
System Design Document
Database Team

PAID Project

Informatik XII

WS 1998/1999

Technische Universität München

February 7, 1999

Preface:

This document addresses the requirements of the PAID system. The intended audience for this
document are the designers and the clients of the project.

Target Audience:

Clients, Developers

PAID Members:

Project Management: Bernd Brügge, Guenter Teubner

Team Coaches: Ralph Acker, Stefan Riss, Ingo Schneider, Oliver Schnier, Anton
Tichatschek, Marko Werner

Architecture Team: Asa MacWilliams, Michael Luber

Authentication & Security
Team:

Klaas Hermanns, Thomas Hertz, Guido Kraus, Gregor Schrägle,
Tobias Weishäupl, Alexander Zeilner

Database Team: Osman Durrani, John Feist, Florian Klaschka, Johannes Schmid,
Florian Schönherr, Ender Tortop

Learning Team: Burkhard Fischer, Jürgen Knauth, Andreas Löhr, Marcus Tönnis,
Martin Uhl, Bernhard Zaun

Network & Event Service
Team:

Henning Burdack, Jörg Dolak, Johannes Gramsch, Fabian
Loschek, Dietmar Matzke, Christian Sandor

STAR NETWORK
Integration & User Interface
Team:

Daniel Stodden, Igor Chernyavskiy, Inaki Sainz de Murieta, Istvan
Nagy, Stefan Krause, Stefan Oprea

Testbed Team: Bekim Bajraktari, Bert van Heukelom, Florian Michahelles, Götz
Bock, Michael Winter, Sameer Hafez

Revision History:

� Version R1.0 01/31/99 - All DB Subsystem Members, Created and released.
� Version R1.1 02/01/99 - Johannes Schmid, some minor modification and restructuring
� Version R1.2 02/02/99 - Johannes Schmid, changes on Class Diagrams & other changes
� Version R1.3 02/03/99 - John Feist, major changes to text passages
� Version R1.4 02/03/99 - Florian Schönherr, modified sequence diagrams and descriptions
� Version R1.5 02/07/99 - Johannes Schmid, updates and layout modifications

PAID Table of Contents iii

Table of Contents

1 Goals and Trade-offs...1

2 System Decomposition...1

2.1 The Main Package of the Database Subsystem..2
2.2 Database specific Data Types..3
2.3 Event hierarchy..4

2.3.1 DBQueryEvent...5
2.3.2 DBQueryResultEvent...5
2.3.3 DBManipulateEvent...6
2.3.4 DBManipulateResultEvent..6
2.3.5 DBSubsetManagementEvent...7

2.4 JDBC driver...8

3 Concurrency Identification...9

4 Hardware/Software mapping..10

4.1 Database Subsystem Performance...10
4.1.1 General system performance...10
4.1.2 Input/Output performance...10
4.1.3 Processor allocation..10
4.1.4 Memory allocation..10

4.2 Connectivity..11
4.3 Network architecture...11

5 Data Management...12

5.1 Data Types..12
5.2 Location Transparency..13
5.3 Data Organization..13
5.4 Server Loads...13

5.4.1 FDOK data traffic...13
5.4.2 EPC data traffic..14

6 Global Resource Handling..14

7 Software Control Implementation..15

7.1 External control flow (between subsystems)...15
7.1.1 Adding a new Subset to local database..15
7.1.2 Database query sequence diagram...16

7.2 Concurrent control...16
7.3 Internal control (within a single process)..17

7.3.1 DBGetSubsetDataEvent sequence diagram...17
7.3.2 DBListSubsetsEvent sequence diagram...18
7.3.3 DBManipulateEvent sequence diagram...18
7.3.4 DBQueryEvent sequence diagram...19

System Design Document

iv Table of Contents PAID

7.3.5 DBSubsetDataEvent sequence diagram...20
7.3.6 DBUpdateEvent sequence diagram...20
7.3.7 JDBC driver initialization sequence diagram..21
7.3.8 JDBC executeQuery sequence diagram...22

7.4 User Interface...22

8 Boundary Conditions..23

8.1 Initialization...23
8.2 Termination..23
8.3 Failure...23

9 Design Rationale..24

9.1 Data access..24
9.1.1 Non-intrusive implementation...24
9.1.2 Unified Data Access Model (Location Transparency)..24
9.1.3 Persistent storage via SQL in Subsets..25
9.1.4 Stored data managed via object oriented Subsets..25
9.1.5 Allowing all possible SQL queries...25

9.2 Data storage..26
9.2.1 Simple query cache for query responses..26
9.2.2 No local data encryption...26

9.3 Replication..27
9.3.1 Simple Backward Replication algorithm..27
9.3.2 AddSubset packages are extracted when needed...27
9.3.3 Client can only add a subset when parent is subscribed..28
9.3.4 Only notify when new update arrives...28

System Design Document

PAID Goals and Trade-offs 1

1 Goals and Trade-offs

Provide an easy to administer and efficient system (see Architecture Team).

