Artemis’ users to actually make use of
them.

Second, the Performance requirement Real-time Support ([NFR3.1]) needs
to be taken into account. This requires extending the system design within
the METIS subsystem by a websocket interface. Given that Artemis is con-
tinuously developing to be a full-fledged CMS, users will expect METIS to
also adhere the standards of real-time updates that they are used to from
other communication platforms.

Third, Maintainability ([NFR2]) should be increased when integrating the
METIS subsystem with the existing Artemis system design. As we report
in Chapter 7, not all FRs are completely implemented by this thesis. Thus,

40

4.3. SUBSYSTEM DECOMPOSITION

there are open goals as well as future work, which require METIS to be open
for extensions and further enhancements.

Fourth, Security aspects influence design decisions. In contrast to other
components, the METIS subsystem does not rely on sensitive data such as
grades or personal user account information besides the username. Therefore,
we regard [NFR2] as least important when designing the system, but still
minimize the data transferred between client and server to achieve a higher
level of data protection.

4.3 Subsystem Decomposition

At the top level, we identify two subsystems, the Artemis Application Client
(see Figure 4.2) and the Artemis Application Server (see Figure 4.1). In
both of the subsystems, we employ Layering as architectural style to im-
pose a hierarchy onto subsystems within the Artemis Application Client and
Artemis Application Server. Each of the layers provides higher-level services
to the subsystem above by using lower-level services from the subsystem
below it [BD09].

4.3.1 Client Decomposition

We decompose the METIS-related components of the Artemis Application
Client subsystem into two layers.

The Service Layer encapsulates the components that interact with the
Artemis Application Server subsystem via the provided Hypertext Transfer
Protocol (HTTP) interface. Notably, the client-side Metis Service acts as a
so-called facade [GHJV95] to the Service Layer : It provides Page UI compo-
nents of the higher-level User Interface Layer with a unified interface. The
Metis Service allows components to retrieve posts, reactions, or answer
posts, while internally keeping track of the objects of the METIS subsystem
and handling real-time updates via websockets. However, due to the com-
plexity that needs to be managed by the Metis Service, it does not adhere
to the single responsibility principle.

Within the User Interface Layer, we structure the components with re-
gard to their atomicity to enable extensive reusability of the most atomic
components. For instance, independently of displayed Page UI component,
the discussion is composed of the same Post and AnswerPost components.
Both components encapsulate the same sub-components, namely Header,
CreateEditModal, and Footer that uses the ReactionBar component. To
avoid duplication, we rely on class inheritance when implementing these com-

41

CHAPTER 4. SYSTEM DESIGN

Figure 4.1: Client decomposition as UML component diagram

42

4.3. SUBSYSTEM DECOMPOSITION

ponents. The CreateEditModal component uses Posting Content compo-
nents to render post or answer contents. These components include the ex-
isting MarkdownEditor component, as well as the Content of a posting and
ContentParts that further split the Content into components. Splitting the
content into ContentParts allows us to embed metadata into the content,
such as references to other posts.

4.3.2 Server Decomposition

Similar to the client, the Artemis Application Server follows a layered archi-
tecture, consisting of three layers.

Figure 4.2: Server decomposition as UML component diagram

The REST API Layer provides the HTTP interface to the client. This
layer consists of resources, where we added the Reaction Resource to the
existing resources for post and answer post. The resources call the lower-
level services, i.e., the new Reaction Service, the AnswerPost Service,
and the Post Service. The latter uses the Post Similarity component
that is added to enable duplication check by analyzing posts for their sim-

43

CHAPTER 4. SYSTEM DESIGN

ilarity. We explain the implementation of this component in detail within
Section 5.1. Each service encapsulated in the Application Logic Layer further
uses the according component of the Data Storage Layer. The enclosed com-
ponents are the new Reaction Repository, the AnswerPost Respository,
and the Post Repository. The Data Storage Layer is responsible for actu-
ally performing the requested operations on the database.

4.3.3 Client-Server Communication

Next to the HTTP-based communication interface between client and server,
Artemis o↵ers capabilities to implement websocket-based communication.
Yet, the existing Artemis Q&A implementation does not use these capabili-
ties for real-time updates on postings. With our novel implementation of the
METIS subsystem, we introduce a websocket interface that is provided by
the Metis Service on the client-side and used by Post Service, Reaction
Service, and AnswerPost Service on the server-side as visualized in Fig-
ure 4.3.

Figure 4.3: Client-server communication within the METIS subsystem

This enables users to subscribe to real-time updates on postings that are
immediately reflected in the responsive UI of the Page UI components as
aimed for in [NFR3.1] (see Section 3.3.2). Each time the client uses the
HTTP interface provided by the server to perform some sort of CRUD op-
eration1, the respective service in the Application Logic Layer will, upon
completion, emit a message via the provided websocket interface to notify
all connected clients. The Metis Service on the client-side is subscribed to
these messages and updates its state, i.e., the list of posts that it manages.

