
Requirements Analysis Document
Database Team

PAID Project

Team

Informatik XII

WS 1998/1999

Technische Universität München

February 5, 1999

Revision History:

� Version R0.1 01/11/99 First Preview, Johannes Schmid
� Version R0.2 01/13/99 Updated - now in StarOffice, Johannes Schmid
� Version R0.3 01/14/99 Added Requirements, Johannes Schmid
� Version R0.4 01/16/99 Merged with John's Use Cases and Florian's Sequence Diagrams,

John Feist, Florian Schönherr, Johannes Schmid
� Version R0.5 01/18/99 Some minor changes, Johannes Schmid

Preface:

This document addresses the requirements of the PAID system. The intended audience
for this document are the designers and the clients of the project.

Target Audience:

Client, Developers

PAID Members:

Project Management: Bernd Bruegge, Guenter Teubner

Team Coaches: Ralph Acker, Stefan Riss, Ingo Schneider, Oliver Schnier, Anton
Tichatschek, Marko Werner

Architecture Team: Asa MacWilliams, Michael Luber

Authentication & Security
Team:

Klaas Hermanns, Thomas Hertz, Guido Kraus, Gregor Schraegle,
Tobias Weishaeupl, Alexander Zeilner

Database Team: Osman Durrani, John Feist, Florian Klaschka, Johannes Schmid,
Florian Schoenherr, Ender Tortop

Learning Team: Burkhard Fischer, Juergen Knauth, Andreas Loehr, Marcus
Toennis, Martin Uhl, Bernhard Zaun

Network & Event Service
Team:

Henning Burdack, Joerg Dolak, Johannes Gramsch, Fabian
Loschek, Dietmar Matzke, Christian Sandor

StarNetwork Integration
& User Interface Team:

Daniel Stodden, Igor Chernyavskiy, Inaki Sainz de Murieta, Istvan
Nagy, Stefan Krause, Stefan Oprea

Testbed Team: Bekim Bajraktari, Bert van Heukelom, Florian Michahelles, Goetz
Bock, Michael Winter, Sameer Hafez

MILESTONES

� 1/11/99 Release of RAD Template
� 1/14/99 Team RAD
� 1/18/99 Integrated RAD

Table of Contents

1 General Goals...1

2 Current System..1

3 Proposed System..1

3.1 Overview..1
3.2 Functional Requirements..2

3.2.1 Main purpose...2
3.2.2 Installation and replication..2
3.2.3 Intelligent caching system...2
3.2.4 Operability as a standalone system..2
3.2.5 Data flow..3

3.3 Nonfunctional Requirements...3
3.3.1 User Interface and Human Factors..3
3.3.2 Zero administration...3
3.3.3 Documentation...3
3.3.4 Hardware Consideration...4
3.3.5 Performance Characteristics..4
3.3.6 System Interfacing and location transparency..4
3.3.7 System Modifications..5
3.3.8 Physical Environment and resource Issues...5
3.3.9 Security Issues..5
3.3.10 Data management...5
3.3.11 Error Handling and quality issues..5

3.4 Constraints...6
3.5 System Model..6

3.5.1 Scenarios..6
3.5.1.1 Installation...6
3.5.1.2 Install subsets of aftersales data from CD..6
3.5.1.3 Install subsets of aftersales data from Network..6
3.5.1.4 A subsystem access data..7
3.5.1.5 A subsystem requests a data manipulation...7

3.5.2 Use Case Models..8
3.5.2.1 UseCase diagram Retrieve Data..8
3.5.2.2 UseCase diagram Manipulate Data..11
3.5.2.3 UseCase diagram List Subsets...13
3.5.2.4 UseCase diagram Add Subset..14
3.5.2.5 UseCase diagram Replace and Remove Subset..15
3.5.2.6 UseCase diagram Extract Subset...16
3.5.2.7 UseCase diagram Execute Update...18
3.5.2.8 UseCase diagram Publish Update..19
3.5.2.9 UseCase diagram Read Datasource...21

3.5.3 Object Models...23

3.5.3.1 Data Dictionary...23
3.5.3.2 Class Diagrams..23

3.5.4 Dynamic Models...24
3.5.4.1 Retrieve Data ...24
3.5.4.2 Manipulate Data..25
3.5.4.3 List subsets..25
3.5.4.4 Add subset..26
3.5.4.5 Replace and remove subset..26
3.5.4.6 Extract subset..27
3.5.4.7 Execute update..27
3.5.4.8 Publish update...28
3.5.4.9 Read DataSource...28

3.5.5 User Interface - Navigational Paths and Screen Mockups..29

PAID Requirements Analysis Document 1

1 General Goals

The purpose of the PAID Database Subsystem is to provide efficient access to the Aftersales
Database and persistent storage. This is to be achieved by replication of the database to the
worldwide DaimlerChrysler sales organization.

