
Guenter Teubner 15-413 Software Engineering Fall 1998 1

2

15-413
Lecture Notes on

CASE-Tools: Together/J

Guenter Teubner
Technische Universitaet Muenchen

Institut fuer Informatik

Michael A. Smith
Carnegie Mellon University

17 September 1998

Guenter Teubner 15-413 Software Engineering Fall 1998 2

Outline of the lecture

❖ What is CASE?
w The acronym
w Typical components of CASE tools

❖ Major goals and concepts
w Lifecycle support
w Roundtrip engineering

❖ Working with Together/J
w The windows of Together/J
w Creating and modifying class diagrams
w Handling complexity with packages
w Code and documentation generation

Guenter Teubner 15-413 Software Engineering Fall 1998 3

What means CASE?

❖ The acronym CASE stands for
w Computer
w Aided
w Software
w Engineering

❖ The term CASE tool covers tools supporting the software
engineering process. In reality, often even tools which
support only one particular part of this process (such as
compilers, editors, UI generators) are called CASE tools.

❖ Our definition is: CASE tools are browsers and editors for
models in graphical and textual form.

Guenter Teubner 15-413 Software Engineering Fall 1998 4

Typical components of CASE tools

❖ Typical functionality
w browsing and editing with a graphical user interface
w automatic code generation
w documentation generation

❖ Project repository
w persistent storage of all development documents
w integrated version control system
w concurrent, distributed modeling

❖ Interface to other tools
w software development tools
w process and workflow modeling tools
w offering a scripting language

Guenter Teubner 15-413 Software Engineering Fall 1998 5

The goal: Full lifecycle support

❖ The goal behind CASE is to support all the activities of
software development with a single tool.

Analysis Design Implementation Testing Maintenance

Guenter Teubner 15-413 Software Engineering Fall 1998 6

Current situation: Quality of support differs

❖ Not all aspects of the software engineering process are
supported by today’s CASE-tools !

❖ Good support for
w requirements analysis (class diagrams, use cases, etc.)
w implementation

❖ Moderate support for
w system design
w testing
w maintenance

❖ Poor support for
w requirements elicitation

Guenter Teubner 15-413 Software Engineering Fall 1998 7

Quality of CASE support today

Poor

Moderate

Good

Excellent

Activity

Requirements
definition

Formal
specification

Quality of support (according to Ian Sommerville)

Function
oriented
design

Data
modeling

Object-oriented
design

Programming Testing Maintenance Management

Guenter Teubner 15-413 Software Engineering Fall 1998 8

Level of integration

❖ not integrated
w separate CASE tools exist for different parts of the software

engineering activities
w each tool has its own set of project documents and a unique

user interface
w the user works with multiple tools

❖ integrated
w all tools are working on the same project documents
w a tool can trigger activities of other tools (e.g. start an formal

integrity check after a model has been changed)
w the tools share one common user interface
w the user has the feeling of working with one tool

Guenter Teubner 15-413 Software Engineering Fall 1998 9

Advantages and promises of CASE tools

❖ Integrated development environment
w unique user interface
w automation of tedious tasks (e.g. code generation)

❖ Guidance in developing
w common language for all developers
w correct use of description techniques
w methodical developing steps

❖ Consistency between model and documentation
w documentation is generated out of the model instead being

written separately.

❖ Reuse of existing models for new systems

Guenter Teubner 15-413 Software Engineering Fall 1998 10

Problems and disadvantages of CASE Tools

❖ Long learning curves
w complex functionality
w confusing user interfaces

❖ Limited to
w one notation
w one language

❖ Multi-User support is weak
w “merging” of models is poorly automated

❖ Costs
w CASE tools belong to the most expensive tools in SE
w CASE tools require high administration effort

Guenter Teubner 15-413 Software Engineering Fall 1998 11

Impact of CASE technology

❖ CASE technology has resulted in significant
improvements in quality and productivity.

❖ However, the scale of these improvements is less than
was initially predicted by early technology developers

w Many project management problems are not amenable to
automation.

w CASE systems are still not integrated.
w Adopters of CASE technology underestimated the training

and process adaptation costs.

Guenter Teubner 15-413 Software Engineering Fall 1998 12

Forward Engineering

❖ Forward engineering is the
generation of skeleton code
out of the analysis or design
models. The developer still has
to write the bodies of the
methods.