1
Acronym describing the four basic operations of persistent storage, i.e., Create, Read,

Update, and Delete.

44

4.4. PERSISTENT DATA MANAGEMENT

The Page UI components that are subscribed to this list will then seamlessly
update their views.

We instantiate the described communication process in Figure 4.4, to
exemplify how the websocket interface is used to manage communication
between multiple clients. A possible scenario of the instantiated system is
given in Table 3.4: Alice, a student, and Donna, an instructor, act as clients
that use the functionality provided by the METIS subsystem. Whenever one
of the clients uses the HTTP interface the server-side service that handles the
request will propagate the changes via the websocket interface to the Metis

Service on both clients at the same time.

Figure 4.4: Instantiation of client-server communication

4.4 Persistent Data Management

Within the development of the METIS subsystem, we introduced a new
entity, Reaction. Next, we shortly describe how the instances of the entity
are persisted in the existing relational MySQL database.

45

CHAPTER 4. SYSTEM DESIGN

The entity and its relations to other classes have been introduced in Sec-
tion 3.4.3 in the class diagram shown in Figure 3.6. As depicted in Fig-
ure 4.5, the properties of the Reaction entity are persisted in the columns id,
creation date, and emoji id of the newly added database table reaction.
The foreign keys that exist for the reaction table refer to exactly one user
by its id and at most one post or answer post by its id. However, a reaction
must be associated to either one of them and cannot exist decoupled from any
posting. This constraint is not integrated in the underlying database model,
but we rather ensure this by adding server-side validation. With regard
to the chosen column types, we stick to the pre-existing convention to use
BIGINT for identifiers, and DATETIME for timestamps. The emoji id column
was initially restricted to 50 characters but later changed to VARCHAR(255)

as the descriptive labels used as emoji identifiers in some cases exceed 50
characters.

reaction

- id: BIGINT

- creation_date: DATETIME

- emoji_id: VARCHAR(255)

user

post

answer_post

*

0..1

0..1

New

*

Figure 4.5: Persistent data management for Reaction entity as UML class dia-

gram

46

Chapter 5

Object Design

As described in Chapter 4, integrating existing as well as new communication-
related components into the proposed METIS subsystem leads to changes in
the object design. This chapter explains essential implementation aspects on
the object design level of two FRs, namely FR3.1 and FR4.1. More specifi-
cally, we illustrate how we design our post de-duplication implementation to
be easily extensible and interchangeable, and re-design the existing answer
approving process to adequately meet students’ and moderators’ needs of
resolving posts.

5.1 Reducing Content Redundancy

As stated in Section 1.2, one of the goals of this thesis is to decrease post
duplication that will in turn allow more e�cient and e↵ective information
retrieval. [FR3.1] captures the requirement for a post similarity check which
happens during the post creation.

We approach this requirement in an iterative process: Instead of imme-
diately investing a lot of development time in integrating a sophisticated
algorithm to compare the similarity of posts, we use a straightforward base-
line implementation to (1) provide a proof-of-concept and (2) collect user
feedback early on.

To facilitate later addition of and easy replacement by more sophisticated
algorithms, we make use of the strategy pattern [GHJV95]. The UML class
diagram in Figure 5.1 depicts how the pattern is implemented. As intended
by the strategy pattern, we provide an interface that defines a family of
algorithms, the PostSimilarityStrategy. This way, the specific algorithm
can vary independently from the PostService that uses it to perform a
similarity check upon user request.

47

CHAPTER 5. OBJECT DESIGN

Figure 5.1: Strategy pattern for determining post similarity

The first simple implementation of a PostSimilarityStrategy is the
TitleJaccardSimilarity. The employed algorithm is based on the Jaccard
Index1. When invoking the method to perform a similarity check for the
post that a user wants to create, the TitleJaccardSimilarity strategy
compares the extracted post title with the titles of all existing posts in the
course. The computed similarity score takes into account how many words
the compared titles have in common and ranges from 0 to 1, where 1 means
exact title equality. The integration of more elaborate strategies is discussed
in Section 6.2.3.

