
15-413 Software Engineering, Fall 199824 November 1998

PAID Object Design

24 November 1998
Georgios Markakis - Architecture

Reynald Ong - User Interface

Adam Phelps - Network

Pooja Saksena - Authentication

Georgios Markakis - Database
Jonathan Wildstrom - Learning/Event Service



15-413 Software Engineering, Fall 199824 November 1998

Architectural Overview

Presenter: Georgios Markakis

Architecture Team: Luis Alonso

      Kent Ma
      Michael Smith
      Anthony Watkins

Coach: Elizabeth Bigelow



15-413 Software Engineering, Fall 199824 November 1998

Hardware Deployment

Dealer’s Client

Database

Authentication

UI
RMI

STAR Network COMET Server

Network

Learning

Database

Event Service

JDBC

Dealer’s Server

Authentication

Network

Database

JDBC

Event Service

IOU



15-413 Software Engineering, Fall 199824 November 1998

System Object Model

UI Database

Network
Authentication

EventLearning

* *

*

*

*

*



15-413 Software Engineering, Fall 199824 November 1998

More on Events

notifies

UI

Learning

Authentication

receiver

Network

*

Events

Learning

Network

Database

* *
*

receives



15-413 Software Engineering, Fall 199824 November 1998

Overall Supported Scenarios

• All scenarios except Billing are supported

– UI does not support Authentication and Security.
Prefers to demonstrate Mobile Garage scenario

– Methods to implement Mobile Garage are still looked
into (disconnected user, wireless modems)

– UI will not demonstrate functionality of
Adding/Removing Users (Administration)



15-413 Software Engineering, Fall 199824 November 1998

Authentication Object Design

Presenter: Pooja Saksena

Architecture Team: Luis Alonso

                                David Garmire

       Arnaldo Piccinelli

      Qiang Rao
Coach: Rus Heywood



15-413 Software Engineering, Fall 199824 November 1998

Supported Scenarios

• The three best supported scenarios :
– Scenario 1: Adding a dealer.

• Authentication is designed to implement
this scenario.

– Scenario 2: Poor network performance.
• Application level security allows access to

locally stored information, even if we PAID
is unable to establish network connection.



15-413 Software Engineering, Fall 199824 November 1998

Supported Scenarios(cont.)

– Scenario 8: Security
• Expanding on the idea of Application

security, users will only have access to
information for their User Group.

• Assuming that Extranet in insecure, we
establish a first session by means of a
challenge/response and encrypt all
transmission with the session key.



15-413 Software Engineering, Fall 199824 November 1998

Authentication Package



15-413 Software Engineering, Fall 199824 November 1998

Required From UI:

• void login(User user)
– Initiates the user interface based on User’s

Group.
– Using the notion of application security

access is restricted by the functionality of the
interface.

• void logout()
– Signals that user has removed Smartcard.
– Assuming each instance of the PAID

application can have a single current user.



15-413 Software Engineering, Fall 199824 November 1998

Provided for UI:

• void user.changePreference(Hashtable
preference)
– Public method, part of the User object.
– Raises an exception if it fails.

• boolean user.hasPermission(int appID)
– Each Application ID refers to a specific

interface of UI.
– This function queries the User object to see

if the user has access to the specified
application.



15-413 Software Engineering, Fall 199824 November 1998

Required From Database (Users):
• Dealer Administration

– Enumeration returnUsers()
• Returns list of local users.

– User getUserProfile(byte [] key)
• Look up one user. (Needed to instantiate User

object.)

• Daimler-Benz Administrators
– void addUserProfile(byte[] key, User user)

• Adds a user.

– void changeUserProfile(byte [] key, User user)
• Change user preferences.

– void removeUserProfile(byte [] key)
• Remove local user.



15-413 Software Engineering, Fall 199824 November 1998

Required From Database (Groups):

• Diamler-Benz Administrators:
– Enumeration getGroups()

• Returns list of groups (should be updated regularly).

– User getGroupProfile(int groupid)
• Look up one group. (Needed to instantiate User object.)

– void addGroupProfile(int groupid, Group group)
• Adds a group. (For administrative purposes.)

– void changeGroupProfile(int groupid, Group
group)

• Change group. (For UI’s changeprefs, and for admins.)

– void removeGroupProfile(int groupid)
• Remove local groups.



15-413 Software Engineering, Fall 199824 November 1998

Provided for Database:

• void infoChanged(int changeType, Object
changeObject)
– Either a User or Group object has changed.
– ChangeType equals either GROUP or USER.
– changeObject is a deserialized object of

changed data.