❖ Typical flow of events
 Create or modify an object

model for a system
w Generate the code for this

model
w Allow external modification

of this code

Employee

Staff Professor

public class Staff extends Employee
{

}

public class Professor extends Employee
{

}

Guenter Teubner 15-413 Software Engineering Fall 1998 13

Reverse Engineering

❖ Reverse engineering is the
recreation of an analysis or
design model from existing
code.

❖ Typical flow of events

w Scan a set of already existing
source code files

w Generate the object model
for these files

w Allow now modifications on
this object model

public class Staff extends Employee
{

}

public class Professor extends Employee
{

}

Employee

Staff Professor

Guenter Teubner 15-413 Software Engineering Fall 1998 14

Roundtrip Engineering

Reverse Engineering

Forward Engineering

Object Model

Code

public class Staff extends Employee
{

}

public class Professor extends Employee
{

}

Employee

Staff Professor

public class Slave extends Employee
{

}

public class Master extends Employee
{

}

Slave Master

Guenter Teubner 15-413 Software Engineering Fall 1998 15

Why roundtrip engineering?

❖ Automatic code generation out of the models developed
during the design phase is easier, faster and error free
than doing it manually.

❖ Developers can use specialized tools for editing and
debugging that allow faster and easier editing and
shorter turnaround cycles during debugging.

❖ With reverse engineering, existing code can be
discussed and modified on a better manageable basis.
Reverse engineering also allows developers to create
models for old, never modeled systems.

Guenter Teubner 15-413 Software Engineering Fall 1998 16

Reverse engineering vs. Reengineering

❖ Reverse Engineering
w means analyzing existing software with the purpose of

understanding its design and specification.
w may be part of a reengineering project but may also be used to

respecify a system for reimplementation.

❖ Reengineering
w means restructuring or rewriting parts or all of a legacy

system without changing its functionality.
w involves adding effort to make it easier to maintain. The

system may be restructured and redocumented.

Guenter Teubner 15-413 Software Engineering Fall 1998 17

Guenter Teubner 15-413 Software Engineering Fall 1998 18

Together/J

❖ supports UML 1.1
❖ supports Java, C++ and Object Cobol
❖ supports forward and reverse engineering
❖ supports generation of documentation from the model
❖ is written in 100% Java

❖ A free version (whiteboard edition) can be found under
www.togetherj.com

Guenter Teubner 15-413 Software Engineering Fall 1998 19

Working with Together/J (continued)

❖ Together/J supports
w class diagrams
w sequence diagrams
w collaboration diagrams
w use case diagrams
w state transition diagrams

❖ Diagrams can be modified in two ways:
w Graphically: by drawing lines (associations, ...), rectangles

(classes, packages, ...) in the diagram pane.
w Menu-based: by selecting an entity in the diagram pane and

using the options in the inspector pane to change its
properties.

Guenter Teubner 15-413 Software Engineering Fall 1998 20

Model management in 15-413

❖ Many models will be created during 15-413
❖ Together/J doesn’t have a configuration management

system

➭ A model management strategy and has to be defined for
PAID to avoid conflicts. This is to be done by the
architecture team and includes the following topics:
w which models should be created for PAID
w how are the models organized (e.g. by subsystems)
w where are the models stored
w who is allowed to access different models
w selection of a configuration management system

Guenter Teubner 15-413 Software Engineering Fall 1998 21

Skills expected from you

❖ Handling the windows of Together/J
❖ Creating and modifying classes
❖ Creating and modifying attributes
❖ Creating and modifying associations
❖ Creating and using packages
❖ Creating and using logical packages
❖ Handling the other diagram types
❖ Creating documentation
❖ Code-Generation

Guenter Teubner 15-413 Software Engineering Fall 1998 22

Together/J’s windows

❖ After starting Together/J, the main window appears
w it contains all project-wide commands such as “Open ...”,

“Save...” and “Exit” as well as the menus for creating
documentation or calling scripts.

➭ There is exactly one main window for the project.

v When you open a project, a browser window appears
w it shows one diagram from the project. The user can modify

this diagram in the browser window.
w the first browser window always displays the top-level object

model of the project.
➭ The user can then open and work with multiple browser

windows for different diagrams simultaneously.

Guenter Teubner 15-413 Software Engineering Fall 1998 23

The main window

The main window contains all
standard menus plus the some
features like documentation
generation in the “Tools” menu.