Figure 5.2: Duplication check during post creation on Artemis 5.3.0

Besides the applied strategy, it is to discuss how to integrate the feature

1https://commons.apache.org/proper/commons-text/apidocs/org/apache/
commons/text/similarity/JaccardSimilarity.html, Accessed: 2021-10-25

48

https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/JaccardSimilarity.html
https://commons.apache.org/proper/commons-text/apidocs/org/apache/commons/text/similarity/JaccardSimilarity.html

5.2. REDUCING TEXT-BASED MODERATION EFFORT

from a client-side perspective with good usability. Figure 5.2 captures the
current approach: We add an expandable list including a fixed amount of
similar posts right above the post content input field. This list appears when
a user provides a title and can be browsed, whereby the content of a post is
collapsed by default. The interaction with that list is illustrated in detail in
Figure 3.7. However, the current approach is not yet a significant barrier to
posting duplicate content, as it relies heavily on a user’s cooperation. One
could investigate, if the process of creating a post should be adapted in a
way that makes it harder for users to add a post that probably contains a
duplicated question.

5.2 Reducing Text-based Moderation E↵ort

As outlined in Section 1.2, we aim for e�cient and e↵ective discussion moder-
ation by integrating features that tackle the high and text-based moderation
e↵ort. In the following, we describe parts of the implementation of the asso-
ciated requirement [FR4.1].

The process of resolving a post is presented in Figure 5.3. It replaces
the approval mechanism that did take into account if a moderator approves
the theoretical correctness, but did not take into account, if the provided
answer actually resolves the post author’s problem. In the new process, the
post author and moderators are able to mark answer posts as resolving. In
the analysis model (see Section 3.4.3), we describe that answer posts can
be marked as resolving to indicate that the post’s matter is solved by that
answer. We decided against persisting this post state, i.e., resolved or not
resolved, in the database. Since a user should also be able to identify the
answer that solved the problem, possibly among many given answers, we
instead persist this information as additional property of the answer post
entity. Hence, we rather evaluate the post state by checking the associated
answer posts for this property. When re-designing the existing code, we
replaced the property approved by resolvesPost in the AnswerPost class
and renamed the existing column in the database table.

In the example from Figure 5.3, Alice, as the author of a post, is provided
with a checkmark icon at the top right corner of every answer post (see Fig-
ure 5.3a). By clicking it, she confirms the correctness of the answer provided
by Bob (see Figure 5.3b). This sets the Boolean property resolvesPost of
Bob’s answer post to true. The subsequent real-time update of the discus-
sion component will also re-evaluate if any of the post’s answer posts was
marked as resolving. Since this is now indeed the case, Alice’s post includes
a green box which precedes the post title (see Figure 5.3c). If the answers

49

CHAPTER 5. OBJECT DESIGN

of a post are collapsed, a user would immediately see if the post’s issue is
resolved or not.

(a) Answered post (b) Marking answer post as resolving

(c) Resolved Post (d) Revoking the resolution

Figure 5.3: Process of resolving a post on Artemis 5.3.0

Notably, the implementation currently allows that Alice or a moderator
could revoke this action (see Figure 5.3d). A possible future extension could
be to only allow revoking, if either a reasonable explanation for this is given
by the user or a di↵erent answer post is marked as resolving.

50

Chapter 6

Discussion

As part of this chapter, we first discuss how the communication capabilities
introduced and enhanced by this thesis can be evaluated during real-world
operation of Artemis. Second, we reflect on design and implementation deci-
sions that were taken throughout the course of this thesis and their implied
limitations.

6.1 Future Evaluation

The implementation period spanned over six months, starting from May
2021. Hence, for the first time, in winter semester 2021/2022, 9 courses with
more than 1,700 participating students are actively using the new communi-
cation features. To measure how the introduced changes a↵ect the engage-
ment of students and quality of information sharing as well as moderation
e↵ort, an empirical study has to be conducted by the end of the semester.
The following quantitative evaluation metrics can easily be retrieved through
database queries:

• Number of courses that previously relied on additional communica-
tion platforms, but switched to using Artemis as all-in-one solution for
course management

• Number of postings

• Number of comments on postings indicating that the post is a duplicate

• Number of postings with course-wide topics

• Distribution of emojis used to react on postings

51

CHAPTER 6. DISCUSSION

Qualitative evaluation aspects can be gathered through interviews and
questionnaires:

• Do moderators use the new course discussion overview to manage dis-
cussions and determine where their input is required?

• Are students able to easily and quickly find the information they are
looking for?

• Do moderators save time by using features such as resolving, moving,
tagging, filtering posts?

By analyzing the proposed quantitative and qualitative evaluation as-
pects, Artemis’ existing communication capabilities can be further improved
and development e↵orts steered towards yet more sophisticated communica-
tion features.

6.2 Design and Implementation Reflection

Throughout the development of this thesis, several design and implementa-
tion decisions had to be taken. Below, we critically reflect on three decisions
and their implied limitations.