15-413 Software Engineering, Fall 199824 November 1998

Required From Network

• Object sendPublicKey(Object key)
– An RMI call that allows the server and the

client to receive each other’s public keys.

• Boolean sendIdentity(Object
Identity)
– Sends the client’s identity (from the key

object) and the Comet server lookup to
recognize the user.

• Serves to secure Extranet
communications.



15-413 Software Engineering, Fall 199824 November 1998

Provided for Network:

• boolean handshake()
– Returns weather the handshake was

successful.

• SecureSession.getKey()
– get the other guys public key.
– Returns exception NoKeyException.

• Object SecureSession.encrypt(Object msg)
• Object SecureSession.decrypt(Object msg)



15-413 Software Engineering, Fall 199824 November 1998

Class:User

• The User object has information about the
user’s identity, preferences, and
permissions

• The actual User object is stored in the
database and the currentUser is
instantiated at login.

• UI will use hasPermission(int appID) to
query our user object to see if they can
open the interface represented by the
application ID.



15-413 Software Engineering, Fall 199824 November 1998

Class: Group

• Attempted composite pattern, but
hierarchy too hard to support for UI.

• Contains a vector of permissions to
applications.
– Format to be determined by UI.

• The call hasPermission(int appID) by UI is
actually resolved by the Group permission
functions.



15-413 Software Engineering, Fall 199824 November 1998

Class: SmartCard

• Not visible to other subsystems.
• Exposes two main methods:

– User waitForCardInsertion(void)
– void waitForCardRemoval(void)

• For administrative purposes only:
– void writeUserID(int uid)
– void writeGroupID(int gid)
– void writeKey(byte [] key)



15-413 Software Engineering, Fall 199824 November 1998

Class: SecureSession

• After handshake() procedure provides
successful session key, this object is
instantiated.

• The decrypt and encrypt procedures
are used with the session key for
secure transfer of data on open
network.



15-413 Software Engineering, Fall 199824 November 1998

Stage of Development
• Smartcard.

– Still in implementation.

• Security of Extranet through proxy/firewall.
– Still in implementation.

• Encryption of transmissions through
Extranet.
– Still in implementation (have initial Caesar

encryption).

• Interfacing to other groups.
– Please contact Luis or Arnaldo if you have any

questions concerning usage or side-effects of
our API.



15-413 Software Engineering, Fall 199824 November 1998

Remaining Issues

• How will we handle those w/o Smartcard
– Lease a key for a fixed amount of time.

• To maintain the latest Group and User info
– We will subscribe to the channels that have

events related to these updates. Work out the
details with events subgroup.

• Work out the weaknesses of out model and draw
an outline of limitation our authentication system.



15-413 Software Engineering, Fall 199824 November 1998

Summary
• Interactions with other groups:

– UI:
• Notify them of Smartcard status.

• Check User/Group permissions.

– DB
• Need to retrieve User/Group

preferences/permissions.

– Network
• Establish secure session and session key.

• Encryption/decryption of data on Extranet.

• Some unresolved issues have to be closed
by communication with other groups.



15-413 Software Engineering, Fall 199824 November 1998

Database Object Design

Presenter: Georgios Markakis

Architecture Team: Richard  Markwart
      Tim Shirley
      Ivan Tumanov

Coach: Keith Arner



15-413 Software Engineering, Fall 199824 November 1998

Scenarios to be Supported

• All but billing scenario
• Mobile garage still uncertain

• Implementing local store on mobile devices
is an open issue:

– Wireless modems considered
– Actual database server one option

– Local store without database server an
alternative



15-413 Software Engineering, Fall 199824 November 1998

Database API  -  Datamodel

• modelObject, logObject are used
by Learning

• CarObject, PartObject are used
by UI

      They all implement DataObject

     DataObject is the primary object
that database implements and
supports



15-413 Software Engineering, Fall 199824 November 1998

Interface for Authentication

– Return list of Users

– Add/Edit/Delete single
Users

– Return list of Groups

– Add/Edit/Delete single
Groups

Methods provided to Authentication



15-413 Software Engineering, Fall 199824 November 1998

Interface for Network

Methods provided to Network

– Managing COMET server
information

– Retrieving server information
(determining location of data)

