
July 28, 1998

DRAFT - DO NOT DISTRIBUTE

2. Modeling with
UML

Notations enable us to articulate complex ideas succinctly and precisely. In projects
involving many participants, often of different technical and cultural backgrounds, accuracy
and clarity become critical as the cost of miscommunication increases rapidly.

For a notation to enable accurate communication, it must come with a well defined semantics,
well suited for representing a given aspect of a system, and well understood among project
participants. In the latter lies the strength of standards and conventions: when a notation is
used by a large number of participants, there is little room for misinterpretation and
ambiguity. Conversely, when many dialects of a notation exists, or when a very specialized
notation is used, the notation users will be prone to misunderstandings as each user
imposes its own interpretation. We selected UML (Unified Modeling Language, [10]) as a
notation for this book, given that it has a well defined semantics, it provides a spectrum of
notations for representing different aspects of a system, and has been accepted as a standard
notation in the industry.

In this chapter, we first describes the concepts of modeling in general and object-oriented
modeling in particular. We then describe four fundamental UML notations that we use
throughout the book: Use case diagrams, Sequence diagrams, Class diagrams, and
Statechart diagrams. For each of these notations, we describe its basic semantics and
provide examples. We revisit these notations in more detail in later chapters as we describe
the processes that use them. Specialized notations that are used in only one chapter are
introduced later (e.g., Pert and Gantt charts in Chapter 4, Project Management and
Component and Deployment diagrams in Chapter 8, System Design).

Introduction DRAFT-DO NOT DISTRIBUTE

2 of 46 Modeling with UML

2.1. Introduction

UML (Unified Modeling Language, [10]) is a notation that resulted from the unification of
OMT (Object Modeling Technique, [Rumbaugh et al., 1991]), OOSE (Object-Oriented
Software Engineering, [Jacobson et al., 1992]), and Booch [Booch, 1994]. UML has also be
influenced by other object-oriented notations, such as those introduced by Shlaer/Mellor
[Mellor & Shlaer, 1998], Coad/Yourdon [Coad et al. 1995], Wirfs-Brock [Wirfs-Brock et al.
1990], and Martin/Odell [Martin & Odell, 1992]. UML has been designed for a broad range
of applications and software processes. Hence, it provides constructs for many different
kinds of systems and activities (e.g., real time systems, distributed systems, requirements
analysis, system design, deployment).

System development focuses on three different models of the system:

1. The functional model, represented in UML with use case diagrams, describes the
functionality of the system from the user’s point of view.

2. The object model, represented in UML with class diagrams, describes the structure of
a system in terms of objects, attributes, associations, and operations.

3. The dynamic model, represented in UML with sequence diagrams and statechart
diagrams, describes the internal behavior of the system. Sequence diagrams describe
behavior as a sequence of messages exchanged among a set of objects, whereas
statechart diagrams describe behavior in terms of states of an individual object and the
possible transitions between states.

In this chapter, we describe UML diagrams for representing these models (use case
diagrams, sequence diagrams, class diagrams, and statechart diagrams). Introducing you to
these notations represents an interesting challenge: on the one hand, understanding the
purpose of a notation requires you to be familiar with the processes that uses it, on the other
hand, you need to understand the notation before we can introduce you to these processes.
To address this issue, we introduce UML iteratively. In the next section, we first provide you
with an overview of the four basic UML notations. In Section 2.3, we introduce you to the
fundamental ideas of modeling. In Section 2.4, we revisit the four basic UML notations in
light of modeling concepts. In subsequent chapters, we examine these notations in more
detail when we introduce the processes that use them. First, let us have a brief look at these
four UML notations.

An overview of UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 3 of 46

2.2. An overview of UML

2.2.1. Use case diagrams

Use cases are used during requirements elicitation and requirements analysis to define the
functionality of the system. Use cases focus on the behavior of the system from an external
point of view. A use case describes a function provided by the system that yields a visible
result for an actor. An actor describes any entity that interacts with the system (e.g., a user,
another system, the system’s physical environment). For example, Figure 1 depicts a use
case diagram for a simple watch. The WatchUser actor may either consult the time on her
watch (with the ReadTime use case) or set the time (with the SetTime use case). However,
only the WatchRepairPerson actor may change the battery of the watch (with the
ChangeBattery use case). We describe use case diagrams in more detail in Section 2.4.1.

2.2.2. Sequence diagrams

Once use cases have been defined, sequence diagrams are used to formalize the behavior of
the system. Sequence diagrams are used to identify objects which participate in the use case
and the services they provide. We call these objects participating objects, to indicate that
they are the set of objects which participate in a specific use case. A sequence diagram

FIGURE 1. A UML use case diagram describing the functionality of a simple watch. The
WatchUser actor may either consult the time on her watch (with the
ReadTime use case) or set the time (with the SetTime use case). However,
only the WatchRepairPerson actor may change the battery of the watch
(with the ChangeBattery use case).

WatchUser WatchRepairPerson

ReadTime

SetTime

ChangeBattery

SimpleWatch

An overview of UML DRAFT-DO NOT DISTRIBUTE

4 of 46 Modeling with UML

represents the interactions that take place among these objects. For example, Figure 2 is a
sequence diagram for the SetTime use case of our simple watch. The left most column
represents the WatchUser actor who initiates the use case. Labeled arrows are stimuli that
an actor or an object sends to other objects. In this case, the WatchUser presses button 1
twice and button 2 once to set her watch a minute ahead. The SetTime use case terminates
when the WatchUser presses both buttons simultaneously. We describe sequence diagrams
in more detail in Section 2.4.2

2.2.3. Class diagrams

Once participating objects have been identified, we use class diagrams to describe the
structure of the system. Classes are abstractions that specify the common structure and
behavior of a set of objects. Objects are entities that are created, modified, and destroyed
during the execution of the system. Objects have state which includes the values of its
attributes and its relationships with other objects. Class diagrams describe the objects,

FIGURE 2. A UML sequence diagram for the SetTime use case of the SimpleWatch
system. The left most column represents the WatchUser actor who initiates
the use case. Labeled arrows are stimuli that an actor or an object sends to
other objects. In this case, the WatchUser presses button 1 twice and button 2
once to set her watch a minute ahead. The SetTime use case terminates
when the WatchUser presses both buttons simultaneously.

:Watch :Time:Display

pressButton1() blinkHours()

blinkMinutes()

pressButton2() incrementMinutes()

refresh()

pressButtons1And2()
commitNewTime()

stopBlinking()

pressButton1()

:WatchUser

An overview of UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 5 of 46

classes, attributes, and relationships found in the system. For example, Figure 3 is a class
diagram describing the elements of all the watches of the SimpleWatch class. These watch
objects all have a relationship to an object of the PushButton class, an object of the
LCDDisplay class, an object of the Time class, and an object of the Battery class. The
numbers on the relationships (called multiplicity) denote the number of relationships each
SimpleWatch object with an object of a given class. For example, a SimpleWatch has exactly
two PushButtons, one LCDDisplay, two Batteries and one Time. Similarly, all
PushButton, LCDDisplay, Time, and Battery objects are associated to exactly one
SimpleWatch object. We describe class diagrams in more detail in Section 2.4.3.

2.2.4. Statechart diagrams

Statechart diagrams describe the behavior of an individual object as a number of states and
transitions. A state represents a particular set of values for an object. Given a state, a
transition represents a future state the object can move to and the conditions associated with
the change of state. For example, Figure 4 is a statechart diagram for the SetTime use case.
Note that this diagram represents slightly different information than the sequence diagram
of Figure 2. The sequence diagram focuses on the messages exchanged between objects as a
result of external events. The statechart diagram focuses on the transitions between states as
a result of external events. Statecharts can also be used to describe activities of the
development process. Statechart diagrams are described in more detail in Section 2.4.4.

This concludes our first walkthrough of the four basic notations of UML. Now we go into
more detail: Section 2.3 introduces you to basic modeling concepts, including the definition
of systems, models, types, and instances, abstraction, and falsification. Sections 2.4.1 to 2.4.4
describe in detail Use case diagrams, Sequence diagrams, Class diagrams, and Statechart
diagrams. We quote the definitions of important terms from the UML Glossary [10] and we
illustrate their use with a simple example. Section 2.4.5 describes miscellaneous constructs,
such as packages and notes, that are used in all diagrams. We use these four notations
throughout the book to describe software systems, work products, processes, and

FIGURE 3. A UML class diagram describing the elements of a simple watch.

SimpleWatch

LCDDisplay Battery

1

2

TimePushButton

1

1

1

1

1

2

Modeling DRAFT-DO NOT DISTRIBUTE

6 of 46 Modeling with UML

organizations. By the consistent use of a small set of notations, we hope to provide you with
better operational knowledge of UML. In order to avoid overloading you with too many
notations, we introduce specialized notations (e.g., UML Component diagrams in
Chapter 8, System Design) in later chapters as you need them.