6.2.1 Search Bar

In Section 3.3.2, we derived consistency as a NFR to foster usability of
METIS. Yet, in Artemis’ existing UI components, we find di↵erent variants
of search bars—for instance, in the UI to import an exercise (see Figure 6.1a)
or when searching for a user (see Figure 6.1b). However, to enable convenient
querying and filtering of posts in a course, we require an even more elaborate
search bar component, as depicted in Figure 6.2. Since this introduces the
third variant of a search bar component, the usability paradigm of consist
design is even more violated than before. Hence, ultimately there should
only be one search bar component that can be parameterized and adjusted
depending on the complexity of the use case of the search bar. Based on
the readily existing search bars, a unified search bar component should in-
clude (1) similar buttons and labels, (2) similar means to actually trigger the
search (i.e., clicking a button versus hitting the enter key versus no active
triggering required), (3) optionally visible filter options, and (4) a consistent
search results list view, irrespective of the listed entities.

52

6.2. DESIGN AND IMPLEMENTATION REFLECTION

(a) Exercise search (b) User search

Figure 6.1: Di↵erent implementations of search bars on Artemis 5.3.0

Figure 6.2: Search bar at the course discussion overview on Artemis 5.3.0

6.2.2 Browsing Discussions

As described in Section 3.4.3, answer posts cannot exist independently from
posts. A post therefore states the beginning of a discussion that can have
several answer posts. When designing the UI for browsing these discussions in
a certain context, i.e., on a lecture, exercise, or course discussion overview, the
requirements are that a user should (1) immediately see how many answers
exist for each post, (2) read the existing answers before adding a new one,
and (3) be able to switch between collapsed and expanded answers.

(a) List of posts with collapsed answers (b) Post with expanded answers

Figure 6.3: List of posts with collapsed and expanded answers (intermediate ver-

sion)

Figure 6.3 shows an intermediate whereas Figure 6.4 shows a revised,
new version of the UI that we implemented throughout the course of this

53

CHAPTER 6. DISCUSSION

(a) List of posts with collapsed answers (b) Post with expanded answers

Figure 6.4: List of posts with collapsed and expanded answers on Artemis 5.3.0

work. Both versions depict the same list of posts (i.e., discussions), having
zero, one, and two answers. In the intermediate version (see Figure 6.3a and
Figure 6.3b), the button to start a discussion is only visible when there are
no answers yet. If there are answers to a post, the user has to click on the
icon at the top right to collapse and expand the answers. The number next to
the icon represents the number of answers. For this version, we received the
feedback that the design is misleading as users concluded that there were no
answers when not having a button displayed below the content. Presumably,
the icon’s function was not intuitively clear to the users, as they expected a
button for adding an answer and to expand or collapse existing answers.

Therefore, we implemented a new version (see Figure 6.4a and Figure 6.4b)
that exactly reflects these expectations. We received the feedback that this
new implementation is more consistent with other parts of Artemis and thus
more intuitive to use.

6.2.3 NLP for Post De-Duplication

To compare posts regarding their similarity and perform post de-duplication,
prior research conducted at Stack Overflow suggests to use more elaborate
strategies that rely on algorithms from the field of Natural Language Pro-
cessing (NLP) [ZLXS15,SPD18]. However, while these algorithms have been
shown to work well in these contexts, there are challenges and trade-o↵s:
First, as Artemis supports English and German language, classic NLP pre-
processing steps such as stop word removal or stemming require language-

54

6.2. DESIGN AND IMPLEMENTATION REFLECTION

specific implementations [KG14]. Second, there is a trade-o↵ between how
fast an algorithm should perform the similarity check and how accurate it
should be. More precisely, one has to decide if it is more important to users
to be provided with identified similar posts immediately or that the provided
list of suggested similar posts is highly accurate with few so-called false pos-
itives.

The current implementation described in Section 5.1 prioritizes e�ciency
over accuracy of results, which keeps required computational resources and
response time at a minimum and avoids language-specific implementation
e↵orts.

55

Chapter 7

Summary

To summarize, we report on the status of derived requirements, outline vi-
sionary ideas for further enhancing and making use Artemis’ communication
features introduced by this thesis, and finally conclude the contribution of
this thesis.

7.1 Status of Requirements

We outline the state of the requirements elicited in Chapter 3 in Table 7.1.
Therefore, we group requirements identified in Section 3.3.1 by the identified
problems that the thesis aims to solve and the objectives that were described
in Chapter 1. This way, the status of the requirements also indicates which of
the identified problems is solved and which objective is met to which degree.
The status symbols can be interpreted as follows:

 Requirement fully addressed by new feature(s)

G# Requirement partially addressed by new feature(s)

Requirement not yet addressed

FRs that are not yet addressed should be regarded as open goals. In the
field of post discoverability this includes the bookmarking of posts ([FR2.16]).
As single posts are already referable by a unique Uniform Resource Locator
(URL) including the post identifier, the bookmarking feature can be built
on top of that. Moreover, we integrated post navigation but do not support
navigation to specific answer posts yet, which makes [FR2.16] only partially
met. Same holds true for [FR2.16] where a user can only customize the
sorting of posts but not answer posts.