2 System Decomposition

The database subsystem provides access to all databases that support JDBC. Normally other
subsystems should not access a database directly, instead events such as requesting or changing data
have to be posted on the event bus. They are executed on either a local database or, if the subset is
not available locally, sent to a parent server that has to answer this request. The result of every
database query event is posted back to the event bus, so the requesting subsystem has to listen for
the response event.

The database subsystem is divided into three main parts:

1. The Datamove Part which contains the classes of Ingo Schneiders diploma thesis. These classes
are used to compare two databases, extract the differences (that's what Ingo's analyzer tool will
do), and create objects, the so called SmartUpdates, which are able to update a local database in a
way that after executing them, the local database contents are up to date.

2. The Database Handler Part which holds the main classes for database actions within PAID. The
most important classes may be the DBEvents, because we decided to give each event a method
called „handle“, which carries out the right actions that have to be done for this event. Therefore
our DBEventHandler simply calls this method on receipt of an event and passes the reference to
the local databases that are represented by the class LocalDB. Furthermore there is a Cache class,
that holds the cached queries previously retrieved from network.
The DB Part itself is devided into the DB Main Package (see Chapter 2.1), the DB DataTypes
(see Chapter 2.2) and the DB Events handled by the DBEventHandler (see Chapter 2.3)

3. The JDBC Driver Part in which the PAID JDBC driver classes are located. This driver has to be
implemented, because our client requested an easy integration of PAID into StarNetwork without
handing out his own sourcecode. The benefits of this way of integration are descibed in section 9
„Design Rationale“. The JDBC driver's layout is described in detail in Chapter 2.4

System Design Document

2 System Decomposition PAID

2.1 The Main Package of the Database Subsystem

This Package contains all major parts of the Database Subsystem (except the Events hierarchy itself
and the DataTypes). It contains the EventHandler, which handles all incoming events, the Database
Controller, which handles all attached database systems, the Cache, which contains all outgoing SQL
queries and their results and the UpdateStore, which stores all Updates for Database Subsets.

DBEventHandler Listener to be registered at the PAID event bus, which registers to all
incoming events the Database subsystem is interested in.

DatabaseController Manages the bulk of all local databases and returns the right database
(LocalDB) when given a specific Subset.

LocalDB The handler for a specific local database, which performs all actions on this
database.

LocalDataSource Interface for any media (description see chapter Data Types) that allows
reading a specific subset and then insert it into a database.

MediaDataSource Interface for any kind of locally available media providing pre-manufactured
data updates.

Cache The package which handles the cached queries (all queries which couldn't be
answered locally). This package can store, read and expire SQL queries and
their ResultSets.

UpdateStore This package handles the Database Updates of a PAID server. All incoming
updates are stored in this UpdateStore, until they could be sent to all
subscribed clients. The UpdateStore also expires old updates that couldn't
be sent to all clients, when the server runs out of free disk space.

System Design Document

PAID The Main Package of the Database Subsystem 3

2.2 Database specific Data Types

These are the main external data types, used by the events of the Database Subsystem.

Subset Root (abstract) class for all Database Subsets. The application specific
subsets are all derived from this class. All Subsets have a version. The
version of all currently installed subsets are tracked by the Database
Subsystem, which also ensures that the incoming updates fit to the installed
Subset version.

Medium Specifies a media which contains Database Subsets that can be inserted
inserted in the local database. This makes it very simple to add new medias in
future. Currently supported medias are CD and DVD.

SubsetData Container for specific Database Subsets and their updates.

System Design Document

4 System Decomposition PAID

2.3 Event hierarchy

This is the main DB Event hierarchy containing all the abstract event classes. Each of the events
shown here has several derived events, which actually are non-abstract and are described in sub-
chapters of this chapter.

DBEvent Main Database Subsystem event

DBAccessEvent Root for any event requesting or manipulating data by SQL
queries. Its sub-event types, DBQueryEvent and
DBManipulateEvent, are described later on in this chapter. Note:
the PAIDEvent's subset field must be filled in correctly.