2.3. Modeling

In this section we describe the basic concepts of modeling. We first define systems and
distinguish models from the systems they represent. We then define the terms concept and
phenomena. We explain their relationship to programming languages where they are called
types and classes, instances and objects, respectively. Finally, we briefly describe how object-

FIGURE 4. UML Statechart diagram for SetTime use case of the 2Bwatch.

BlinkHours

BlinkMinutes

IncrementHrs

IncrementMin.

BlinkSeconds IncrementSec.

StopBlinking

[button1&2Pressed]

[button1Pressed]

[button2Pressed]

[button2Pressed]

[button2Pressed]

[button1Pressed]

[button1&2Pressed]

[button1&2Pressed]

Modeling DRAFT - DO NOT DISTRIBUTE

Modeling with UML 7 of 46

oriented modeling focuses on building an abstraction of the system environment as a basis
for the system model.

2.3.1. Systems, models, and views

A system is an organized set of communicating parts that is designed to accomplish a
specific purpose. A car, composed of four wheels, a chassis, a body, and an engine, is
designed to transport people. A watch, composed of a battery, a circuit, wheels, hands, is
designed to measure time. A payroll system, composed of a mainframe computer, printers,
disks, software, and payroll staff, is designed to issue salary checks for employees of a
company. Parts of a system can be in turn be considered as simpler systems called
subsystems. For example, the engine of a car, composed of cylinders, pistons, an injection
module, and many other parts, is a subsystem of the car. Similarly, the integrated circuit of a
watch and the mainframe computer of the payroll system are subsystems. This subsystem
decomposition can be recursively applied to subsystems. Objects represent the end of this
recursion, when each piece is simple enough that it can be fully comprehended without
further decomposition.

Many systems are made of numerous subsystems interconnected in complicated ways,
often so complex that no single developer can manage its entirety. Modeling is a mean for
dealing with this complexity. Complex systems are generally described by more than one
model, each focusing on a different aspect or level of accuracy. Modeling means building an
abstraction of a system that focuses on interesting aspects and ignores irrelevant details.
What is interesting or irrelevant varies with the task at hand. For example, assume we want
to build an airplane. Even with the help of field experts, we cannot build an airplane from
scratch and hope that it will function correctly on its maiden flight. Instead, we first build a
scale model of the air frame to test its aerodynamic properties. In this scale model, we only
need to represent the exterior surface of the airplane. We can ignore details such as the
instrument panel or the engine. In order to train pilots for this new airplane, we also build a
flight simulator. The flight simulator needs to represent accurately the layout and behavior
of flight instruments. In this case, however, details about the exterior of the plane can be
ignored. Both the flight simulator and the scale model are much less complex than the
airplane they represent. Modeling allows us to deal with complexity through a divide-and-
conquer approach: for each type of problem we want to solve (e.g., testing aerodynamic
properties, training pilots) we build a model that only focuses on the issues relevant to the
problem. Generally, modeling focuses on building a model that is simple enough for a
person to grasp completely. A general rule of thumb is that each entity should contain at
most 7 ± 2 parts.

Unfortunately, even a model may become so complex that it contains many more parts than
7 ± 2, that is, that it is not easily understandable. As with systems, we apply the same divide-
and-conquer approach to deal with the complexity of models. A view focuses on parts of a

Modeling DRAFT-DO NOT DISTRIBUTE

8 of 46 Modeling with UML

model to make it understandable (see Figure 5). For example, all the blueprints necessary to
construct an airplane constitute a model. Excerpts necessary to explain the functioning of
the fuel system constitute a view (i.e., the fuel system view). Views may overlap: a view of
the airplane representing the electrical wiring also includes the wiring for the fuel system.

Notations are graphical or textual rules for representing views. In wiring diagrams, each
connected line represents a different wire or bundle of wires. In UML class diagrams, a
rectangle with a title represents a class. A line between two rectangles represents a
relationship between the two corresponding classes. Note that different notations can be
used to represent the same view (see Figure 6 and Figure 7).

In software development, there are also many other notations for modeling systems. UML
describes a system in terms of classes, states, interactions, and activities. The Z notation
[Spivey, 1989] describes a system using set theory. Data flow diagrams [De Marco, 1978]
depict how data is retrieved, processed, and stored. Each notation is tailored for a different
problem.

In the next sections, we focus in more detail on the process of modeling. We examine the
definitions of concept and phenomenon introduced by Aristotle and their relationship to the
programming concepts of type, variable, class, and object.

2.3.2. Concepts and phenomena

A phenomenon is an object of the world of a domain as you perceive them. The following are
phenomena:

FIGURE 5. A model is an abstraction describing a subset of a system. A view depicts
selected aspects of a model. Views and models of a single system may
overlap each other.

System
View 1

Model 2
View 2

View 3

Model 1

Modeling DRAFT - DO NOT DISTRIBUTE

Modeling with UML 9 of 46

• the book you are holding

• the current savings interest rate is 3%

• my black watch

A concept is an abstraction describing a set of phenomena. The following are concepts:

• textbooks on software engineering

• savings interest rates

• black watches

FIGURE 6. Example of describing the same model shown with two different notations.
The model shows two classes, Book and Chapter, with the relationship,
Book is composed of Chapters. In the UML notation, classes are
represented by rectangles and aggregation associations by a line terminated
with a diamond. In the Booch notation, classes are represented by clouds
while aggregation associations are represented with a line terminated with a
solid circle. The N above the aggregation association in the Booch diagram
denotes that a Book can be composed of multiple Chapters.

FIGURE 7. Example of describing the same model shown with two different notations.
This diagram represents the information of Figure 5: a System can be
represented by many different Models that can be depicted by many
different Views.

Book Chapter
composed-of

Book Chapter
N

composed-of

UML

Booch

View Model System
**

describesdepicts

Modeling DRAFT-DO NOT DISTRIBUTE

10 of 46 Modeling with UML

A concept describes the properties of phenomena that are common. For example, the
concept black watches is only concerned with the color of watches, not their origin or their
quality. A concept is defined as a three tuple: its name (to distinguish it from other concepts),
its purpose (the properties which determine if a phenomenon is part of the concept or not),
and its members (the set of phenomena which are part of the concept).1 Figure 8 illustrates
the concept of clock. Clock is the name of the concept. Devices that measures time is the
purpose of a clock. My wrist watch and the wall clock about my desk are members of this
concept. Another example of concept is that of a club: A club has a name (e.g., “Valley
Fisherman’s club”), attributes that members must satisfy to be part of the club (e.g.,
“fisherman that live in Valley”), and actual members (e.g., “John Smith”, “James Doe”).

Abstraction is the classification of phenomena into concepts. Modeling is the development
of abstractions that can be used to answer specific questions about a set of phenomena. An
abstraction is simpler to manipulate and examine than its corresponding set of phenomena
because it contains less information: irrelevant details are abstracted away. In chemistry, the
table of elements summarize the different types of atoms based on their atomic weight and
number of electron pairs. Details such as the availability of each substance, its participation
in different molecule are not represented. In biology, species are classified into family trees
based on significant features (e.g., warm blooded, presence of vertebrae). A tree of species
ignores issues related to behavior or habitat. In astronomy, stars are classified into different
types based on their spectrum and dissipated energy. In this classification, the location of the
stars, their detailed composition and dimensions are ignored.

In engineering, the model may exist prior to the phenomenon it models: a UML model
might describe a system that has not been implemented yet. In sciences, the model may state

1. The three components of a concept are also sometimes referred as the name, the intension, and the
extension.

FIGURE 8. The three components of the Clock concept: name, purpose, and members

Name Purpose Members

Clock A device that
measures time.

Modeling DRAFT - DO NOT DISTRIBUTE

Modeling with UML 11 of 46

the existence of systems and lead to the experiments that show their existence: the theory
behind the top quark was developed before accelerator experiments in CERN were
designed and executed, demonstrating the existence of the top quark.

In summary, modeling is the activity software engineers perform when they are designing a
system. The purpose of modeling is to construct an abstraction of the system which ignores
certain details. Software engineers abstract concepts from the application domain (i.e., the
environment in which the system is operating) and from the solution domain (i.e., the
technologies to build system). The resulting model is simpler than the environment or the
system and thus is easier to manipulate. During the development of the model or its
validation, software engineers need to communicate about the system with other engineers,
clients, or users. They can represent the model in their imagination, on a napkin, in a CASE
tool, or using different notations. In doing so, they construct views of the model for
supporting their specific communication need.