56

7.1. STATUS OF REQUIREMENTS

Problem Requirement Objective Status

[P1] Insu�cient topic
organization lacking
course-wide topics

[FR1.1] Post content of course-wide relevance [O1]
[FR1.2] Choose between predefined course-wide
topics for a course post

[O1]

[P2] Insu�cient visibility
and discoverability

of posts

[FR2.1] Summarize a post by title [O1]
[FR2.2] Tag a post [O1]
[FR2.3] Provide a course discussion overview
listing all posts

[O1]

[FR2.4] Navigate to a posting [O1] G#
[FR2.5] Search a post by text [O1]
[FR2.6] Search a post within a certain context [O1]
[FR2.7] Filter posts by context [O1]
[FR2.8] Filter posts by answer state [O2]
[FR2.9] Filter posts to own posts only [O1]
[FR2.10] Filter posts to posts that the user
answered or reacted on

[O1]

[FR2.11] Sort postings by date [O1] G#
[FR2.12] Sort posts by votes [O1]
[FR2.13] Sort posts by answers [O1]
[FR2.14] Pin a post [O1]
[FR2.15] Archive a post [O2]
[FR2.16] Bookmark a post [O1] #

[P3] Content redundancy

[FR3.1] Conduct a similarity check during post
creation

[O2]

[FR3.2] Merge duplicated posts [O2] #
[FR3.3] Provide a FAQ section [O1] #
[FR3.4] Write a post anonymously [O2] #
[FR3.5] Import postings of previous courses [O2] #

[P4] High, text-based
moderation e↵orts

[FR4.1] Mark a post as resolved [O2]
[FR4.2] Change the context of a post [O2]
[FR4.3] Enable internal communication for
moderators

[O2] #

[FR4.4] Report a posting [O2] #

[P5] Low interaction and
emotional involvement

[FR5.1] Use emojis within a posting [O3] G#
[FR5.2] React on a posting with emojis [O3]
[FR5.3] Use emojis to up-vote a post [O3]
[FR5.4] Reference a user [O3] #
[FR5.5] Reference a posting [O3] G#
[FR5.6] Reference a course entity [O3] #
[FR5.7] Reward a user for discussion contributions [O3] #
[FR5.8] Notify a user on discussion events outside
Artemis

[O3]

Table 7.1: Summary on FRs and their status

57

CHAPTER 7. SUMMARY

With regard to post de-duplication, the current implementation misses a
dedicated FAQ section ([FR3.3]), functionality to import postings ([FR3.5]),
as well as a features to merge duplicated posts ([FR3.2]) or contribute content
anonymously ([FR3.4]).

Additionally, one could further facilitate discussion moderation by pro-
viding the means for internal communication among moderators that is not
meant to be disclosed to students ([FR4.3]). Adding a course-wide topic
that is only available and visible for authorized users would enable this type
of conversation. Another open goal regarding improved moderation is that
Artemis could follow the example of online class platforms and allow users
to report posts ([FR4.4]). This could in turn contribute to a discussion space
where users adhere to established course rules or a code of conduct.

Regarding the FRs that address the problem of low interaction capabil-
ities, referencing users ([FR5.4]) remains an open goal. So does the feature
for referencing other course entities ([FR5.6]) such as lectures, exercises, or,
even more fine grained, certain lecture slides, sequences in lecture videos,
or tasks in problem statements of exercises. Besides, expanding the use of
emojis as part of a posting’s content ([FR5.1]) is not yet fully addressed, but
the newly integrated component for selecting emojis as post reaction could
be extended for use inside post content. We further elaborate on the open
goal of rewarding users in the following Section 7.2.

The requirement of notifying users on discussion events outside Artemis
([FR5.8]) was achieved in cooperation with another Artemis developer, who
specifically enhanced Artemis’ notification enhancements [Mal21]. Our joint
contributions allow that students are notified on new posts, answer posts to
own posts, and announcements via automatically generated emails containing
a preview of the post as well as a link.

7.2 Future Work

There are several aspects that we perceive as worthwhile starting points for
future work.

First, future work could enhance existing features such as adding more
complex and elaborate post comparison strategies to avoid duplication as
described in Section 5.1. To increase the accuracy with which duplicated
questions are identified and presented to users that are in the process of
creating a new post, one could integrate a strategy that employs machine
learning algorithms. Those could rely on topic modeling instead of searching
for exact text similarity. Such an approach is used on Stack Overflow, where a

58

7.3. CONCLUSION

sophisticated algorithm called DupPredictor
1 was developed. The research

on duplication prevention on Stack Overflow provides meaningful insights
on which attributes of posts and which machine learning algorithms work
best [SPD18]. Advancing the integrated duplication check is crucial to avoid
that users ignore the proposed list of similar posts as the results to not match
their expectations.