This includes dividing the aftersales data into replicable database subsets, remote query invocation if
a database query cannot be answered locally, query caching and management of other data, such as
user data.

2 Current System

This part intentionally left out. It will be filled by the documentation team.

3 Proposed System

3.1 Overview

The Database Subsystem can store all aftersales data - or just some specific subsets of it - locally on
any JDBC capable database. It will provide its services to all other PAID subsystems and will be
running on any kind of computer - starting at the main PAID servers at DaimlerChrysler
headquarters down to the small PAID server which is running on a laptop being used as "mobile
garage". Interactions with the Database subsystem will not involve actual users, but will instead be
orchestrated by various other PAID subsystems.

The data stored locally must be up-to-date. This is achieved by replicating the changes of the main
database down the PAID server hierarchy. For the requesting PAID subsystem there will be no
difference between locally answered queries and queries answered via network. The network
structure is hierarchical and thus potentially unlimitedly deep. Queries posed to the database
subsystem, which cannot be answered locally, are passed on to the next server in hierarchy.

Changes the user does on the local data (i.e. changes in the Electronic Parts Catalogue) are
replicated back, so all other PAID Servers will have them available within a short period of time.

All database queries are authenticated and secured using the methods provided by the Security &
Authentication Team. Query caching and database subset replication is done in cooperation with the
Learning Team.

2 Requirements Analysis Document PAID

3.2 Functional Requirements

3.2.1 Main purpose

The main purpose is to provide efficient local storage for the aftersales data and the PAID Persistent
Storage.

The queries handled by the Database Subsystem will be in form of a string and not a like a prepared
statement (including variables and symbols).

The lookup of data subsets will also be supported. The availability of data will be checked. The
removal and replacement of subsets must be done in response of incoming requests.

3.2.2 Installation and replication

The system will allow installation of a base set of data from CD or other large-capacity medium.

The system will allow clients to subscribe to new releases of a subset (update); the update will be
automatically broadcasted downwards the PAID network tree. If a client is not reachable, the update
will be saved and the client will be notified later (via network). It then can decide when to request
the update.

Updates can also be imported from CD or other large-capacity medias. Synchronization on demand
of data on client and server computers will be possible, too.

The system will allow clients to do necessary updates on the server, which will be replicated up the
PAID network tree.

3.2.3 Intelligent caching system

An intelligent and flexible caching system can be implemented, which enables the user to set the
amount of the data cache in the memory and on the local hard drives. The system must use this cache
as effectively as possible so that the least necessary data will be deleted to make place for the actual
data.

3.2.4 Operability as a standalone system

The system must be operable when disconnected from network. All data replicated to the local
database must be accessible. This is extremely necessary for a 'mobile garage'.

PAID Requirements Analysis Document 3

3.2.5 Data flow

The system will answer data requests either from local data or from remote data receiving via
network. The decision will be made on base of the knowledge which data is locally stored. The data
received from the network will be cached.

The system will allow data manipulation of local and/or remote data.

3.3 Nonfunctional Requirements

3.3.1 User Interface and Human Factors

The Database Subsystem is largely an internal subsystem of the PAID project. This subsystem will
have no interaction with the user and will be at all times at least one step away from user commands.

The only concern in this case is language-dependence of the actual data in the database. However,
this is mainly StarNetwork / UserInterface Subsystem's concern.

3.3.2 Zero administration

PAID Servers can run with so-called zero administration: no special administrative effort is needed
for installation and keeping the system running. The system is capable of automatic administration
after some necessary parameters were entered during installation. However, to reach optimal
performance, some administration is needed, e.g. which subsets of the Aftersales Database should be
replicated.