2.3.3. Data types, abstract data types, and instances

A data type is an abstraction in the context of a programming language. A data type has a
unique name, distinguishing it from other data types, it has a purpose, i.e., the structure and
the operations valid on all members of the data type, and it has members, i.e., the members
of the data type. Data types are used in typed languages to ensure that only valid operations
are applied to specific data members.

For example, the unique name int in Java corresponds to all the signed integers between -
232 and 232 - 1. The valid operations on the members of this type are all the integer
arithmetic operations (e.g., addition, subtraction, multiplication, division) and all the
functions and methods which have parameters of type int (e.g., mod). The Java run time
environment will throw an exception if a floating point operation is applied to a member of
the int data type (e.g., trunc or floor).

An abstract data type is a special data type whose structure is hidden from the rest of the
system. This allows the developer to revise the structure and the implementation of the
abstract data type without impacting the rest of the system.

For example, the abstract data type Person may define the operations getName(),1
getSocialSecurityNumber(), and getAddress(). The fact that the social security number
of the person is stored as a number or as a string is not visible to the rest of the system. Such
decisions are called implementation decisions.

1. We refer to an operation b y its name followed by its arguments in parenthesis. If the arguments are not
specified we just suffix the name of the operation by a pair of empty parenthesis.

Modeling DRAFT-DO NOT DISTRIBUTE

12 of 46 Modeling with UML

An instance is any member of a specific data type. For example, 1291 is an instance of the
type int. 3.14 is an instance of the type float. An instance is a member of a data type, and
thus can be manipulated with the operations defined by the data type.

The relationship between data type and instance is similar to the relationship between
concept and phenomenon: a data type is an abstraction that describes a set of instances
which share common characteristics. For example, the operation for renaming an instance of
Person need only be defined once in the Person data type but will be applicable to all
possible instances of Person.

2.3.4. Classes, abstract classes, and objects

A class is an abstraction in the context of object-oriented programming languages. As in the
case of an abstract data type, a class encapsulates both structure and behavior. Unlike
abstract data types, classes can be defined in terms of other classes using inheritance. For
example the class CalculatorWatch can be defined by refining the class Watch (see
Figure 9). This type of relationship between a base class and a refined class is called
generalization. The base class (e.g., Watch) is called the superclass, the refined class is called
the subclass (e.g., CalculatorWatch). In a generalization relationship, the subclass refines
the superclass by defining new attributes and operations. In Figure 9, CalculatorWatch
defines functionality for performing simple arithmetic that regular Watches do not have.

When a generalization serves only the purpose of modeling shared attributes and
operations, that is, if the generalization is never instantiated, it is called an abstract class.
Abstract classes often represent generalized concepts in the application domain. Whenever
we classify phenomena into concepts, they often create generalizations to manage the
complexity of the classification. For example, in chemistry, Benzene can be considered a
class of molecules that belongs to the abstract class Organic compound. Note that Organic
compound is a generalization and does not correspond to any one molecule, i.e., it does not
have any direct instances. In modeling software systems, abstract classes sometimes do not
correspond to an application domain concept, but rather, are introduced to reduce
complexity in the model or to promote reuse.

A class defines the operations which can be applied to its instances. Operations of a
superclass can be inherited and applied to the objects of the subclass as well. For example,
the operation SetDate(d), setting the current date of a Watch, is also applicable for
CalculatorWatches. The operation EnterCalcMode(), however, defined in the
CalculatorWatch class is not applicable in the Watch class.

A class defines the attributes which all its instances contain. An attribute is a named slot in
the instance where a value is stored. Attributes have a unique name within the class and a

Modeling DRAFT - DO NOT DISTRIBUTE

Modeling with UML 13 of 46

type. Watches have a time and a date attribute. CalculatorWatches have a
calculatorState attribute.

An object is an instance of a class. An object has an identity and stores attribute values. Each
object belong to exactly one class. In UML, an instance is depicted by a rectangle with its
name underlined. This convention is used throughout UML to distinguish between
instances and types.1 In Figure 11, simpleWatch1291 is an instance of Watch and
calculatorWatch1515 is an instance of CalculatorWatch. Note that, although the
operations of Watch are applicable to calculatorWatch1515, calculatorWatch1515 is not
an instance of the class Watch. Unlike abstract data types, the attributes of an object can be
visible to other parts of the system in some programming languages. For example, Java
allows the implementor to specify in great detail which attributes are visible and which are
not.

FIGURE 9. UML class diagram depicting two classes: Watch and CalculatorWatch.
CalculatorWatch is a refinement of Watch, providing calculator
functionality normally not found in normal watches. In UML an inheritance
relationship is displayed by a line terminated with a triangle. The triangle
points to the superclass while the other end is attached to the subclass.

1. Underlined strings are also used for representing URLs (Uniform Resource Locators). Usually, the context
in which the underlined string appears can be used to resolve this ambiguity.

Watch

time
date

CalculatorWatch

SetDate(d)

EnterCalcMode()
InputNumber(n)

calculatorState

Modeling DRAFT-DO NOT DISTRIBUTE

14 of 46 Modeling with UML

2.3.5. Event classes, events and messages

Event classes are abstractions representing a kind of events for which the system has a
common response. An event, an instance of an event class, is a relevant occurrence in the
system. For example, an event can be a stimuli from an actor (e.g., “the WatchOwner presses
the left button”), a time-out (e.g., “after 2 minutes”), or the sending of a message between

FIGURE 10. An example of a generalization (UML class diagram). PoliceOfficer is an
abstract class which defines the common attributes and operations of the
FieldOfficer and Dispatcher classes.

FIGURE 11. UML class diagram depicting instances of two classes. simpleWatch1291 is
an instance of Watch. calculatorWatch1515 is an instance of
CalculatorWatch. Although the operations of Watch are also applicable to
calculatorWatch1515, the latter is not an instance of the former.

EmergencyReport Incident

FieldOfficer Dispatcher
author initiator

reportsGenerated incidents

1

*
1

*

1…*

1

PoliceOfficer

name:String
badgeNumber:Integer

Watch

CalculatorWatch

simpleWatch1291:Watch

calculatorWatch1515
:CalculatorWatch

<<instance of>>

<<instance of>>

Modeling DRAFT - DO NOT DISTRIBUTE

Modeling with UML 15 of 46

two objects. Sending a message is the mechanism by which the sending object requests the
execution of an operation in the receiving object. The message is composed of a name and a
number of arguments. The receiving object matches the name of the message to one of its
operation and passes the arguments to the operation. Any results are returned to the
sending object.

For example, in Figure 12, the Watch object computes the current time by getting the
Greenwich time from the Time object and the time difference from the TimeZone object by
sending the getTime() and the getTimeDelta() messages, respectively.

Events and messages are instances: represent concrete occurrences in the system. Event
classes are abstractions describing groups of events for which the system has a common
response. In practice, the term “event” can refer to instances or classes. Usually, the context
in which the term is used is sufficient to clarify this ambiguity.

2.3.6. Object-oriented modeling

The problem domain is the set of all environments in which the system presents a solution.
This includes the physical environment, the users and other people, their work processes,
and so on. It is critical for analysts and developers to understand the problem domain for a
system to accomplish its intended task effectively. Note that the problem domain changes
over time, as work processes and people change. The problem domain is also called the
application domain.1

FIGURE 12. Examples of message sends (UML Collaboration diagram): the Watch object
sends the getTime() message to the Time object to query the current
Greenwich time. It then sends the getTimeDelta() message to the
TimeZone objects to query the difference to add to the Greenwich time. The
circles represents the results that are sent back to the message sender.

Watch

Time

TimeZone

1. getTime()

2. getTimeDelta()

GMTTime

TimeDifference

Modeling DRAFT-DO NOT DISTRIBUTE

16 of 46 Modeling with UML

The solution domain is the space of all possible systems. The solution domain is much
richer and more volatile than the problem domain. This can be due to emerging
technologies (also called technology enablers), to changes as the implementation technology
matures, or better understanding of implementation technology by the developers when
they build the system. Modeling the solution domain represents the system and object
design tasks of the development process. Note that the deployment of the system can
change the problem domain. The solution domain is also called the implementation
domain.

Object-oriented analysis is concerned with modeling the problem domain with objects.
Object-oriented design is concerned with modeling the solution domain. Both domains are
modeled using the same representations (i.e., classes and objects). Furthermore, objects in
the problem domain are included in the solution domain, that is, there are objects in the
system which model the phenomena that the system manipulates. For example, an air traffic
control system has a TrafficController class to represent individual users, their
preferences and log information. The system also has a Aircraft class to represent
information associated with the tracked aircraft. Traffic controller and aircraft are problem
domain concepts which are encoded into the system (see Figure 13).