Second, the new communication features pave the way for many further
features and advances. Some of them are outlined in the following. Future
research could investigate to which degree sentiment analysis on the posted
content can be harnessed for course evaluation purposes. When enriching
such data with the analysis of reactions used, this might be used to evaluate
a course more accurately than asking for feedback in pre-defined question-
naires that su↵er participation bias and have an inherent delay between the
actual learning experience and reporting about it. An associated approach
is to analyze courses using social network analysis techniques [RTZ11]. Min-
ing the course discussions with regard to topics and interactions can gener-
ate valuable insights regarding which topics stimulate students’ involvement.
Additionally, research on peer interaction in discussion forums suggests to in-
centivize and reward participation in discussions by introducing a reputation
system – similar to Stack Overflow – that can help minimizing moderation
e↵orts, and increase involvement and motivation [HS14,ZIFK17]. Statistics
over discussion participation could also be used for grading. The final grade
would then not only be based on a snapshot performance during an exam,
but also on communicative skills. Finally, future work could also investigate
if machine learning could be applied to automatically assign moderators to
posts based on their expertise or to detect urgency of posts [AJ19], which
could ultimately improve moderation and learning experience for students.

Last, the METIS subsystem introduced in this thesis has been designed
to be largely decoupled of other Artemis parts on both, client- and server-
side. Hence, METIS is well-suited for a potential migration into a more
distributed, microservice-oriented architecture. In fact, METIS could easily
be extracted from the Artemis monolith and deployed as a standalone Web
service with corresponding micro-frontend.

7.3 Conclusion

Artemis is an interactive learning platform that is becoming a powerful CMS
in the university context. However, Artemis currently lacks features that
enable elaborate discussions and course communication, making instructors

1https://github.com/muldon/dupPredictorRep, Accessed: 2021-11-08

59

https://github.com/muldon/dupPredictorRep

CHAPTER 7. SUMMARY

hesitant to rely on Artemis as the sole communication platform for large
courses. In this thesis, we propose Multiplying Engagement Through Inter-
acting Socially (METIS), a novel Artemis subsystem addressing the existing
limitations. We thereby contribute to e�cient and e↵ective information shar-
ing as well as to more engaged and interactive discussions in a variety of ways:
The problem of insu�cient topic organization and the lack of course-wide
topics is well-addressed by the integration of the course discussion overview,
which allows to post course-wide content under specified topics. Additionally,
we develop various features that improve the restricted discoverability and
visibility of posts on Artemis. A straightforward approach for de-duplicating
posts by employing automatic similarity checks will decrease the content re-
dundancy. Moreover, we reduce the previously high, text-based moderation
e↵orts by useful features such as resolving a post or moving it to another
context. Lastly, engaging features such as an emoji reaction bar, in-app and
email notifications, and the ability to reference other posts aim to increase
user interaction and emotional involvement. Thus, METIS motivates intra-
platform user interaction to increase students’ engagement and ultimately
learning success. Our new communication features are currently actively used
by 1,700 students in 9 university courses conducted with Artemis. We con-
sider the implementation of the METIS subsystem including the introduced
features as an important step towards Artemis being used by instructors as
the all-in-one solution for their course management.

60

List of Figures

1.1 Students’ confusion about topic organization on Slack [P1] . . 4
1.2 Students’ di�culties to find information on Slack [P2] 5
1.3 Intra-platform ([P3.1]) and inter-platform ([P3.2]) redundancy

captured on Artemis and Slack 5
1.4 Text-based moderation e↵ort [P4] 6
1.5 Text-based moderation to resolve problems on Artemis [P4] . . 7
1.6 Emotional involvement through emojis on Slack [P5] 7

3.1 Exercise with one question on Artemis 4.12.4 20
3.2 Integrated markdown editor to add a question on Artemis 4.12.4 20
3.3 Interacting with questions and answers on Artemis 4.12.4 . . . 21
3.4 New use cases for instructors and tutors as UML use case

diagram . 31
3.5 New use cases for students as UML use case diagram 32
3.6 Analysis object model as UML class diagram 32
3.7 Dynamic model for post de-duplication as UML activity diagram 34
3.8 Discussion section of an exercise page on Artemis 5.3.0 35
3.9 Creating and editing exercise posts on Artemis 5.3.0 36
3.10 Reacting on post with course-wide topic on Artemis 5.3.0 . . . 36
3.11 Filtering and sorting course discussion posts on Artemis 5.3.0 37
3.12 Display priority of posts on Artemis 5.3.0 38
3.13 Using a reference to another post on Artemis 5.3.0 39
3.14 Single post view in a discussion section of a lecture page on