3.3.3 Documentation

All uses of the Database Subsystem will occur through a well-defined API. Only this API will be
used by other PAID subsystems. Because of this, the Database Subsystem's API functionality will be
documented using JavaDoc comments and UML models.

User documentation may be provided if issues arise in regards to installation of the database
applications on Dealer server machines or other issues related to Hardware and other considerations.
This will be provided to the Documentation Team and will be put into the Users Manual for the
PAID project.

4 Requirements Analysis Document PAID

3.3.4 Hardware Consideration

There are several sets of hardware considerations that need to be mentioned in association with the
Database Subsystem. First of all, the servers which will hold many subsets of the Aftersales
Database will need to be powerful and scalable in order to supply the necessary short response time
now - and in future. Typically, data replication and Persistent Storage for the PAID subsystems will
need a certain amount of space to be stored. This may be a challenge if we consider a handheld
device as a platform for PAID.

3.3.5 Performance Characteristics

The Database Subsystem definitely has performance constraints. Queries for aftersales data need to
be very fast. Typically users will not want to wait more than a half minute for data to be displayed.
Given this constraint, hardware and software should be optimized to allow such speedy access times.

The Database Subsystem relies on the Networking and other subsystems for communication with
other system objects. This may result bottlenecks for the Database Subsystem. These bottlenecks
will be dealt with by the other subsystem groups. Generally speaking, the sum total of all the
performance constraints of all PAID subsystems for a particular task should be "reasonable".

This means, a local query should be answered below a second in average; remote queries should be
answered below half a minute in average.

3.3.6 System Interfacing and location transparency

The Database Subsystem should be developed by the database team as an integral part of a larger
framework composed of 5 other major subsystems. The system thus formed is named as PAID. The
Database Subsystem itself does not offer any User Interface to the outside world, instead it receives
inputs from other PAID subsystems.

The Data known to the is divided into two main categories: on the one hand, the remote data, which
is the set of all data not residing on the local database, but can be found remotely on parent servers.
On the other hand, there is local data, which represents the set of all data present locally on the
system, for example on hard disk, CD rom, floppy disk or local cache.

The PAID Database Subsystem should make its Data and services available to requests coming from
anywhere in the PAID network. The PAID network consists of a tree-like structure made up of
various servers. The requests for Data, that the Database Subsystem cannot locate locally, is
searched in servers located higher in the hierarchical structure of PAID servers. The Database
Subsystem must present a unified view of the Data to the other subsystems.

PAID Requirements Analysis Document 5

3.3.7 System Modifications

The Database Subsystem is free to be changed as long as its behavior stays the same and it still
conforms to the specified APIs. The nature of the Aftersales Database can possibly change in the
future. The Database Subsystem must develop a set of APIs which allow it to incorporate all these
changes transparently to the other PAID subsystems.

3.3.8 Physical Environment and resource Issues

System resources (hard drive, system memory, etc.) should be adequate to handle the amount of data
stored locally on the PAID system and the network traffic being processed by the PAID system.

3.3.9 Security Issues

All data which is transmitted via Network or which is located on CD or local store must be secured
by the Authentication & Security Subsystem and only be accessible via an appropriate password. The
database which is used must provide an encryption technique if encryption on local hard disk is
needed.

All queries are authenticated and checked by the Authentication & Security Subsystem, before they
reach the Database Subsystem. In order to guaranty the integrity and security of data, no other
PAID subsystem will be allowed to run direct queries on any piece of data stored by the Database
Subsystem.

3.3.10 Data management

To divide the aftersales data into subscribeable and updateable parts, Data Subsets are needed.
Subset updates are needed, which can bring a specific subset from one version to the next version.
This ensures the ability of replicating specific parts of the Aftersales Database to any number of
client PAID systems. Besides that, there must be a possibility to add a specific subset of data to the
local database, which can be updated later using the previously mentioned 'subset updates'.

3.3.11 Error Handling and quality issues

All the possible errors should be handled properly. Due to the impossibility of listing all the possible
errors before the implementation they will be documented during the implementation phase.

All errors which occur in the Database Subsystem are either handled adequately by itself, or are
adequately trapped and passed to the PAID system that initiated the transaction. In the extreme case
that data cannot be stored on the local storage mechanism, the Database Subsystem must still

6 Requirements Analysis Document PAID

provide access to aftersales data and upload capabilities by interfacing directly with a server through
the Network Subsystem.