Modeling the problem domain and the solution domain with a single notation has pros and
cons. On the one hand, it can be powerful: solution domain classes which represent
application concepts can be traced right back to the problem domain. Moreover, these
classes can be encapsulated into subsystems independent of other implementation concepts
(e.g., user interface and database technology) and be made into a reusable toolkit of domain
classes. On the other hand, using a single notation can introduce confusion because it
removes the distinction between the real world and the model of it. The system domain is
bound to be simpler and biased towards the solution. To address this issue, we will use a
single notation and, in cases of ambiguity, we will distinguish between the two domain. In
most cases, you should assume we are referring to the model (e.g., “an Aircraft is
composed of Manifest and a FlightPlan” is a statement about the model).

2.3.7. Falsification and prototyping

A model is a simplification of reality in the sense that irrelevant details are ignored. Relevant
details, however, need to be represented. Falsification [Popper, 1992] is the process of
demonstrating that relevant details have been incorrectly represented or not represented at
all, that is, that the model does not correspond to the reality it is supposed to represent.

1. The problem domain is sometimes further divided into a user domain and a client domain. The client
domain includes the issues relevant to the client, e.g., operation cost of the system, impact of the system on
the rest of the organization. The user domain includes the issues relevant to the end user, e.g., functionality,
ease of learning and of use.

Modeling DRAFT - DO NOT DISTRIBUTE

Modeling with UML 17 of 46

The process of falsification is well known in other sciences: researchers propose different
models of a reality, which are gradually accepted as an increasing amount of data supports
the model, but which are rejected once a counter example is found. Ptolomeus’s earth-
centric model of the universe was (eventually) falsified in favor of the Copernican solar-
centric model once data from Gallileo was accepted. The Copernican solar-centric model
was then falsified once other galaxies were discovered and the concept of galaxy had to be
added to the model.

We can apply falsification to software system development as well. For example, a
technique for developing a system is prototyping: developers construct a prototype which
only simulates the user interface of a system. The prototype is then presented to potential

FIGURE 13. The problem domain model represents entities of the environment which are
relevant to an air traffic control system (e.g., aircraft, traffic controllers). The
system model represents entities that are part of the system (e.g., map
display, flight database). In object-oriented analysis and design, the problem
domain model is also part of the system model. An example in this figure is
the TrafficControl package that appears in both models. (For more details
see Chapter 7, Requirements Analysis).

Problem Domain Solution Domain

Problem Domain Model System Model

Aircraft
TrafficController

FlightPlan Airport

MapDisplay

FlightPlanDatabase

SummaryDisplay

TrafficControl

TrafficControl

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

18 of 46 Modeling with UML

users for evaluation, i.e., falsification, and modified subsequently. In the first iterations of
this process, developers are likely to throw away the initial prototype due to feedback from
the users. In other terms, users falsify the initial prototype, a model of the future system,
because it does not represent accurately relevant details.

Note that it is only possible to demonstrate that a model is incorrect. Although it is possible
to show mathematically that two models are equivalent, it is not possible to show that either
of them correctly represents reality. For example, formal verification techniques can enable
developers to show that a specific software implementation is consistent with a formal
specification. However, only field testing and extended use can indicate that a system meets
the need of the client. However, at any time, we have to be prepared that the system can be
falsified, due to changing requirements or changes in the environment.

2.4. A deeper view into UML

We now describe in more detail the four main UML diagrams we use in this book. Use case
diagrams (Section 2.4.1) represent the system from a user’s point of view. They define the
boundaries of the system. Sequence diagrams (Section 2.4.2) represent the system’s behavior
in terms of interactions among a set of objects. They are used to identify objects in the
application and implementation domains. Class diagrams (Section 2.4.3) are used to
represent the structure of a system in terms of objects, their attributes and relationships.
Statechart diagrams (Section 2.4.4) are used to represent the behavior of non-trivial objects.

2.4.1. Use case diagrams

Use cases and actors

Actors are external entities that interact with the system. Examples of external entities are a
role a user plays (e.g., a system administrator, a bank customer, a bank teller) or another
system (e.g., a legacy system, a central database, a fabrication line). Actors have a unique
name and a textual description.

Use cases describe the behavior of the system, as seen from an actor’s point of view.
Behavior described by the use case model is also called external behavior. A use case
describes a function provided by the system as a set of events that yield a visible result for

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 19 of 46

the actors. Actors initiate and communicate with use cases. Use cases can communicate with
actors and with other use cases.

For example, in an accident management system [FRIEND, 1994], a field officer (e.g., a
police officer or a fireman) might have access to a wireless computer which enables her to
interact with a dispatcher. The dispatcher in turn can visualize the current status of all its
resources (e.g., police cars or trucks) on a computer screen and dispatch a resource by
issuing commands from her workstation. In this example, the field officer and the
dispatcher are actors.

Figure 14 depicts the actor FieldOfficer who invokes the use case ReportEmergency to
notify the actor Dispatcher of a new emergency. As a response, the actor Dispatcher in
turn invokes the OpenIncident use case to create an incident report and initiate the incident
handling. Preliminary information from the FieldOfficer is entered in the incident
database and additional units are dispatched by the Dispatcher actor to the scene with the
AllocateResources use case.

To describe a use case, we use a template composed of six fields (see Figure 15):

• Name: The name of the use case is unique across the system such that developers
(and project participants) can unambiguously refer to it.

• Participating actors are actors initiating the use case or receiving information from
it.

• Entry conditions describe the conditions under which the use case begins.

• Flow of events describe the sequence of actions of the use case, which may be
numbered for reference. The common case and the exceptional cases are described
separately in different use cases for clarity.

• Exit conditions describe the conditions under which the use case ends.

• Special requirements are requirements that are not related to the functionality of the
system (i.e., what the system does). These may be constraints on the performance of
the system, its implementation, the hardware platforms it runs on, etc. Special
requirements are described in more detail in Chapter 6, Requirements Elicitation

UML definitions related to use case diagrams:

• Actor - A coherent set of roles that users of use cases play when interacting with these use cases.
An actor has one role for each use case with which it communicates.

• Use case - The specification of a sequence of actions, including variants, that a system (or other
entity) can perform, interacting with actors of the system.

• Scenario - A specific sequence of actions that illustrates behaviors. A scenario may be used to
illustrate an interaction.

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

20 of 46 Modeling with UML

FIGURE 14. An example of a use case model: incident initiation in an accident
management system. Associations between actors and use cases represent
information flows. In UML these associations are bidirectional: they can
represent the actor initiating a use case (e.g., FieldOfficer initiates
ReportEmergency) or a use case providing information to an actor (e.g.,
ReportEmergency notifies Dispatcher)

Use case name ReportEmergency

Participating actor invoked by FieldOfficer
communicates with Dispatcher

Entry condition 1. The FieldOfficer activates the “Report Emergency” function of
her terminal. FRIEND responds by presenting a form to the officer.

Flow of events 2. The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The
FieldOfficer also describes possible responses to the emergency
situation. Once the form is completed, the FieldOfficer submits
the form, at which point, the Dispatcher is notified.

3. The Dispatcher reviews the submitted information and creates an
Incident in the database by invoking the OpenIncident use
case. The Dispatcher selects a response and acknowledges the
emergency report.

FIGURE 15. An example of a use case: the ReportEmergency use case

ReportEmergency

FieldOfficer DispatcherOpenIncident

AllocateResources

FRIEND

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 21 of 46

Use cases are written in natural language. This enables developers to use them for
communicating with the client and the users, who generally do not have a extensive
knowledge of software engineering notations. The use of natural language also enables
persons from other disciplines to understand the requirements of the system. Developers
formalize the use case model into object models once the requirements become stable.

Scenarios

A use case is an abstraction that describes all possible scenarios involving the described
functionality. A scenario is an instance of a use case describing a specific set of actions.
Scenarios are used as examples for illustrating typical cases, their focus is on
understandability. Use cases are used to describe all possible cases. Their focus is on
completeness.

We describe a scenario using a template with three fields. The name of the scenario enables
us to refer to it unambiguously. The name of a scenario is underlined to indicate that it is an
instance. The participating actor instances field indicates which actor instances are
involved in this scenario. Actor instances also have underlined names. Finally, the flow of
events of a scenario describes step by step the sequence of events. Note that, there is no need
for entry or exit conditions in scenarios. Entry and exit conditions are abstractions that
enable developers to describe a range of conditions under which a use case is invoked.
Given that a scenario only describes one flow of events, such conditions are unnecessary.

Use case diagrams can include three types of relationships: communication, use, and
extension. We describe these relationships in more detail next.

Communication relationships

Actors and use cases are said to communicate when information is exchanged between
them. Communication relationships are depicted by a solid path between the actor and use
case symbol. In Figure 14, the actors FieldOfficer and Dispatcher communicate with the

Exit condition 4. The FieldOfficer receives the acknowledgment and the selected
response.