The main window contains all
standard menus plus the some
features like documentation
generation in the “Tools” menu.

Guenter Teubner 15-413 Software Engineering Fall 1998 24

A browser window of Together/J

❖ shows exactly one diagram of the project
❖ is split into 5 parts

w The navigation pane: a hierarchy tree representing the package
hierarchy of the project. It is used to switch to other diagrams.

w The diagram pane: a drawing area containing the diagram
itself. Allows graphical modifications of the diagram.

w The toolbar. It contains different buttons for each diagram
type.

w The text pane: shows the source code for a class that is selected
in the diagram pane. Is not visible for other diagrams than
class diagrams.

w The inspector pane: an area where specific attributes of the
currently selected item can be edited. The contents of this area
changes when you click on different elements of the diagram.

Guenter Teubner 15-413 Software Engineering Fall 1998 25

Elements of a browser window

Navigation paneNavigation pane

Inspector paneInspector pane
Text paneText pane

Diagram paneDiagram pane

ToolbarToolbar

Guenter Teubner 15-413 Software Engineering Fall 1998 26

Starting or opening a project

❖ Select “New Project ...” or “Open Project ...” from the
“File” menu of the main window.

❖ Give your project a name and enter a path for all the
files which are produced while you are modeling your
system.

❖ When you click on the “Advanced” option, two text
areas appear where you can specify additional paths for
your class files (sourcepath) and directories with Java
classes (classpath) which you want to use in your project.

Guenter Teubner 15-413 Software Engineering Fall 1998 27

Starting a new project

You can specify alternative source
paths and additional classpaths for
your project.

You can specify alternative source
paths and additional classpaths for
your project.

Every project must have a name
and a directory where all project
files and the Java sources are stored.

Every project must have a name
and a directory where all project
files and the Java sources are stored.

Guenter Teubner 15-413 Software Engineering Fall 1998 28

Creating classes

❖ To create a new class
w select the “New Class” button in the toolbar
w draw a rectangle in the diagram pane
w change the default name for the class to the proper one
w use the inspector pane to modify other properties of the class

(author, version, etc.)

❖ You can always change the properties of the class later.

Guenter Teubner 15-413 Software Engineering Fall 1998 29

Creating classes (example)

Select the “New class” button in the
toolbar and draw a rectangle in the
diagram pane. You can then insert the
name of your new class.

Select the “New class” button in the
toolbar and draw a rectangle in the
diagram pane. You can then insert the
name of your new class.

Guenter Teubner 15-413 Software Engineering Fall 1998 30

Adding and editing attributes

❖ To add an attribute
w right click on the class in the diagram pane
w select “New attribute ...” from the context menu
w enter the name of the attribute

❖ To modify an attribute
w click on the attribute in the diagram pane
w use the inspector pane to change to change to properties of the

attribute

Guenter Teubner 15-413 Software Engineering Fall 1998 31

Adding and editing attributes

Click on the attribute in the diagram pane
and use the inspector pane to modify the
attribute.

Click on the attribute in the diagram pane
and use the inspector pane to modify the
attribute.

Guenter Teubner 15-413 Software Engineering Fall 1998 32

Generalization (Inheritance)

❖ To define a generalization
w click on the “Generalization” button in the toolbar
w draw a line from the subclass to the superclass. You don’t

have to hit certain points of the rectangles; it’s enough when
you start the line within the subclass and release the mouse
button in the superclass.

❖ To change a generalization
w click on one end of the arrow and drag it to the new subclass

respective superclass.

Guenter Teubner 15-413 Software Engineering Fall 1998 33

Generalization (Inheritance)

Select the “Generalization” button in the
toolbar and draw a line from the subclass
(“Student”) to the superclass (“Person”).

Select the “Generalization” button in the
toolbar and draw a line from the subclass
(“Student”) to the superclass (“Person”).

Guenter Teubner 15-413 Software Engineering Fall 1998 34

Mastering complexity with Packages

❖ Large systems can easily lead to ravioli models which
are nearly unreadable.
w Example: The system architecture of StarNetwork (next slide)

❖ UML packages are organizing constructs on project level
w they are hierarchical (a package can contain other packages)
w a UML package can correspond to

– a Java package (such as java.util, java.math)
– a PAID subsystem

w during code generation every package becomes a directory.
Together/J parses all packages recursively.