Artemis 5.3.0 . 39

4.1 Client decomposition as UML component diagram 42
4.2 Server decomposition as UML component diagram 43
4.3 Client-server communication within the METIS subsystem . . 44
4.4 Instantiation of client-server communication 45
4.5 Persistent data management for Reaction entity as UML class

diagram . 46

61

LIST OF FIGURES

5.1 Strategy pattern for determining post similarity 48
5.2 Duplication check during post creation on Artemis 5.3.0 48
5.3 Process of resolving a post on Artemis 5.3.0 50

6.1 Di↵erent implementations of search bars on Artemis 5.3.0 . . . 53
6.2 Search bar at the course discussion overview on Artemis 5.3.0 53
6.3 List of posts with collapsed and expanded answers (interme-

diate version) . 53
6.4 List of posts with collapsed and expanded answers on Artemis

5.3.0 . 54

62

List of Tables

2.1 Platform comparison – Features approaching [P1] 13
2.2 Platform comparison – Features approaching [P2] 14
2.3 Platform comparison – Features approaching [P2] 15
2.4 Platform comparison – Features approaching [P3] 16
2.5 Platform comparison – Features approaching [P4] 17
2.6 Platform comparison – Features approaching [P5] 18

3.1 Visionary scenario 1 . 27
3.2 Demo scenario 1 . 28
3.3 Demo scenario 2 . 29
3.4 Demo scenario 3 . 30

7.1 Summary on FRs and their status 57

63

Bibliography

[Ada13] Panagiotis Adamopoulos. What makes a great MOOC? An in-
terdisciplinary analysis of student retention in online courses.
In Proceedings of the 43th International Conference on Infor-
mation Systems, 2013.

[AJ19] Omaima Almatrafi and Aditya Johri. Systematic Review of
Discussion Forums in Massive Open Online Courses (MOOCs).
IEEE Transactions on Learning Technologies, 12(3):413–428,
2019.

[AVWO20] Lauren Adolphe, Georgia D Van de Zande, David Wallace, and
Alison Olechoswski. Analysis of Virtual Communication within
Engineering Design Teams and its Impact on Team E↵ective-
ness. In Proceedings of the International Design Engineering
Technical Conferences and Computers and Information in En-
gineering Conference, volume 8, 2020.

[BD09] Bernd Bruegge and Allen H Dutoit. Object-Oriented Software
Engineering: Using UML, Patterns, and Java. Prentice Hall,
third edition, 2009.

[CS18] Alicia Cundell and Emily Sheepy. Student Perceptions of the
Most E↵ective and Engaging Online Learning Activities in a
Blended Graduate Seminar. Online Learning Journal, 22(3):87–
102, 2018.

[DFCV15] Damiano Distante, Alejandro Fernandez, Luigi Cerulo, and
Aaron Visaggio. Enhancing Online Discussion Forums with
Topic-Driven Content Search and Assisted Posting. Commu-
nications in Computer and Information Science, 553:161–180,
2015.

64

BIBLIOGRAPHY

[Dix10] Marcia D Dixson. Creating e↵ective student engagement in on-
line courses: What do students find engaging? Journal of the
Scholarship of Teaching and Learning, 10(2):1–13, 2010.

[DRK20] Urvashi Desai, Vijayalakshmi Ramasamy, and James D. Kiper.
A Study on Student Performance Evaluation using Discussion
Board Networks. In Annual Conference on Innovation and Tech-
nology in Computer Science Education, pages 500–506, 2020.

[FSP14] Carrie Furrer, Ellen Skinner, and Jennifer Pitzer. The Influ-
ence of Teacher and Peer Relationships on Students’ Classroom
Engagement and Everyday Resilience. In Engaging youth in
schools: Empirically-based models to guide future innovations,
National Society for the Study of Education Yearbook, pages
101–123. Teachers College Record, 2014.

[GHG+20] Shay A. Geller, Nicholas Hoernle, Kobi Gal, Avi Segal, Amy X.
Zhang, David Karger, Marc T. Facciotti, and Michele Igo.
#Confused and beyond: Detecting confusion in course forums
using students’ hashtags. In Proceedings of the 10th Interna-
tional Conference on Learning Analytics & Knowledge, pages
589–594, 2020.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1st edition, 1995.

[Gre20] Filip Gregurevic. Improving Questions and Answers in Artemis.
Master’s thesis, Technical University of Munich, 2020.

[Hew18] Khe Foon Hew. Unpacking the Strategies of Ten Highly Rated
MOOCs: Implications for Engaging Students in Large Online
Courses. Teachers College Record, 120(1):1–40, 2018.

[Hon20] Nicholas Yeung Ming Hon. The Game of Communication: An
analysis of The Emoji Landscape in Social Media. Journal of
Physics: Conference Series, 1684(1), 2020.