DBAccessResultEvent Root for any event returning a result for a DBAccessEvent query.
Implementing the interface DBResultEvent, it supports the
getException Method returning the exception, which occured
during the update/query excecution on the remote side, if any
occured. Its sub-event types, DBQueryResultEvent and
DBManipulateResultEvent, are described later on in this chapter.

DBSubsetManagementEvent Root for any events concerning subset management. All ist sub-
event types are described later on in this chapter. Note: the
PAIDEvent's subset field must be filled in correctly.

DBResultEvent Interface which should be implemented by any event which may
be the answer on another DB-event.

System Design Document

PAID Event hierarchy 5

2.3.1 DBQueryEvent

DBQueryEvent Root event for any event requesting data from the database.

DBListSubsetsEvent Request to list all Subsets stored in the local database. The answer
is provided as a DBListSubsetsResultEvent.

DBSQLQueryEvent Request to run a specific SQL query on the local database. The
answer is provided as a DBSQLQueryResultEvent.

DBGetUpdateEvent Request to get a specific Subset Update from the UpdateStore.
The answer is provided as a DBGetUpdateResultEvent.

DBListStoredUpdatesEvent Request to list all Subset Updates available in the UpdateStore.
The answer is provided as a DBListStoredUpdatesEvent

DBLookupSubsetEvent Request to find out whether a subset is available in the local
database or not. The answer is provided as a
DBLookupSubsetResultEvent.

System Design Document

6 System Decomposition PAID

2.3.2 DBQueryResultEvent

All events shown here are ResultEvents for DBQueryEvents.

2.3.3 DBManipulateEvent

DBManipulateEvent Root event for any event requesting data manipulation on the
database.

DBConfigureEvent Request to change Database Subsystem configuration data (this is
mainly done by the Learning Subsystem). Currently available
configuration values are: updateQueueSize and cacheSize. If a value
is set to '-1', the value won't be changed.

DBStoreUpdateEvent Request to store a given Update in the UpdateStore (this event is
triggered by the Learning Subsystem). If the maximum UpdateStore
size is reached, the oldest Update in the UpdateStore is removed.

System Design Document

PAID Event hierarchy 7

DBSQLManipulateEvent Request to manipulate any data in the local database using a SQL
statement. If the specified Subset is a non-PAIDSubset, the
manipulation request will automatically be replicated up to the next
PAID server. The answer is a DBSQLManipulateResultEvent.

2.3.4 DBManipulateResultEvent

All events shown here are ResultEvents for DBManipulateEvents.

2.3.5 DBSubsetManagementEvent

DBRemoveSubsetEvent Request to remove a specified Subset from the local
Database.

DBUpdateEvent This is an incoming Update for a Subset Data. The
Database Subsystem will verifiy the Update's version
information to ensure that it matches the currentliy stored
Subset Data and then will execute the Update automatically.

System Design Document

8 System Decomposition PAID

DBGetSubsetDataEvent Request to read a specific Subset Data from a given media
and send a DBSubsetDataEvent as answer. If the given
media is null, the Subset Data is extracted from the local
database. If the Subset Data is not available in the local
database, the event is handed on to the next parent server.

DBSubsetManagementResultEvent This class implements DBResultEvent and contains a field
for a maybe occuring exception. It is the parent for
DBSubsetDataEvent and DBMediasEvent.

DBSubsetDataEvent This is an incoming Subset Data. The Database Subsystem
will verifiy the SubsetData's version to ensure that it's
version is later than the version of the Subset Data currently
stored in the local database and then will remove the
currently stored Subset Data (if available) and add the new
SubsetData in the local database.

DBGetMediasEvent Request to list all available medias for Subset Data.

DBMediasEvent The DBGetMediasEvent answer, which lists all available
medias available on the local system.

System Design Document

PAID JDBC driver 9

2.4 JDBC driver

This implements a JDK 1.1 compliant JDBC driver, which parses the JDBC queries executed by
StarNetwork, checks for the concerned Database Subset and translates them to events on the Event
Bus. The ResultSet for these queries can be serialized when sent over the network and then
represents a complete JDBC result set on destination side.

System Design Document

10 System Decomposition PAID

The PAID JDBC Driver / StarNetwork Collaboration is shown by the above diagram.

Incoming JDBC queries from StarNetwork are translated to PAID Events by the PaidJdbcTranslator
using a PaidJdbcSQLParser. The PaidJdbcRequestProcessor is function/event translator which
publishes the events on the Event Bus, waits for the answer event and returns it back to the
translator. The translator extracts the Result Set and returns it to StarNetwork.