Guenter Teubner 15-413 Software Engineering Fall 1998 35

verschiedene Systeme

Server beim Händler
falls vorhanden

Zentrale

Abfrage
registrierter

Applikationen,
Nutzung Dienste

Service Manager holen

User Login
(=Startapplet)

StarManager
& Dienste

(Druckdienst,
Copy & Paste)

Start
Übergabe Userinfo,Startkonfiguration

Authentifizierung &
Startkonfiguration

User überprüfen,
Startkonfiguration

Lizenzkontroll
Service

DataBus Service
Tools

Anwendungen im
StarNetwork

Start,
Integration

 in OberflächeStart der
Startklassen

und Übergabe
der Lizenzinfo Nutzung

StarBus

DataBus
Server

Bookmark-
verwaltungs-

service

Verwaltung
Bookmarks

Shopping-Liste(n)
Service

StarParts

StartParts
Service

StarWorkshop

StarWorkshop
Service

Händlersystem
Client

Auslesen
Auftragsinfo

Auslesen
Shoppingliste

übergabe
Werkstatt ID

StarIdent

StarFeedback

StarNavigator
Teilerecherche

Service (ISBI++)

Feedback
Service

FDK
Service

manuelles Feedback
(vom Benutzer ausgelöst)

FDK auslesen
über FIN,

Daten
manuelle

Identifikation

StarBusNutzung StarBus

Start,Übergabe
BenutzerNutzung StarBus,

Koordination der
Datenbeschaffung

Navigationsdaten
Service

Navigations-
information
auslesen

Feedback
automatisches

Feedback

Shoppinglistlesen/schreiben

Teilerecherche

ISBI-Backend
"Voyager"

Feedback-
Backend

FDK-Backend
(Fdok)

Registration am GUI,
Applikationswechsel

Nutzung von
Diensten,

Zugang zu StarBus,
Paßwort überprüfen

Händlersystem
Anstoß bestimmter Aktionen

mittels Kommandoschnittstelle

Händlersystem
"Backend"

Konfigurations-
frontend in

Zentrale

Konfigurations-
service

Konfigurationsdaten
auslesen

KonfigurationAuslesen der Konfiguration

StarBroadcast
Empfänger

FDK

StarBroadcast
Sender

auch
Rückkanal

andere
Datenquellen

StarList
Verbindung zu

DMS für
Shoppinglisten lesen/schreiben

bearbeiten

Steuerung

Updatemanager auf
zentralem

Server

gemeinsame
Bibliotheken

(auch für Tools)

Tool Interfaces
Oberflächenelemente

Layoutmanager
Standardobservables
Internationalisierung
Model/View/Control
Collection-Classes

Standardalgorithmen
Hot Keys

StarNetwork
Systemüberblick

Konfigurations-
frontend für
WerkstattService

Manager

Service
Supervisor &
Kopierschutz

Lizenzschlüssel
abrufen

Service
Supervisor &
Kopierschutz

Service
anfordern

StarBroker

FDKAuslesen spezieller
Fahrzeuginformation

Service
anfordern

Zugriff über
Shoppinglist-

Interface

Zugriff über
Feedback-
Interface

Start, Konfigurationsdaten
 für Servicelocationen

löschen

Tracing
Service

Eingabe
Werkstatt ID

(JAR File
Auswahl)

Start durch
Browser

Zugriff über
Navigator-
interface

Steuerung
 StarBus-Service

Fahrzeug-
identifikations-

service

Daten manuelle
Identifikation

WWW-Server

CGI
dynamisch generierte HTML-Seite

BookmarkverwaltungErzeugen und Test auf
Existenz von Vorgängen

StarBookmark

Teilerecherche

7 ± 2 = 41 ?7 ± 2 = 41 ?

Is this UML ?Is this UML ?

 What does this
arrow mean ?

 What does this
arrow mean ?

Guenter Teubner 15-413 Software Engineering Fall 1998 36

Creating packages

❖ Packages are created in the same way as classes are:
w select the “New Package” button in the toolbar
w draw a rectangle in the diagram pane
w change the default name for the package to the proper one
w use the inspector pane to modify other properties of the

package (author, version, etc.)

❖ To organize classes and interfaces into packages simply
drag the class/interface into the package.