In case of some error occurring during data transfers, the system should have the capability to ensure
the integrity of the incoming data as well as the updated data. No possible error should be able to
corrupt the existing data set.

3.4 Constraints

The entire system must be written in 100% pure Java. Development will be done using the
Together/J CASE tool. Any JDBC capable database will be supported. Source code control will be
handled using CVS.

3.5 System Model

3.5.1 Scenarios

3.5.1.1 Installation

A new installation of PAID is taking place. The Database Subsystem receives a request to install a
base set of data from the CD to the Local Aftersales Database. This base set is necessary to
guarantee the specified functionality of all PAID subsystems - no actual aftersales data is in the
Local Aftersales Database yet. After user credentials are verified using the Security &
Authentication Subsystem, the Database Subsystem installs this data. The next (optional) step is now
to install some aftersales data locally.

3.5.1.2 Install subsets of aftersales data from CD

The Database Subsystem receives a request to install a specific subset from CD. The subset is read
from the media, then is decrypted and authenticated by the Authentication & Security Subsystem and
then is inserted in the Local Aftersales Database.

3.5.1.3 Install subsets of aftersales data from Network

The Database Subsystem receives a request to install a specific subset from Network. The subset
definition must first be created on a parent PAID server by its Database Subsystem. The subset then

PAID Requirements Analysis Document 7

is transferred back to the local system and then is inserted in the Local Aftersales Database.

3.5.1.4 A subsystem access data

A PAID Subsystem requests access to a specific subset of the Aftersales Database through one of
the Database Subsystem data classes. This request is equivalent to a query about some group of data.
The Database Subsystem receives a database query already validated by the Security &
Authentication Subsystem and determines whether this request can be answered locally using the
Local Aftersales Database. This is not the case, therefore the local Query Cache is checked if the
query was answered recently using the Network so it could be answered without network traffic.
The query could not be found in the Query Cache, so it is sent to the PAID server one step higher in
hierarchy. It is answered there and transferred back to the requesting subsystem.

3.5.1.5 A subsystem requests a data manipulation

A PAID Subsystem requests to change data on the aftersales database. The Security &
Authentication Subsystem already validated this request. The Database Subsystem receives the query
and then writes the updated data to the Local Aftersales Database, invalidates the Query Cache and
attempts to upload this data to the parent PAID server. This request does not succeed, because the
dealer is not currently connected to the network. The Database Subsystem then schedules this
upload with the Event subsystem. As soon as the Dealer is online again, this update request is
uploaded to the parent PAID server.

8 Requirements Analysis Document PAID

3.5.2 Use Case Models

3.5.2.1 UseCase diagram Retrieve Data

These Use Cases are needed to retrieve data within a given subset and provide the location
transparency. The requester has to know which subset it wants to access.

Use Case ExecuteQuery

Entry Condition Any Paid Subsystem requests data from a given subset, the action is
already authenticated

Flow of Events 1. Use SubsetLocationLookup to decide whether the requested data is
locally available or not
2. Respectively use ExecuteLocalQuery or ReadCache
3. If the Cache does not have the data use ExecuteRemoteQuery

Exit Condition Data has been retrieved or an error condition has occurred

Special Requirements The local database must be alive

Use Case SubsetLocationLookup

see UseCase Diagram „Extract Subset“.

PAID Requirements Analysis Document 9

Use Case ExecuteLocalQuery

Entry Condition ExecuteQuery requests locally available data

Flow of Events 1. Send SQL-Query to local Database
2. Return ResultSet or SQL Error

Exit Condition Data has been retrieved or an error condition has occurred

Special Requirements The local database must be alive, otherwise an error is returned

Use Case ExecuteRemoteQuery

Entry Condition ExecuteQuery requests locally unavailable uncached data

Flow of Events 1. Tell Network subsystem to retrieve requested data
2. On success: use WriteCache to cache the ResultSet locally
3. Return ResultSet or an error

Exit Condition Data has been retrieved or an error condition has occurred

Special Requirements The network subsystem should be alive, otherwise an error is returned