[HS14] Kerry Hart and Anita Sarma. Perceptions of Answer Quality
in an Online Technical Question and Answer Forum. In Pro-
ceedings of the 8th International Workshop on Cooperative and
Human Aspects of Software Engineering, pages 103–106, 2014.

65

BIBLIOGRAPHY

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Uni-
fied Software Development Process. Addison-Wesley, Reading,
MA, 1999.

[KG14] Subbu Kannan and Vairaprakash Gurusamy. Preprocessing
Techniques for Text Mining. International Journal of Computer
Science & Communication Networks, 5(1):7–16, 2014.

[KS18] Stephan Krusche and Andreas Seitz. ArTEMiS - An automatic
assessment management system for interactive learning. In Pro-
ceedings of the 49th Technical Symposium on Computer Science
Education, pages 284–289, 2018.

[Luc20] Naemi Luckner. Enabling Peer Review in Large University
Courses. Dissertation, TU Wien, 2020.

[Mal21] Alexander Malyuk. Run Time Notifications in Dynamically
Changing Systems. Master’s thesis, Technical University of Mu-
nich, 2021.

[Mar14] Robert Cecil Martin. Agile Software Development: Principles,
Patterns, and Practices. Pearson Education, 1st edition, 2014.

[Mee03] John Meerts. Course Management Systems (CMS). Technical
report, Wesleyan University, 2003.

[Mei19] Maximilian Meier. Improvement of the usability of the course
structure in ArTEMiS. Master’s thesis, Technical University of
Munich, 2019.

[MMM+11] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripc-
sak, and Björn Hartmann. Design Lessons from the Fastest
Q&A Site in the West. In Proceedings of the Conference on
Human Factors in Computing Systems, pages 2857–2866, 2011.

[PD16] Oleksandra Poquet and Shane Dawson. Untangling MOOC
Learner Networks. In Proceedings of the 6th International Con-
ference on Learning Analytics & Knowledge, pages 208–212,
2016.

[RAB+18] Petrea Redmond, Lindy Anne Abawi, Alice Brown, Robyn Hen-
derson, and Amanda He↵ernan. An online engagement frame-
work for higher education. Online Learning Journal, 22(1):183–
204, 2018.

66

BIBLIOGRAPHY

[RTZ11] K. Reihaneh Rabbany, Mansoureh Taka↵oli, and Osmar R.
Zäiane. Analyzing Participation of Students in Online Courses
Using Social Network Analysis Techniques. In Proceedings of
the 4th International Conference on Educational Data Mining,
pages 21–30, 2011.

[SPD18] Rodrigo F.G. Silva, Klérisson Paixão, and Marcelo De Almeida
Maia. Duplicate Question Detection in Stack Overflow: A Re-
producibility Study. In Proceedings of the 25th International
Conference on Software Analysis, Evolution and Reengineering,
pages 572–581, 2018.

[WRGW14] Joe Warren, Scott Rixner, John Greiner, and Stephen Wong.
Facilitating human interaction in an online programming course.
In Proceedings of the 45th Technical Symposium on Computer
Science Education, pages 665–670, 2014.

[WW07] William R. Watson and Sunnie Lee Watson. An argument for
clarity: What are learning management systems, what are they
not, and what should they become? TechTrends, 51(2):28–34,
2007.

[ZIFK17] Amy X. Zhang, Michele Igo, Marc Facciotti, and David Karger.
Using student annotated hashtags and emojis to collect nuanced
a↵ective states. In Proceedings of the 4th Conference on Learn-
ing at Scale, pages 319–322, 2017.

[ZLXS15] Yun Zhang, David Lo, Xin Xia, and Jian Ling Sun. Multi-Factor
Duplicate Question Detection in Stack Overflow. Journal of
Computer Science and Technology, 30(5):981–997, 2015.

67

	Introduction
	Problem & Motivation
	Objectives
	Outline

	Comparison of State-of-the-Art
	Compared Platforms
	Feature Comparison
	Topic Structuring and Organization
	Post Discoverability
	Content Redundancy Reduction
	Moderation Effort Reduction
	Interaction

	Summary

	Requirements Analysis
	Overview
	Current System
	Proposed System
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Scenarios
	Use Case Model
	Analysis Object Model
	Dynamic Model
	User Interface

	System Design
	Overview
	Design Goals
	Subsystem Decomposition
	Client Decomposition
	Server Decomposition
	Client-Server Communication

	Persistent Data Management

	Object Design
	Reducing Content Redundancy
	Reducing Text-based Moderation Effort

	Discussion
	Future Evaluation
	Design and Implementation Reflection
	Search Bar
	Browsing Discussions
	NLP for Post De-Duplication

	Summary
	Status of Requirements
	Future Work
	Conclusion