Guenter Teubner 15-413 Software Engineering Fall 1998 37

Mastering complexity with Packages

The project consists of nine classes and one
interface. Humans contains five classes,
Institutions contains four classes.

The project consists of nine classes and one
interface. Humans contains five classes,
Institutions contains four classes.

Create a packageCreate a package

Guenter Teubner 15-413 Software Engineering Fall 1998 38

Providing different views: Logical packages

❖ TogetherJ allows you to create additional views on your
project. These views are called logical packages but have
nothing in common with the UML or Java packages.

❖ You can use this feature to layout the same class
diagram in different ways

❖ To create a logical package simply create a new class
diagram within a package. This diagram gets the suffix
“.vfClass” and can be manipulated just like every other
class diagram.

❖ You can now simply drag some classes into this new
logical package or create new classes, associations, etc.
there.

Guenter Teubner 15-413 Software Engineering Fall 1998 39

Logical packages: An example

❖ In this example we create a new class diagram called
“WhoTeachesWhom” in the package “Humans”.

❖ We then drag “Professor”, “Staff” and “Student” into
this new view and create an association between the
classes “Professor” and “Student”. We also add a little
note that a professor does not teach staff members.

❖ Note that the new association is handled as if it has
been defined in the default view on the package
“Humans” but it is visible only in our newly created
logical package “WhoTeachesWhom”.

Guenter Teubner 15-413 Software Engineering Fall 1998 40

Inside a logical package

The logical package “WhoTeachesWhom”
can be handled like every other class
diagram but the classes in this package
are only references to those outside
in the package “Humans”.

The logical package “WhoTeachesWhom”
can be handled like every other class
diagram but the classes in this package
are only references to those outside
in the package “Humans”.

Guenter Teubner 15-413 Software Engineering Fall 1998 41

Creating and navigating through diagrams

❖ To create a new diagram
w right-click on the package name for which you want to create

a new diagram
w select “New Diagram ...” from the context menu
w select the diagram type and give the diagram a name

❖ To switch to another diagram
w right-click on the name of the diagram in the navigation pane
w select “Browse ...” to open the new diagram in the current

window
w select “Browse in new window ...” to open a new browser

window

Guenter Teubner 15-413 Software Engineering Fall 1998 42

Creating and navigating through diagrams

The currently selected diagram is the standard
view (“Default.vfPackage”) but the package
“Institutions” also contains a sequence
diagram (“GetCourseList”) and a use case
diagram (“HowToContact”).

The currently selected diagram is the standard
view (“Default.vfPackage”) but the package
“Institutions” also contains a sequence
diagram (“GetCourseList”) and a use case
diagram (“HowToContact”).

Guenter Teubner 15-413 Software Engineering Fall 1998 43

Creating documentation

❖ You can create documentation in HTML format either
for one diagram or for the complete project.

❖ To do this, select “Create documentation” from the
menu “Tools” of the main window. Together/J creates
clickable images containing the class diagrams as well
as textual descriptions for all packages and classes.

➭ Hint: Separate the documentation directory from your project
directory. Otherwise the documentation folder(s) will appear
as (sub)packages in your project when you open it the next
time. (This is a side-effect of the recursive directory scan
which is always performed when you open a project)

Guenter Teubner 15-413 Software Engineering Fall 1998 44

Generate HTML documentation for the whole project

An example for automatically generated
documentation can be found on the next slide!

Select an appropriate directory
and the “multi-frame” option
for the documentation. You
might also want to launch the
browser immediately after the
documentation has been
generated.

Select an appropriate directory
and the “multi-frame” option
for the documentation. You
might also want to launch the
browser immediately after the
documentation has been
generated.

Guenter Teubner 15-413 Software Engineering Fall 1998 45

Guenter Teubner 15-413 Software Engineering Fall 1998 46

Generating code

❖ Together/J automatically creates the files with the Java
source code for all classes in a project when you safe the
project. By default, the source files are in the same
directory hierarchy as the project files are.

❖ The code contains comments with Together/J-specific
information. These comments are used when you open
the project again. No developer should modify or delete
them.

Guenter Teubner 15-413 Software Engineering Fall 1998 47

Automatically generated code (example)

These labels within comments are
used by Together/J to re-create the
model. Do not modify or delete them!

These labels within comments are
used by Together/J to re-create the
model. Do not modify or delete them!