Use Case ReadCache

Entry Condition ExecuteQuery requests in local database unavailable data

Flow of Events 1. Ask local Cache if it has the requested data
2. Return ResultSet or an error indication that the local Cache does not
have the data

Exit Condition Data has been retrieved or an error condition has occurred

Special Requirements The local Cache must be alive, otherwise an error is returned

Use Case WriteCache

Entry Condition ExecuteRemoteQuery wants to update local cache contents

Flow of Events Put the data in the local Cache

Exit Condition Data has been cached or not (e.g. due to space limits)

Special Requirements The Cache must be be alive, otherwise an error is returned there has to be
enough space available locally

Actor Requester

This primary actor may be any Paid subsystem that needs data of a subset. But: The action must be
authenticated!

10 Requirements Analysis Document PAID

Actor NetworkSubsystem

This actor is either primary or secondary: The Network subsystem is secondary actor if
ExecuteRemoteQuery wants to retrieve data from a parent server. Therefore Network has to send
the request to the "parent Network subsystem". If the "parent network subsystem" receives the
request for a query it represents a primary actor and uses ExecuteQuery to answer the request.

Actor localCache

This secondary actor represents the local cache that is used by ReadCache and WriteCache.

Actor localDatabase

This secondary actor represents the local database and is only used by ExecuteLocalQuery.

PAID Requirements Analysis Document 11

3.5.2.2 UseCase diagram Manipulate Data

These Use Cases are needed to manipulate data within a given subset and to ensure that changes are
replicated to parent servers.

Use Case ManipulateData

Entry Condition Any Paid Subsystem wants to manipulate data, the action is already
authenticated

Flow of Events 1. Decide whether to manipulate locally, remotely or both
2. Use ManipulateLocalData in order to locally manipulate data
3. Use ManipulateRemoteData in order to remotely manipulate data

Exit Condition Data has been updated or an error condition has occurred

Special Requirements The local database should be alive

Use Case ManipulateLocalData

Entry Condition ManipulateData wants to update local data

Flow of Events 1. Send SQL-Statement to local Database
2. Return nothing or SQL Error

Exit Condition Data has been updated locally or an error condition has occurred

Special Requirements The local database must be alive, otherwise an error is returned

12 Requirements Analysis Document PAID

Use Case ManipulateRemoteData

Entry Condition ManipulateData wants to manipulate remote data

Flow of Events 1. Tell Network Subsystem to send manipulation request to parent server
to call ManipulateData on parent server
2. Use InvalidateCache to remove the manipulated data from the local
cache
3. Return nothing or Error

Exit Condition Data has been manipulated remotely or an error condition has occurred

Special Requirements The network subsystem should be alive, otherwise an error is returned

Use Case InvalidateCache

Entry Condition ManipulateRemoteData wants to invalidate local cache contents

Flow of Events Remove the data from the local Cache

Exit Condition Data has been removed from the Cache

Special Requirements The Cache must be be alive, otherwise an error is returned

Actor Requester

This primary actor my be any Paid subsystem that wants to manipulate data, but the action must be
already authenticated!

Actor NetworkSubsystem

This actor can be primary and secondary: It is secondary if ManipulateRemoteData requests a
remote data manipulation on the parent server via the Network Subsystem. In the parent server this
actor is a primary one if the Network subsystem receives the request for data manipulation from a
client server. It first has to ask Authentication for ok and then uses ManipulateData in order to
proceed the request.

Actor localCache

This secondary actor represents the local cache that stores recently executed queries and the results,
therefore the cache entries that belong to a specific query must be removed if the data is updated.

PAID Requirements Analysis Document 13

Actor localDatabase

This secondary actor represents the local database and is only used by ManipulateLocalData in this
context.

3.5.2.3 UseCase diagram List Subsets

This use case is needed to retrieve a list of available subsets (locally or remote).

Use Case ListSubsets

Entry Condition Any Paid subsystem wants to have a list of available subsets.

Flow of Events Ask localDatabase for a list of available subsets

Exit Condition List successfully retrieved or an error condition has occurred

Special Requirements None

Actor Requester

This primary actor represents a Paid subsystem that wants to know about the available subsets.

Actor localDatabase

This secondary actor represents the local database that stores information about available subsets.