Special requirements The FieldOfficer’s report is acknowledged within 30 seconds. The
selected response arrives no later than 30 seconds after it is sent by the
Dispatcher.

FIGURE 15. An example of a use case: the ReportEmergency use case

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

22 of 46 Modeling with UML

ReportEmergency use case. Only the actor Dispatcher communicates with the use cases
OpenIncident and AllocateResources. Communication relationships between actors and
use cases can be used to denote access to functionality. In the case of our example, a
FieldOfficer and a Dispatcher are provided with different interfaces to the system and
have access to different functionality.

Uses relationships

When describing a complex system, its use case model can become quite complex and
contain redundancy. We can reduce the complexity of the model by identifying
commonalities in different use cases. For example, assume that the Dispatcher can press at
any time a key to access Help. This can be modeled by a use case HelpDispatcher that is
used by the use cases OpenIncident and AllocateResources (and any other use cases
accessible by the Dispatcher). The resulting model only describes the HelpDispatcher
functionality once, thus reducing complexity. Two use cases are related by a uses
relationship if one of them includes the second one in its flow of events. In UML, uses
relationships are depicted by a hollow arrow originating from the use case doing the use to
the use case being used (see Figure 17). Uses relationships are labeled with the string
<<uses>>.

Scenario name warehouseOnFire

Participating actor instances bob, alice: FieldOfficer
john: Dispatcher

Flow of events 1. Bob, driving down main street in his patrol car notices smoke
coming out of a warehouse. His partner, Alice, activates the “Report
Emergency” function from her FRIEND laptop.

2. Alice enters the address of the building, a brief description of its
location (i.e., north west corner), and an emergency level. In
addition to a fire unit, he requests several paramedic units on the
scene given that area appear to be relatively busy. He confirms his
input and waits for an acknowledgment.

3. John, the Dispatcher, is alerted to the emergency by a beep of
his workstation. He reviews the information submitted by Alice
and acknowledges the report. He creates allocates a fire unit and
two paramedic units to the Incident site and sends their
estimated arrival time (ETA) to Alice.

4. Alice receives the acknowledgment and the ETA.

FIGURE 16. warehouseOnFire scenario for the ReportEmergency use case.

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 23 of 46

Extends relationships

Extends relationships are an alternate means to reduce complexity in the use case model. A
use case can extend another use cases by adding events. An extends relationship indicates
that an instance of an extended use case may include (under certain conditions) the
behavior specified by the extending use case. Typical applications of extends relationship
include the specification of exceptional behavior. For example (see Figure 18), assume that
the connection between the Dispatcher and the FieldOfficer can be lost at any time. This
can happen if the FieldOfficer enters a tunnel. The use case ConnectionDown describes
the set of events taken by the system and the actors while the connection is lost. The use case
ConnectionDown extends the use cases OpenIncident and AllocateResources.
Separating exceptional behavior from common behavior enables us to write shorter and
more focused use cases.

The difference between the uses and extends relationships is the location of the dependency.
Assume that we add several new use cases for the actor Dispatcher. If we modeled the
HelpDispatcher function with uses relationships, every new use case will need to use the
HelpDispatcher use case. If we used extends relationships instead, the HelpDispatcher
use case needs to be modified to extend the additional use cases. In general, exception cases,
such as help, errors, and other unexpected conditions, are modeled with extends
relationships. Use cases that describe behavior commonly shared by a fixed set of use cases
are modeled with uses relationships.

FIGURE 17. An example of a uses relationship (UML use case diagram).

OpenIncident

AllocateResources

HelpDispatcher

<<uses>>

<<uses>>

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

24 of 46 Modeling with UML

Applying use case diagrams

Use case models define the boundaries of the system. They are developed during
requirements engineering, often with the client and the users. During the next phase of the
project, called requirements analysis, they are refined and corrected, as they are reviewed by
a broader audience that includes developers and validated against real situations. During
requirements analysis, sequence diagrams are derived from use cases. This allows the
behavior of the system to be described in more detail and to identify participating objects.
The next section describes sequence diagrams.

2.4.2. Sequence diagrams

Sequence diagrams describe any pattern of communications among a set of interacting
objects. An object interacts with another object by sending messages. The reception of a
message by an object triggers the execution of an operation which in turn may send

FIGURE 18. An example of an <<extends>> relationship (UML use case diagram).

OpenIncident

AllocateResources

ConnectionDown

<<extends>>

<<extends>>

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 25 of 46

messages to other objects. Arguments may be passed along with a message and are bound to
the parameters of the executing operation in the receiving object.

For example, let us consider the case of a digital watch with two buttons (hereafter
2Bwatch). Setting the time on 2Bwatch requires the actor 2BWatchOwner to first press both
buttons simultaneously, after which 2Bwatch enters the set time mode. In the set time mode,
2Bwatch blinks the number being changed (e.g., the hours, the minutes, or the seconds, day,
month, year). Initially, when the 2BWatchOwner enters the set time mode, the hours are
blinking. If the actor presses the first button, the next number will blink (e.g, if the hours are
blinking and the actor presses the first button, the hours will stop blinking and the minutes
will start blinking. If the actor presses the second button, the blinking number will be
incremented by one unit. If the blinking number reaches the end of its range, it is reset to the
beginning of its range (e.g., assume the minutes are blinking and its current value is 59, its
new value will be set to 0 if the actor presses the second button). The actor exits the set time
mode by pressing both buttons simultaneously. Figure 19 depicts a sequence diagram for
the case of an actor setting his 2Bwatch one minute ahead.

Each column represents an object that is participating in the interaction. The vertical axis
represents time (from top to bottom). Messages are shown by arrows. Labels on arrows
represent message names and may contain arguments. Activations (i.e., executing methods)
are depicted by vertical rectangles. Actors are shown as the left most column.

Sequence diagrams can be used to describe use cases (i.e., all possible interactions) and
scenarios (i.e., one possible interaction, as in Figure 19). Usually, sequence diagrams are
drawn for a prototypical case to discover new objects, operations, or attributes. When
describing all possible interactions, sequence diagrams also provide notations for
conditionals and iterators. A condition on a message is denoted by an expression in brackets
before the message name (see op1 and op2 in Figure 20). If the expression is true, the

UML definitions related to sequence diagrams:

• Sequence diagram - A diagram that shows object interactions arranged in time sequence. In
particular, it shows the objects participating in the interaction and the sequence of messages
exchanged. … A sequence diagram includes time sequences but does not include object
relationships. A sequence diagram can exist in a generic form (describes all possible
scenarios) and in an instance form (describes one actual scenario). …

• Event - The specification of a significant occurrence that has a location in time and space. …

• Message - A specification of a communication between objects that conveys information
with the expectation that activity will ensue. The receipt of a message is normally
considered an instance of an event.

• Argument - A specific value corresponding to a parameter.

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

26 of 46 Modeling with UML

message is sent. Repetitive invocation of a message is denoted by a * before the message
name (see op3 in Figure 20)

Applying sequence diagrams

Sequence diagrams describe interactions among several objects. Typically, we use a
sequence diagram to describe the event flow of a use case, identify the objects which
participate in the use case, and assign pieces of the use case behavior to them in the form of
services. This process often leads to refinements in the use case (e.g., correcting ambiguous
descriptions, adding missing behavior) and consequently, the discovery of more objects and
more services. Once we have found a sufficient number of objects, we use class diagrams to
describe their relationships and their attributes.

2.4.3. Class diagrams

Classes and objects

Class diagrams describe the structure of the system in terms of classes and objects. Classes
are abstractions that specify the structure and behavior of a set of objects. Objects are

FIGURE 19. Example of a sequence diagram: setting the time on 2Bwatch.

:2BwatchInput :2BwatchTime:2BwatchOwner :2BwatchDisplay

pressButtons1And2() blinkHours()

pressButton1() blinkMinutes()

pressButton2() incrementMinutes()

refresh()

pressButtons1And2() commitNewTime()

stopBlinking()

Time

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 27 of 46

entities that encapsulate state and behavior. Each object has an identity: it can be referred
individually and is distinguishable from other objects.

FIGURE 20. Examples of conditions and iterators in sequence diagrams.

UML definitions related to class diagrams:

• Class - A description of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify collections of
operations it provides to its environment.

• Object - An entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, behavior is represented by
operations and methods. An object is an instance of a class.

• Attribute - A named slot in a classifer that describes a range of values that instances of the
classifer may hold.

• Relationship - A semantic connection among model elements. Examples of relationships
include associations and generalizations.