– Listing all COMET servers



15-413 Software Engineering, Fall 199824 November 1998

Interface for Learning

Methods provided to Learning

– Store log information

– Retrieve log
information

– Store User
preferences

– Retrieve User
preferences



15-413 Software Engineering, Fall 199824 November 1998

Database API (cont.)

edu.cmu.paid.database.comet
– Description of classes that will be running on COMET

servers:
• Retrieving data
• Storing data (storage for other subsystems)
• Update notification

                      Object model has not been finalized yet

NOTE …     



15-413 Software Engineering, Fall 199824 November 1998

Database API (cont.)

edu.cmu.paid.database.dealer
– Description of classes that will be running on

dealer server:
• Check local store
• Store data
• Determine location of data

edu.cmu.paid.database.iou
– Will simulate IOUs since those are not currently

available

Object model has not been finalized yet
NOTE …     



15-413 Software Engineering, Fall 199824 November 1998

Services needed by Database

From Network:
– When data is not found on dealer server (local),

invoke getRemoteData method

From Learning:
– Method to be invoked when an update occurs

From Events:
– Event channels through which we can broadcast

changes/updates

Note for Authentication:
– Database will assume it will receive only calls that the user

is allowed to execute



15-413 Software Engineering, Fall 199824 November 1998

Status of system development

• Code skeleton in place

• Implementation of mobile garage still
an open issue

• Working with other groups towards
smooth API integration



15-413 Software Engineering, Fall 199824 November 1998

Presenter: Jonathan Wildstrom

Learning & Event Services Team: Jonathan Hsieh

   James Lampe

   Yun-Ching Lee

   Wing Ling Leung
   Rudy Setiawan

   Andrew Zimdars
Coach: Eric Stein

Learning and Event Services
Object Design



15-413 Software Engineering, Fall 199824 November 1998

Scenarios

• Dealer’s Workshop at 8 AM
  Minimization of connection costs

- Ability to learn best time for updates

• Introduction of M-class
- Monitor document requests
- Learn about repeated accesses
- Recommendations for local DB



15-413 Software Engineering, Fall 199824 November 1998

Learning Object Model



15-413 Software Engineering, Fall 199824 November 1998

Event Service Object Model



15-413 Software Engineering, Fall 199824 November 1998

API

Event Service
public void subscribe(Object Adapter,
String channel);
public void unsubscribe(String channel);
public void publish(String channel, String
eventString);
public void publish(String channel, Object
eventObject);

Learning
public void logTrigger(String dealerID);



15-413 Software Engineering, Fall 199824 November 1998

Required Services

Database
User Preferences Database:

- Dealer Server ID (unique identifier)
- Locale of Dealer Server
- Connection cost (by hour or flat rate)

Log Database:
- Document information

Network
- Elapsed Times on Download
- Net Load statistics
- Time and Date of Download



15-413 Software Engineering, Fall 199824 November 1998

Required Services cont.

UI
- Preference Panel

Event Services
- Channel to UI



15-413 Software Engineering, Fall 199824 November 1998

Provided Services

Learning

-Recommendations for update times
-Recommendations for additions to
local DB

Event Services

-Channels for communication between
different subsystems



15-413 Software Engineering, Fall 199824 November 1998

Development Status

-Skeletal code in place
-Wrappers being written for off-the-shelf
solutions

- Voyager: Event service
- JaNet: Neural Network
- ID3: Decision Tree
- BayesNet: Naïve Bayesian Method
- Data Miner: Ibiza

- Scheduler pseudocoded
- Logger not started
- Recommender not started



15-413 Software Engineering, Fall 199824 November 1998

Network Object Design

Presenter: Adam Phelps

Network Team: Anthony Watkins
  Barret Trask
  Orly Canlas
  William Ross

Coach: Robin Loh



15-413 Software Engineering, Fall 199824 November 1998

Scenarios
Scenario 3 : Download Termination

In this scenario, a dealer is having poor network
response time and doesn’t want his customers to
have to wait on an ongoing download.  Instead of
waiting for the download to complete, the dealer can
choose to terminate the download and handle his
customers.  Also, when the dealer receives
notification of a database update, he may choose to
wait until later to download the update.



15-413 Software Engineering, Fall 199824 November 1998

Object Model



15-413 Software Engineering, Fall 199824 November 1998

API

Event Notification

This function will be used by the Learning/Event Team to transmit events.

Format:
String notify(Event event, String[] targetlist);

This function multicasts event to all the machines included in the group in
targetlist.  The returned string is the list of machines that successfully
received the event.



15-413 Software Engineering, Fall 199824 November 1998

API

Remote Database Query

This functions allows Database to request data from a remote database.