14 Requirements Analysis Document PAID

3.5.2.4 UseCase diagram Add Subset

These Use Cases are needed to add a subset to the local db.

Use Case AddSubset

Entry Condition Learning or User Interface Subsystem wants to add a subset to the locally
available ones

Flow of Events 1. Decide where to retrieve the subset from (Network or a local source
like CD/DVD)
2. Use ReadDatasource to retrieve the subset
3. Insert SubSet in the local Database
4. Use Subscribe for automatic receipt of future updates

Exit Condition Subset successfully retrieved and inserted or an error condition has
occurred

Special Requirements Local database and the Datasource must be alive

Use Case ReadDatasource

see UseCase Diagram „Read Datasource“.

Use Case Subscribe

Entry Condition AddSubset wants to subscribe to a recently requested Subset

Flow of Events Tell Network subsystem to send our parent server the request for updates

Exit Condition Subset successfully subscribed or an error condition has occurred

Special Requirements The Network subsystem should be alive

PAID Requirements Analysis Document 15

Actor Requester

Here the possible requesters normally are the User Interface and the Learning subsystem.

Actor NetworkSubsystem

The Network Subsystem is used for the subscription of a subset.

Actor localDatabase

This secondary actor represents the local database and is only used to insert a subset.

3.5.2.5 UseCase diagram Replace and Remove Subset

These Use Cases are needed to remove or replace subsets from/in the local db.

Use Case ReplaceSubset

Entry Condition Learning or User Subsystem wants to replace a subset in the local
database

Flow of Events 1. Use RemoveSubset
2. Use AddSubSet

Exit Condition Subset successfully removed and inserted or an error condition has
occurred

Special Requirements The subset should be in the local database

16 Requirements Analysis Document PAID

Use Case RemoveSubset

Entry Condition ReplaceSubset or a paid subsystem wants to remove a Subset from the
local database

Flow of Events Remove the subset from the database

Exit Condition Subset successfully removed or an error condition has occurred

Special Requirements The local database should be available otherwise an error is returned

Use Case AddSubset

See UseCase Diagram „Add Subset“.

Actor Requester

This primary actor represents the Learning, Network or User Interface subsystem.

Actor localDatabase

This secondary actor represents the local database.

3.5.2.6 UseCase diagram Extract Subset

These Use Cases are needed to create subsets and to retrieve information about subsets.

PAID Requirements Analysis Document 17

Use Case ExtractSubset

Entry Condition A subsystem wants to extract a subset for a subscriber

Flow of Events 1. Use SubsetLocationLookup
2. If the subset is available in the local database, retrieve it
3. Otherwise use ReadDatasource to retrieve it
4. Return subset or error

Exit Condition Subset successfully extracted/retrieved or an error condition has occurred

Special Requirements Either local database or datasource must be alive

Use Case ReadDatasource

see UseCase Diagram „Read Datasource“.

Use Case SubsetLocationLookup

Entry Condition A Paid subsystem wants to have location information of a specific subset

Flow of Events 1. Ask the local db for the location of the specified subset
2. Return "locally available" or "not ..." or error

Exit Condition The location information of the subset is returned or an error condition
has occurred

Special Requirements Local database must be alive

Actor Requester

This primary actor may be the database subsystem or any other Paid subsystem.

Actor localDatabase

This secondary actor represents the local database that hold informations about the location of
subsets and some subsets themselves.

18 Requirements Analysis Document PAID

3.5.2.7 UseCase diagram Execute Update

These Use Cases are needed to apply and store Updates. Updates may be contain complete subsets
"from scratch" or just smaller changes to the database.

Use Case ExecuteUpdate

Entry Condition Learning or Network Subsystem wants to execute an update, the action is
already authenticated

Flow of Events 1. Get the specified update from the parent server via the Network
Subsystem
2. Ask Learning whether to store the update or not
3. Execute the update on the local Database
4. Use StoreUpdate in order to locally store the update

Exit Condition Update has been executed and stored or an error condition has occurred

Special Requirements The local database should be alive

Use Case StoreUpdate

Entry Condition ExecuteUpdate wants to store an Update

Flow of Events 1. Store the Update in the local Database
2. Tell Network Subsystem to send notification to subscribers

Exit Condition Update has been stored locally or an error condition has occurred

PAID Requirements Analysis Document 19

Entry Condition ExecuteUpdate wants to store an Update

Special Requirements The network subsystem and the local database should be alive, otherwise
an error is returned

Actor Requester

This primary actor may be the Learning or the Network subsystem, but the action must be already
authenticated.