• Association - The semantic relationship between two or more classes that involves connections
among their instances.

a b c

[i >0] op1()

[i <=0] op2()

*op3()

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

28 of 46 Modeling with UML

In UML, classes and objects are depicted by rectangles. The name of the class or object is
displayed at the top of the rectangle. Object names are underlined to indicate that they are
instances. By convention, class names start with an upper case letter. Objects in object
diagrams may be given names (followed by their class) for ease of reference. In that case,
their name starts with a lower case letter. In the accident management example (see
Figure 21 and Figure 22), Bob and Alice are field officers and they are represented in the
system as FieldOfficer objects called bob and alice. FieldOfficer is the class
describing all field officer objects whereas Bob and Alice are represented by two individual
FieldOfficer objects.

In Figure 21 the FieldOfficer class has two attributes: name and a badgeNumber. This
indicates that all FieldOfficer objects have these two attributes. In Figure 22, the bob and
alice objects have specific values for these attributes: “Bob. D.” and “Alice W.”,
respectively. In Figure 21, the FieldOfficer name attribute is of type String, which
indicates that only instances of String can be assigned to the FieldOfficer name attribute.
The type of an attribute is used to specify the valid range of values the attribute can take.
Note that when attribute types are not essential to the definition of the system, attribute type
decisions can be delayed well into design. This allows the developers to concentrate on the

• Link - A semantic connection among a tuple of objects. An instance of an association.

• Operation - A service that can be requested from an object to effect behavior. An operation has
a signature, which may restrict the actual parameters that are possible.

• Method - The implementation of an operation. It specifies the algorithm or procedure that
effects the results of an operation.

FIGURE 21. An example of a UML class diagram: objects participating in the
ReportEmergency use case.

EmergencyReport Incident

FieldOfficer

name:String
badgeNumber:Integer

Dispatcher

name:String
badgeNumber:Integer

author

incidentsGenerated

reportsGenerated

initiator

reports

1

*

1

*
1…*

1

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 29 of 46

functionality of the system and to minimize the number of trivial changes when the
functionality of the system is revised.

Associations and links

Associations are relationships between classes and represent groups of links. A link
represents a connection between two objects.Links are instances of associations. Each
FieldOfficer object also has a list of EmergencyReports that have been written by the
FieldOfficer. In Figure 21, the line between the FieldOfficer class and the
EmergencyReport class is an association. In Figure 22, the line between the alice object
and the report_1291 object is a link. This link represents state that is kept in the system to
denote that alice generated report_1291.

Roles

The end of an association can be labeled by a string called role. In Figure 21, the roles of the
association between the EmergencyReport and FieldOfficer classes are author and
reportsGenerated. Labeling the end of associations with roles allows us to distinguish
multiple associations originating from a class. Moreover, roles clarify the purpose of the
association.

Multiplicity

The end of an association can be labeled by a set of integers indicating how many links can
legitimately originate from an instance of the class connected to the association end. The
association end author has a multiplicity of 1. This means that all EmergencyReports are
written by exactly one FieldOfficer. In other terms, each EmergencyReport object has
exactly one link to an object of class FieldOfficer. The multiplicity of the association end
reportsGenerated role is “many”, shown as a start. The “many” multiplicity is a short
hand standing for 0…n. This means that any given FieldOfficer may be the author of zero
or more EmergencyReports.

Qualified associations

Qualification is a technique for reducing multiplicity by using keys. Associations with a
0…1 or 1 multiplicity are easier to understand than associations with a 0…n or 1…n
multiplicity. Often, in the case of a one-to-many association, objects on the many side can be
distinguished from one another using a name. For example, in a hierarchical file system
each file belongs to exactly one directory. Each file is uniquely identified by a name in the
context of a directory. Many files can have the same name in the context of the file system,
however, two files cannot share the same name within the same directory. Without

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

30 of 46 Modeling with UML

qualification (see top of Figure 23), the association between Directory and File has a one
multiplicity on the Directory side and a zero to many multiplicity on the File side. We
reduce the multiplicity on the File side by using the filename attribute as a key, also called
a qualifier (see top of Figure 23). The relationship between Directory and File is called a
qualified association.

FIGURE 22. An example of a UML object diagram: objects participating in the
warehouseOnFire scenario.

FIGURE 23. Example of how a qualified association reduces multiplicity (UML class
diagram). Adding a qualifier clarifies the class diagram and increase the
conveyed information. In this case, the model including the qualification
denotes that the name of a file is unique within a directory.

report_1291 incident_1515

bob:FieldOfficer

name = “Bob D.”
badgeNumber = 132

john:Dispatcher

name = “John D.”
badgeNumber = 12

alice:FieldOfficer

name = “Alice W.”
badgeNumber = 23

Directory Filefilename

Directory
File

filename

1
Without qualification

With qualification

*

0…11

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 31 of 46

Reducing multiplicity is always preferable, as the model becomes clearer and fewer cases
have to be taken into account. Developers should examine each association that has a one to
many or many to many multiplicity and check if a qualifier can be added. Often, these
associations can be qualified with an attribute of the target class, (e.g., the filename
attribute in Figure 23).

Association class

Similar to classes, associations can have attributes and operations attached to them. Such an
association is called an association class and is depicted by a class symbol, containing the
attributes and operations, connected to the association symbol with a dashed line. For
example, in Figure 24, the allocation of FieldOfficers to an Incident is modeled as an
association with attributes role and notificationTime.

Any association class can be transformed into a class and simple associations as shown in
Figure 25. Although both representations are similar, the association class representation is
clearer: an association cannot exist without the classes it links, similarly the Allocation
object cannot exist without a FieldOfficer and an Incident object. Although Figure 25
carries the same information, this diagram requires careful examination of the multiplicity
of several roles. Such modeling trade-offs will be examined in more detail in Chapter 7,
Requirements Analysis.

FIGURE 24. An example of an association class (UML class diagram).

Incident
FieldOfficer

name:String
badgeNumber:Integer

Allocation

role:String
notificationTime:Time

resources

incident

1

1…*

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

32 of 46 Modeling with UML

Aggregation

Associations can be used to represent a wide range of connections among a set of objects. In
practice, a special case of association occurs frequently: composition. Composition is a
hierarchical relationship. For example, a State is composed of Counties which in turn are
composed of Townships. A PoliceStation is composed of PoliceOfficers. Another
example is a Directory that contains a number of Files. Such relationships could be
modeled using a one to many association. Instead, UML provides the concept of an
aggregation to denote composition. An aggregation is denoted by a simple line with a
diamond at the container end of the association (see Figure 26). Although one to many
associations and aggregations can be used alternatively, aggregations are preferable given
that they emphasize the hierarchical aspects of the model: The PoliceOfficers are part of
the PoliceStation.

Generalization

Generalization is the relationship between a general class and one or more specialized
classes. Generalization enables us to describe all the attributes and operations that are
common to a set of classes. For example, FieldOfficer and Dispatcher both have name
and badgeNumber attributes. However, FieldOfficer has an association with
EmergencyReport while Dispatcher has an association with Incident. The common
attributes of FieldOfficer and Dispatcher can be modeled by introducing a PoliceOfficer
class that is specialized by the FieldOfficer and the Dispatcher classes (see Figure 27).

FIGURE 25. Alternative model for Allocation (UML class diagram).

Incident
FieldOfficer

name:String
badgeNumber:Integer

Allocation

role:String
notificationTime:Time

resources

incident 1

1…*

1
1

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 33 of 46

PoliceOfficer, the generalization, is called a superclass. FieldOfficer and Dispatcher, the
specializations, are called the subclasses. The subclasses inherit the attributes and
operations of their subclass. Abstract classes (defined in Section 2.3.4) are distinguished
from concrete classes by italicizing their name. In Figure 27, PoliceOfficer is such an
abstract class. Abstract classes are used in object-oriented modeling to classify related
concepts, and thus, to reduce the overall complexity of the model.

FIGURE 26. Examples of aggregations (UML class diagram). A State contains many
Counties which in turn contains many Townships. A PoliceStation has
many PoliceOfficers. A file system Directory contains many Files.

FIGURE 27. An example of a generalization (UML class diagram). PoliceOfficer is an
abstract class which defines the common attributes and operations of the
FieldOfficer and Dispatcher classes.

State County Township* *

PoliceStation PoliceOfficer*

Directory File*

EmergencyReport Incident

FieldOfficer Dispatcher
author initiator

reportsGenerated incidents

1

*
1

*

1…*

1

PoliceOfficer

name:String
badgeNumber:Integer

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

34 of 46 Modeling with UML

Object behavior is specified by operations. A set of operations represents a service offered
by a particular class. An object requests the execution of an operation from another object by
sending it a message. The message is matched up with a method defined by the class to
which the receiving object belongs or by any of its superclasses. The operations of a class is
the list of public services that the class offers. The methods of its class are the
implementations of these operations.