Format:
int RemoteQuery(Data data, RequestID reqID, String[]
serverList);

This function attempts to get the data specified by reqID from one of the
servers included in serverList.  Upon successful completion of
transmission, the data object will contain the requested data.  However,
this function returns as soon as the request is made, so data does not
contain valid data upon termination of this function.
The value returned is the identification number used to reference the
request.



15-413 Software Engineering, Fall 199824 November 1998

API

Terminate Download

This function allows an ongoing transmission to be terminated.

Format:
void KillDownload(int DownloadID);

This function terminates the download referenced by DownloadID (which
was returned by a RemoteQuery call).



15-413 Software Engineering, Fall 199824 November 1998

Events

The Network subsystem will generate a number of
events.

• Network.NetworkDown
              This event is generated if the network connection is lost.

• Network.ConnectionLimitExceeded.(downloadID)
              This event is generated if a server has reached its maximum
connection capacity. downloadID   is the reference ID of the request
that produced this event.



15-413 Software Engineering, Fall 199824 November 1998

Events
The Network subsystem will generate a number of
events.

• Network.DownloadBegun.(downloadID).(x)
              This event is generated when a download has been successfully
initiated.  downloadID  is the reference ID of the initiated download, and
x  is the size of the download

• Network.DownloadFailed.(downloadID)
              This event is generated if the download referenced by
downloadID  cannot be completed.

• Network.DownloadPercent.(downloadID).(x)%
              This event indicates that the download referenced by
downloadID   is x% complete.

• Network.DownloadComplete.(downloadID).(x)
              This event is generated upon completion of the download
referenced by downloadID .  The total time (in seconds) of the download
is x.



15-413 Software Engineering, Fall 199824 November 1998

Required Services

• The Database subsystem must provide a
method via which Network will access data.

• The Event subsystem must provide a method
for Network to initiate events.

• Authentication needs to provide methods to get
the public key and dealer identity, as well as to
encrypt and decrypt data.



15-413 Software Engineering, Fall 199824 November 1998

Provided Services

• The Network subsystem shall provide a
method via which Event Services may transmit
events.

• The Network subsystem will provide a method
for transferring database objects between a
server and dealer machine.

• The Network subsystem will provide a method
via which Authentication can authenticate a
connection between a PAID server and dealer.



15-413 Software Engineering, Fall 199824 November 1998

Development Status

Tasks Complete:
• Voyager operation on the Linux machines in the SE Lab.
• Skeleton classes defined.

Tasks Not Yet Complete:
• Full implementation of classes



15-413 Software Engineering, Fall 199824 November 1998

User Interface Object Design

Presenter: Reynald Ong

User Interface Team: Euijung Ra

                      Brian Woo 

                      Stephane Zermatten 

Coaches: Elaine Hyder
                Jack Moffett



15-413 Software Engineering, Fall 199824 November 1998

Supported Scenarios

• The scenarios that can not be supported are:
– Scenario 7: Billing. (Deferred)
– Scenario 1: Adding a Dealer. (UI has no role)
– Scenario 8: Security. (UI has no role)

• The scenario that best demonstrates UI:
– Scenario 6: Mobile Garage.



15-413 Software Engineering, Fall 199824 November 1998

Required from other subsystems:

• Learning:
– List of updates to display to the users.

– Comes in as an event.
– Ability to get the dealer level preferences.

– DealerObject getDealerPreferences (void)
– Ability to set the dealer level preferences.

– void setDealerPreferences (DealerObject
Dealer)

– Ability to start updating.
– void startUpdate (void)



15-413 Software Engineering, Fall 199824 November 1998

Required from other subsystems:
• Authentication:

– User permission given an application ID.
– Boolean hasPermission (int appID)

– Ability to set the different user preferences.
– void changePreference (Hashtable preference)

• Database:
– Query results and data.

– DataObject getData (Request request)
• Network:

– Ability to kill a download given the download ID.
– void killDownload (int downloadID)

– All other events will go through Event Service.



15-413 Software Engineering, Fall 199824 November 1998

Required from other subsystems:

• Event Service:
– Create and subscribe to channels to receive

events.
– void createConsumer (string Consumer)
– void destroyConsumer (string Consumer)
– void subscribe (string Consumer,

PublishedEventListener eventListener,
string channel)

– void unsubscribe (string Consumer, string
channel)



15-413 Software Engineering, Fall 199824 November 1998

Provided for other subsystems:

• All teams: UI object
– Class UI: UI (void)
– public void login (User user)
– public void logout (void)

– Local methods not intended for other
subsystems:

– User getCurrentUser (void)
– void addDataWindow (DataWindow

dataWindow)

Note: Class User is an object from the
Authentication Team.