Actor LearningSubsystem

This secondary actor represents the Learning subsystem that is needed to decide whether to store an
Update locally or not.

Actor NetworkSubsystem

This secondary actor represents the Network subsystem that notificates the subscribers of updates or
retrieves an update from the parent server.

Actor localDatabase

This secondary actor represents the local database that stores data that has to be updated and stores
Updates for subscribing clients.

3.5.2.8 UseCase diagram Publish Update

These UseCases provide the possibility to publish updates to subscribers.

20 Requirements Analysis Document PAID

Use Case PublishUpdate

Entry Condition A Learning subsystem wants to push or pull updates to a list of
subscribers.

Flow of Events 1. Get the local stored update from the database
2. Send the update to the list of subscribers via the Network subsystem

Exit Condition Update retrieved successfully or an error condition has occurred

Special Requirements The requested update must have been stored previously in the local
database and the local database must be available otherwise an error is
returned

Actor Requester

This primary actor represents either the local Learning subsystem, that wants to push updates to
subscribers, or a client Learning subsystem that wants to pull updates.

Actor NetworkSubsystem

This secondary actor represents the network subsystem that is needed to send the update to the
client.

Actor localDatabase

This secondary actor represents the local database that stores the updates.

PAID Requirements Analysis Document 21

3.5.2.9 UseCase diagram Read Datasource

These use cases are needed to read a subset from a datasource like CD/DVD or Network.

Use Case ReadDatasource

Entry Condition AddSubset or ExtractSubset wants to read a subset from a datasource

Flow of Events 1. Use either ReadLocalDatasource or ReadRemoteDatasource
2. Return subset or error

Exit Condition Subset successfully retrieved or an error condition has occurred

Special Requirements None

Use Case ReadLocalDatasource

Entry Condition ReadDatasource wants to read a subset from a local datasource

Flow of Events Read Datasource and retrieve subset

Exit Condition Subset successfully retrieved or an error condition has occurred

Special Requirements None

22 Requirements Analysis Document PAID

Use Case ReadRemoteDatasource

Entry Condition ReadDatasource wants to read a subset from the network

Flow of Events Tell Network subsystem to retrieve the subset from the parent server

Exit Condition Subset successfully retrieved or an error condition has occurred

Special Requirements None

Actor Requester

This primary actor represents one of the other use cases: AddSubset or ExtractSubset.

Actor NetworkSubsystem

This secondary actor represents the network subsystem as a remote datasource. The system has to
forward the request to the parent server. The network system in the parent server then uses
ExtractSubset.

Actor localDatasource

This secondary actor represents a local datasource like a CD, DVD...

PAID Requirements Analysis Document 23

3.5.3 Object Models

3.5.3.1 Data Dictionary

DB EventService This will be the main class of the database API. It receives events from
Network Subsystem (the event bus) and reacts on them

Local Cache This class represents the cache table of the local database

Local Database This class acts as an interface for all activity on the local database

Datasource An interface to generalize the access to multiple data sources

Local Datasource Implements Datasource and represents some local media, for example the
installation CD

Remote Datasource Acts as an interface to Network Subsystem for update requests

3.5.3.2 Class Diagrams

24 Requirements Analysis Document PAID

3.5.4 Dynamic Models

3.5.4.1 Retrieve Data

Requester sends an SQL statement along with the subset to work on

1. Local DB Subsystem looks up the subset's location from the lookup table in Local Database
2. Local DB Subsystem receives 'local' or 'remote' as the subset's location
3. if location is 'local' the SQL query is executed on Local Database
4. Local Database gives back the ResultSet
5. if location is 'remote', Local DB Subsystem searches for this query's ResultSet in Local Cache
6. Local Cache returns ResultSet if it was already cached, or an error if not
7. if the ResultSet has not been found in Local Cache, the SQL query is send to the parent server via