The distinction between operations and methods allows for a cleaner separation between
the mechanism to request a service and the location it is provided. For example, the class
Incident in Figure 28 defines an assignResource() operation which, given a
FieldOfficer, creates an association between the receiving incident and the specified
resource. The assignResource() operation may also have a side effect such as sending a
notification to the newly assigned resource. The close() operation of the Incident class is
responsible for closing the incident. This includes going over all the resource which have
been assigned to the incident over time and collecting their reports.

Applying class diagrams

Class diagrams are used for describing the structure of a system. During requirement
analysis, software engineers build class diagrams to formalize application domain
knowledge. Classes represent participating objects found in use cases and sequence
diagrams and describe their attributes, and operations. The purpose of requirement analysis
models is to describe the scope of the system and discover its boundaries. For example,
using the class diagram pictured in Figure 21, an analyst could examine the multiplicity of
the association between FieldOfficer and EmergencyReport (i.e., one FieldOfficer can
write zero or more EmergencyReports, each EmergencyReport is written by exactly one
FieldOfficer) and ask the user whether this is correct. Can there be more than one author
for an EmergencyReport? Can there be anonymous reports? Depending on the answer from
the user, the analyst would then change the model to reflect the application domain. The
development of requirements analysis models is described in Chapter 7, Requirements
Analysis.

FIGURE 28. Examples of operations provided by the Incident class.

Incident

assignResource(r)
close()

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 35 of 46

Requirement analysis models do not focus on implementation. Concepts such as interface
details, network communication, and database storage are not shown. Class diagrams are
refined during system design and object design to include classes representing the solution
domain. For example, the developer adds classes representing databases, user interface
windows, adapters around legacy code, optimizations, and so on. The classes are also
grouped into subsystems with well defined interfaces. The development of design models is
described in Chapter 8, System Design.

2.4.4. Statechart diagrams

A UML statechart is a notation provided by UML to describe the sequence of states an
object goes through in response to external events. Statecharts are extensions of the
traditional finite state machines model. On the one hand, statecharts provide notations for
nesting states and state machines (i.e., a state can be described by a state machine). On the
other hand, statecharts provide notations for binding transitions with message sends and
conditions on objects. UML statecharts were inspired by Harel’s statecharts [Harel, 1987]. A
UML statechart is equivalent to a traditional Mealy or Moore state machine.

A state is a condition that an object satisfies. A state can be thought as an aggregation of
attribute values that has some significance. For example, the Incident class in FRIEND can
have four states: active, inactive, closed, and archived (see Figure 29). An active Incident
denotes a situation which requires a response (e.g., an ongoing fire, a traffic accident). An
inactive Incident denotes a situation that was handled but for which reports need to be
written (e.g., the fire has been put off but damage estimates have not yet been performed). A
closed Incident denotes a situation which has been handled and documented. An archived
Incident is a closed Incident whose documentation has been moved to off-site storage.

FIGURE 29. UML statechart diagram for the Incident class

Active Inactive Closed Archived

incidentHandled incidentDocumented incidentArchived

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

36 of 46 Modeling with UML

A transition models changes of state triggered by events, conditions, or time. For example
in Figure 29, there are three transitions: the transition from the Active state into the
Inactive state, from the Inactive state to the Closed state, and from the Closed state to
the Archived state.

A state is represented by a rounded rectangle. A transition is represented by arrows relating
two states. States are labeled with their name and can be expanded. A small solid black
circle indicates the initial state. A circle surrounding a small solid black circle indicates a
final state.

Figure 30 displays another example, a statechart for the 2Bwatch (for which we constructed
a sequence diagram in Figure 19). At the highest level of abstraction, 2Bwatch has two
states, MeasureTime and SetTime. 2Bwatch changes states when the user presses and
releases both buttons simultaneously. When 2Bwatch is first powered, it is in the SetTime
state. This is indicated by the small solid black circle which represents the initial state. When
the battery of the watch runs out, the 2Bwatch is permanently out of order. This is indicated
with a final state. In this example, transitions can be triggered by an event (e.g.,
pressButtonsLAndR) or by the passage of time (e.g., after 2 min.) Actions can be
associated with a transition (e.g., beep when the transition between SetTime and
MeasureTime is fired on the pressButtonsLAndR event)

The statechart diagram in Figure 30 does not represent the details of measuring or setting
the time. These details have been abstracted away from the statechart diagram and can be
modeled separately using either internal transitions or a nested statechart. Internal
transitions (Figure 31) are transitions that remain within a single state. They can also have

UML definitions related to statechart diagrams:
• Statechart- a diagram that shows a state machine.
• State machine - A behavior that specifies the sequences of states that an object goes through

during its life in response to events, together with its responses and actions.

• State - A condition or situation during the life of an object during which it satisfies some
condition, performs some activity, or waits for some event.

• Transition - A relationship between two states indicating that an object in the first state will
perform certain specified actions and enter the second state when a specified event occurs and
specified conditions are satisfied. On such a change of state the transition is said to fire.

• Action - The specification of an executable statement that forms an abstraction of a
computational procedure. An action results in a change in the state of the model, and is realized
by sending a message to an object or modifying a value of an attribute.

• Action state - A state that represents the execution of an atomic action, typically an operation.
• Activity diagram - A special case of a state diagram in which all, or most of the states, are action

states and in which all, or most of the transitions are triggered by completion of actions in the
source states.

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 37 of 46

actions associated with them. Entry and exit are displayed as an internal transition given
that their actions do not depend on the originating and destination states.

Nested statecharts (Figure 32) reduce complexity. They can be used instead of internal
transitions. In Figure 32, the current number is modeled as nested state, while actions
corresponding to modifying the current number are still modeled using internal transitions.
Note that each state could be modeled as a nested statechart (e.g., the BlinkHour statechart

FIGURE 30. Statechart diagram for 2Bwatch set time function.

FIGURE 31. Internal transitions associated with the SetTime state.

MeasureTime SetTime

pressButtonsLAndR

pressButtonsLAndR/beep

after 2 min.

DeadBattery

after 20 years
after 20 years

SetTime

entry/blink hours

exit/stop blinking

pressButton1/blink next number
pressButton2/increment current number

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

38 of 46 Modeling with UML

would have twenty four sub states which correspond to the hours in the day, transitions
between these states would correspond to pressing the second button).

Applying statechart diagrams

Statechart diagrams are used to represent non trivial behavior of a subsystem or an object.
Unlike sequence diagrams, they make explicit which attribute or set of attributes have an
impact on the behavior of the object. Statecharts are used to identify object attributes and to
refine the behavior description of an object, while sequence diagrams are used to identify
participating objects and the services they provide. Statechart diagrams can also be used
during system and detail design to describe system domain objects with interesting
behavior. We will describe the use of statechart diagrams in more detail in Chapter 7,
Requirements Analysis and Chapter 8, System Design.

Activity diagrams

The outgoing transitions are triggered by the completion of an action associated with the
state. This is called an action state. By convention, the name of a state denotes a condition
whereas the name of an action state denotes an action. Activity diagrams are state diagrams
whose states are actions states. Figure 33 is an activity diagram corresponding to the state
diagram in Figure 29. An alternate (and equivalent) view of activity diagrams is to interpret

FIGURE 32. Refined statechart associated with the SetTime state.

SetTime

BlinkHours BlinkMinutes BlinkSeconds

BlinkYear BlinkMonth BlinkDay

b2/incr hour b2/incr min. b2/incr sec.

b2/incr year b2/incr mo. b2/incr day

b1

b1

b1

b1

b1b1

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 39 of 46

action states as activities and transitions as a control flow, that is, the arrows are interpreted
as sequential constraints between activities.

Decisions are branches in the control flow. They denote alternative transitions based on a
condition in the system or the object. Decisions are depicted by a diamond with one or more
incoming arrows and two or more outgoing arrows. The outgoing arrows are labeled with
the conditions that select a branch in the flow of control. All outgoing transitions from a
decision represent all possible outcomes. In Figure 34, a decision after the OpenIncident
action selects between three branches: if the incident is of high priority and if it is a fire, the
FireChief is notified. If the incident is of high priority and is not a fire, the ChiefOfPolice
is notified. Finally, if neither condition is satisfied, that is, if the Incident is of low priority,
no superior is notified and the resource allocation proceeds.

Complex transitions are transitions with multiple source states or multiple target states.
Complex transitions denote the synchronization of multiple activities (in the case of
multiple sources) or the splitting of the flow of control into multiple threads (in the case of
multiple targets). They are used to model concurrency in parallel systems.

For example, in Figure 35, the action states AllocateResources, CoordinateResources,
and DocumentIncident may all occur in parallel. However, they can only be initiated after
the OpenIncident action and the ArchiveIncident action may only be initiated after all
other activities have been completed.