15-413 Software Engineering, Fall 199824 November 1998

UI Objects: Top level (Class UI)

extends

extends



15-413 Software Engineering, Fall 199824 November 1998

UI Objects: Internal components
(Search Window)



15-413 Software Engineering, Fall 199824 November 1998

UI Objects: Internal Components
(InfoPanel)

extends extends extends extends extends



15-413 Software Engineering, Fall 199824 November 1998

UI Objects: Internal Classes
(Request)

extends

extends



15-413 Software Engineering, Fall 199824 November 1998

Public Class: UI

• Only visible class to other subsystems.
• 2 public methods:

– public void login (User user)
– public void logout (void)

• 2 local methods:
– User getCurrentUser (void)
– void addDataWindow (DataWindow

dataWindow)

• Private variable:
– User currentUser: represents the current user.



15-413 Software Engineering, Fall 199824 November 1998

Private Classes:

• Class SearchWindow (void)
– Extends Java Swing JFrame.
– The main container for all other panels

including tools, status, and info panels.
• Class DataWindow (void)

– Extends Java Swing Jframe.
– Abstract class implemented by other classes.

• Class SalesDataWindow (CarObject data)
– Extends class DataWindow and displays

sales info.
• Class PartsDataWindow (PartObject data)

– Extends class DataWindow and displays parts
info.



15-413 Software Engineering, Fall 199824 November 1998

Private Classes:
• Class InfoPanel (JFrame Parent)

– Extends Java Swing JPanel.
– Container for other panels displaying queries

and information.
– Abstract class implemented by other

classes.
• Class ToolPanel (JFrame Parent)

– Extends Java Swing JPanel.
– Container of buttons for control.

• Class StatusPanel (JFrame Parent)
– Extends Java Swing JPanel.
– Container for displaying status information.



15-413 Software Engineering, Fall 199824 November 1998

Private Classes:

• Class WelcomeInfoPanel (JFrame Parent)
• Class OptionsInfoPanel (JFrame Parent)

– Panel for setting user preferences.
• Class UpdateInfoPanel (JFrame Parent)

– Panel for update information and download.
• Class SalesInfoPanel (JFrame Parent)

– Panel for searching sales information.
• Class PartsInfoPanel (JFrame Parent)

– Panel for searching parts.
• All above classes extends class InfoPanel.



15-413 Software Engineering, Fall 199824 November 1998

Private Classes:
• Class Request (void)

– Contains a request to construct a query to the
database.

– Abstract class implemented by other classes.

• Class SalesRequest (void)
– Contains a request to find certain sales info.
– Has internal methods to set the request.

• Class PartsRequest (void)
– Contains a request to find certain parts info.
– Has internal methods to set the request.



15-413 Software Engineering, Fall 199824 November 1998

Stage of Development

• Working on prototype and API.
– Prototype design is at its final stage of

modeling.
– API still under discussion. More requirements

are starting to surface from other teams.

• Working on coding.
– Implementation of user interface has just

begun.

• Researching into mobile devices.



15-413 Software Engineering, Fall 199824 November 1998

Summary
• Scenarios not supported:

– Scenario 1 and 8: UI has no role
– Scenario 7: Deferred

• Scenarios demonstrating UI:
– Scenario 6: Mobile Garage

• Services provided to other subsystems:
– All teams: UI object

– Class UI: UI (void)
– public void login (User user)
– public void logout (void)



15-413 Software Engineering, Fall 199824 November 1998

Summary Cont.

• Services required from other subsystems:
• Learning:

– Event for updates.
– DealerObject getDealerPreferences(void)
– void setDealerPreferences (DealerObject

Dealer)
– void startUpdate (void)

• Authentication:
– Boolean User.hasPermission (int appID)
– void changePreference (Hashtable

preference)



15-413 Software Engineering, Fall 199824 November 1998

Summary Cont.

• Database:
– DataObject getData (Request request)

• Network:
– void killDownload (int downloadID)

• Event Service:
– void createConsumer (string Consumer)
– void destroyConsumer (string Consumer)
– void subscribe (string Consumer,

PublishedEventListener eventListener, string
channel)

– void unsubscribe (string Consumer, string
channel)