Network Subsystem
8. Remote DB Subsystem receives the SQL statement and executes it itself
9. Remote DB Subsystem sends ResultSet or error via Network Subsystem
10.Local DB Subsystem receives ResultSet or error
11.if ResultSet was received from Remote DB Subsystem, it is written to Local Cache
12.Local DB Subsystem returns ResultSet or error

PAID Requirements Analysis Document 25

3.5.4.2 Manipulate Data

1. Requester calls Local DB Subsystem to apply an SQL statement on a given location (local,
remote or both)

2. if the location is 'local', the statement is executed on Local Database
3. Local Database gives back confirmation or error
4. if the location is 'remote', the apply command is sent via Network Subsystem to Remote DB

Subsystem
5. Remote DB Subsystem is called by Network Subsystem to apply the statement
6. the Remote DB Subsystem sends confirmation or error via Network Subsystem
7. Local DB Subsystem receives confirmation or error
8. if no error occurred, Local Cache is invalidated
9. Local DB Subsystem gives back confirmation or error

3.5.4.3 List subsets

1. Requester requests subset list from Local DB Subsystem
2. Local DB Subsystem executes SQL query for all subset identifiers on Local Database
3. Local DB Subsystem receives ResultSet
4. Local DB Subsystem returns ResultSet

26 Requirements Analysis Document PAID

3.5.4.4 Add subset

1. Requester calls add and gives the wanted subset and the datasource to read from
2. Local DB Subsystem executes 'read' on the given datasource (see Use Case ReadDatasource)
3. Datasource returns subset or error
4. if no error occurred, Local DB Subsystem subscribes via Network Subsystem for all updates on

this subset
5. if no error occurred, Local DB Subsystem applies the retrieved data on Local Database
6. Local DB Subsystem returns the operation's result (confirmation or error)

3.5.4.5 Replace and remove subset

1. Requester calls 'request action' for a specific subset (replace for two subsets)
2. if the action is 'remove' or 'replace', remove the (old) subset from Local Database
3. if the action is 'add' or 'replace', add the (new) subset (see Use Case AddSubset)
4. return confirmation or error

PAID Requirements Analysis Document 27

3.5.4.6 Extract subset

1. Requester calls 'extract' and gives wanted subset identifier
2. Local DB Subsystem looks up the subset's location in the lookup table of Local Database
3. Local Database returns 'remote' or 'local' as the subset's location
4. if location is 'local', the subset data is extracted from Local Database
5. Local database returns the wanted subset data
6. if location is 'remote', read the subset from the parent server (see Use Case ReadDataSource)
7. Local DB subsystem returns the subset data or an error (if location is 'remote')

3.5.4.7 Execute update

1. Requester calls 'execute' along with the update data
2. Local DB Subsystem asks Learning Subsystem if the update data should be stored in the local

update queue
3. Learning subsystem answers 'TRUE' or 'FALSE'
4. the update is executed on Local Database
5. Local Database returns operation result

28 Requirements Analysis Document PAID

6. if store is 'TRUE', the update data is stored to the local update queue
7. Local Database returns operation result
8. Local DB Subsystem post a notification message on the event bus via Network Subsystem
9. Local DB Subsystem returns operation result

3.5.4.8 Publish update

1. Requester calls 'publish' along with the update identifier
2. Local DB Subsystem reads update data from Local Database
3. Local Database returns update data
4. Local DB Subsystem sends update data via Network Subsystem
5. Remote DB Subsystem receives command to execute the update data (see Use Case

ExecuteUpdate)

3.5.4.9 Read DataSource

PAID Requirements Analysis Document 29

1. Requester calls read and gives the wanted subset and the datasource to read from
2. if datasource is 'local', the subset is requested from the Local Datasource (e.g. CD)
3. Local Datasource returns the data subset or an error if it is not available
4. if datasource is 'remote', Local DB Subsystem requests the subset from Remote Datasource
5. Remote Datasource sends the request to the parent server via Network subsystem
6. Remote DB Subsystem receives an 'extract subset' command via Network Subsystem (see

ExtractSubset Use Case)
7. Remote DB Subsystem returns extracted subset or error
8. Remote Datasource receives subset or error via Network Subsystem
9. Remote DataSource returns subset or error
10.Local DB Subsystem returns subset or error

3.5.5 User Interface - Navigational Paths and Screen Mockups

The Database Subsystem does not have a User Interface, thus this section is not applicable.