Actions may be grouped into swimlanes to denote the object or subsystem that implements
the actions. Swimlanes are represented as rectangles enclosing a group of actions.
Transitions may cross swimlanes. In Figure 36, the Dispatcher swimlane groups all the

FIGURE 33. UML activity diagram for Incident. During the action state Handle
Incident the Dispatcher receives reports and allocates resources. Once the
Incident is closed, the Incident moves to the Document Incident action
state in which all participating FieldOfficers and Dispatchers document
the Incident. Finally, the Archive Incident action state represents the
archival of the Incident related information onto slower access medium.
Note that this activity diagram is more compact than its equivalent
statechart (Figure 29).

Handle
Incident

Document
Incident

Archive
Incident

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

40 of 46 Modeling with UML

actions that are performed by the Dispatcher object. The FieldOfficer swimlane denotes
that the FieldOfficer object is responsible for the DocumentIncident action.

FIGURE 34. Example of decision in the OpenIncident process. If the Incident is a fire
and is of high priority, the Dispatcher notifies the Fire Chief. If it is an
Incident of high priority that is not a fire, the Police Chief is notified
instead. In all cases, the Dispatcher allocates resources to deal with the
Incident.

FIGURE 35. Example of complex transitions.

Open
Incident

Notify
Police Chief

Notify
Fire Chief

Allocate
Resources

[fire & highPriority]

[not fire & highPriority]

[lowPriority]

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 41 of 46

Applying activity diagrams

Activity diagrams provide a task centric view of the behavior of an object. They can be used,
for example, for describing sequencing constraints among use cases, sequential activities
among a group of objects, or the tasks of a project. In this book, we use activity diagrams for
describing the processes and activities during software development, in Chapter 3, Software
Life Cycle and Chapter 4, Project Management.

2.4.5. Diagram organization

Models of complex systems quickly become complex as developers refine them. Most
developers can manage complexity up to 7 ± 2 items. The complexity of models can be dealt
with by grouping related elements into packages. A package is a grouping of model
elements, such as use cases, classes, or activities. They are used to reduce the complexity of
large models by defining scopes of understanding. For example, Figure 37 displays use
cases of the FRIEND emergency response system grouped by actors. Packages are displayed
as rectangles with a tab attached to their upper left corner. Use cases dealing with incident
management (e.g., creating, resource allocation, documentation) are grouped in the
IncidentManagement package. Use cases dealing with incident archive (e.g., archiving an
incident, generating reports from archived incidents) are grouped in the IncidentArchive
package. Use cases dealing with system administration (e.g., adding users, registering end
stations) are grouped in the SysAdministration package. This enables the client and the

FIGURE 36. Example of swimlanes.

Open
Incident

Allocate
Resources

Coordinate
Resources

Document
Incident

Archive
Incident

Dispatcher

FieldOfficer

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

42 of 46 Modeling with UML

developers to organize use cases into related groups and to focus on only a limited set of use
cases at a time.

Figure 37 and Figure 38 are examples of class diagrams using packages. Classes from the
ReportEmergency use case are organized according to the site where objects are created.
FieldOfficer and EmergencyReport are part of the FieldStation package while
Dispatcher and Incident are part of the DispatcherStation. Figure 37 displays the
packages with the model elements they contain while Figure 38 displays the same
information without the contents of each package. Figure 38 is a higher level picture of the

FIGURE 37. Example of packages: use cases of FRIEND organized by actors (UML use
case diagram).

ReportEmergency

FieldOfficer DispatcherOpenIncident

AllocateResources

IncidentManagement

ArchiveIncident

SearchArchive

ManageUsers

ManageTerminals

Librarian
SysAdmin

IncidentArchive SysAdministration

A deeper view into UML DRAFT - DO NOT DISTRIBUTE

Modeling with UML 43 of 46

system and would be used for discussing system level issues while Figure 37 is a more
detailed view that can be used to discuss the content of specific packages.

Packages are used to tame complexity the same way a user organizes files and
subdirectories into directories. However, packages are not necessarily hierarchical: the same
class may appear in more than one package. To reduce inconsistencies, classes, more
generally model elements, are owned by exactly one package while the other packages are
said to refer to the modeling element. Note, that packages are organizing constructs, not
objects. They have no behavior associated with them and cannot send and receive messages.

A note is a comment attached to a diagram. Notes are used by developers for attaching
information to models and model elements. This is an ideal mechanism for recording
outstanding issues relevant to a model, clarifying a complex point, or recording to-dos or
reminders. Although notes have no semantics per se, they are sometimes used to express

FIGURE 38. Example of packages: this figure displays the same packages as Figure 37
except that the details of each packages are suppressed (UML use case
diagram).

UML definitions related to diagram organization:

• Packages - A general purpose mechanism for organizing elements into groups. Packages
may be nested within other packages. A system may be thought of as a single high-level
package, with everything else in the system contained in it.

• Notes - A comment attached to an element or a collection of elements. A note has no
semantics.

FieldOfficer Dispatcher

IncidentManagement

Librarian SysAdminIncidentArchive SysAdministration

A deeper view into UML DRAFT-DO NOT DISTRIBUTE

44 of 46 Modeling with UML

constraints that cannot be expressed in UML otherwise. Figure 40 provides an example of
note.

FIGURE 39. Example of packages. The FieldOfficer and EmergencyReport classes are
located in the FieldStation package while the Dispatcher and Incident
classes are located on the DispatcherStation package. A given class can
appear in more than one package, however, it is owned by exactly one
package.

FIGURE 40. An example of note. Notes can be attached to a diagram or a specific element
in a diagram.

EmergencyReport Incident

FieldOfficer Dispatcher

DispatcherStationFieldStation

EmergencyReport Incident

FieldOfficer Dispatcher

DispatcherStationFieldStation

The EmergencyReport
class is defined in the
FieldStation package but
used in both stations.

Exercises DRAFT - DO NOT DISTRIBUTE

Modeling with UML 45 of 46

2.5. Exercises

1. Draw an object diagram representing this book. All objects and links in this diagram
should be instances of the classes which are in the previous diagram. Include
attribute values only for the title of each chapter.

2. Draw a class diagram representing the chapter structure of books. Consider both
aggregation relationships (a book contains chapters) and associations (chapters cross
reference other chapters). Chapters also have attributes denoting the number of
pages, figures, its title, abstract, and contents. Include multiplicity on all
relationships.

3. Assume the authors of this book and you, the reader, are actors. Identify and describe
at least three use cases that involve one or more of these actors.

4. Draw a sequence diagram for one of the use cases you described in the previous
exercise. This sequence diagram should have one column for each actor and for each
object (of exercise 2) which are involved in the use case.

2.6. References

[Booch, 1994] G. Booch, Object-Oriented Analysis and Design with Applications, Second
Edition, Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1994.

[Coad et al. 1995] P. Coad, D. North, M. Mayfield, Object models: strategies, patterns, &
applications. Prentice-Hall, Englewood Cliffs, 1995.

[De Marco, 1978] T. De Marco, Structured Analysis and System Specification, Yourdon Inc, New
York, 1978.

[FRIEND, 1994] FRIEND Project Documentation, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 1992-95.

[Harel, 1987] D. Harel, ˇStatecharts: A Visual Formalism for Complex Systems,ˇ Science of
Computer Programming, pp. 231-274, 1987.

[Jacobson et al., 1992] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-
Oriented Software Engineering - A Use Case Driven Approach. Reading, MA, Addison-Wesley,
New York, 1992.

[Liskov & Guttag, 1986] B. Liskov & J. Guttag, Abstraction and Specification in Program
Development, MIT Press, McGraw-Hill, New York, 1986.

[Martin & Odell, 1992] J. Martin and J. J. Odell. Object-Oriented Analysis and Design, Prentice-
Hall, Englewood Cliffs, N.J. 1992.

[Mellor & Shlaer, 1998] S. Mellor and S. Shlaer, Recursive Design Approach, Yourdon Press,
Prentice Hall, 1998.

[Popper, 1992] K. Popper. Objective Knowledge: an Evolutionary Approach. Clarendon Press,

References DRAFT-DO NOT DISTRIBUTE

46 of 46 Modeling with UML

Oxford, 1992.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1991.

[Spivey, 1989] J. M. Spivey, The Z Notation, A Reference Manual. Prentice Hall International
(UK) Ltd., Hemel Hempstead, Hertfordshire, U.K. 1989.

[10] UML1.1 Specification, http://www.rational.com/uml, Rational Software Corporation,
Santa Clara, CA. 1997.

[Wirfs-Brock et al. 1990] R. Wirfs-Brock, B. Wilkerson, and L. Wiener. Designing Object
Oriented Software. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 1990.