The 'DBSQLQueryEvent' published by the PaidJdbcRequestProcessor is answered by the Database
Subsystem either from local database / local cache or via Network and is answered by a
'DBSQLQueryResultEvent' on the Event Bus.

3 Concurrency Identification

Since the database subsystem has to run in multiple threads there may occur concurrencies between
them. This has to be resolved within this subsystem when shared objects like the localDBs are
accessed from multiple threads simultaneously. Concurrent access on the local database should be
resolved by the database management system itself. The PAID database subsystem must be thread
safe.

System Design Document

PAID Hardware/Software mapping 11

4 Hardware/Software mapping

4.1 Database Subsystem Performance

4.1.1 General system performance

Because of the usage of Java as implementation language the general performance will be lower than
a native implemented system. Though there exist just in time compilers for a variety of platforms and
the processor speed duplicates every 18 months it might not be too interesting.

4.1.2 Input/Output performance

Since the sourcecode of StarNetwork will not be available and because of that reason it is not able to
integrate directly into StarNetwork, a JDBC driver for transparent access of local or remote data has
to be implemented. This means that every received SQL-Statement has to be parsed in order to
extract the subset information. Furthermore every call to this driver has to be sent over the event
bus, which may result in lower performance depending of the implementation of the event system. Of
course, when a query cannot be answered from the local database, the performance depends on
several other subsystems and the network connection. At this time no qualified statement can be
made on the performance for local or remote requests. This has to be recovered by the testbed team
using several scenarios.

4.1.3 Processor allocation

Since the PAID database subsystem is multithreaded and many requests may come in simultaneously,
multiprocessor systems can be useful where performance problems can occur, for example the
servers at the big dealerships can be equipped with more than one processors to handle the large
numbers of possible requests.

4.1.4 Memory allocation

Because normally several requests to a PAID server may occur it is surely useful to have lots of
memory on servers. However, it depends on the number of users accessing a server and the number
of concurrent requests, how much memory the server needs, because for example every Resulset that
must be sent over the network has to be hold in memory with its complete data. Of course, if the
received SQL-statements result in too big Resultsets, the best solution may be to look at the
sourcecode of the calling process or think about the database model.

System Design Document

12 Hardware/Software mapping PAID

4.2 Connectivity

Connectivity is handled by the Network Subsystem, which provides an event-based architecture to
all other subsystems, which enables them to communicate with each other and over the network
using events.

Events going up the hierarchy need no destination (besides 'up'), but events going down the
hierarchy must have a destination. As the Database Subsystem does not send any events down the
hierarchy without any initiating request, the Database Subsystem does not have to know, which
client nodes are connected to it. All answers to incoming requests are routed down the way they
came up.

4.3 Network architecture

The database subsystem needs the possibility to send request to parent servers and results to child
servers. This should be provided by Network.

System Design Document

PAID Data Management 13

5 Data Management

The PAID system provides an easy access to distributed data in a transparent way. However, the
data has to be divided into coherent subsets. How this is done is explained in Ingo Schneider's
diploma thesis.

At this time it was decided that every PAID server needs a local database, but it would be possible to
have servers without databases, too. In that case every request would have to be answered by the
parent server and a permanent network connection would be needed.

In a final stage of PAID, StarNetwork's file access for images (and other data) has to be modified to
use database queries. This can either be done by writing some kind of wrapper which translates these
file accesses to database query events by the StarNetwork Integration Team or by modifying the
application's source code to directly access the database instead of using other methods like direct
file access or http-like protocols. The latter way is certainly the more reasonable one, but can only be
done with the application's source code.

5.1 Data Types

The various types of data that will be used in the PAID system are:

� Parts catalog (EPC)
� Data on individual vehicles (FDOK)
� PAID user information (user profiles)
� PAID server information
� Miscellaneous persistent data for all PAID subsystems.

These data will all be stored in an SQL databases. Any database management system that supports a
JDBC driver is suitable.

In order to access any JDBC-capable database, the SQL statements have to follow the ANSI
standard. Otherwise there might be difficulties in parsing them or executing them on a different
database. If the ANSI standard does not fit on a specific database management system, the tool
JConnect from Sybase may be helpful to translate between ANSI and DBMS specific SQL.

By the way, an object-oriented database could be helpful, but StarNetwork uses relational databases
at this time. Therefore PAID has to work with it, too.

It is not supposed to provide a file system via PAID, instead all needed files like images will be
stored in the database, too. This is done for reduction of the complexity of distributing changes. If
files are in the database, for example in a BLOB field, the same way of updating, subscribing and so
on can be used.

As PAID is implemented

System Design Document

14 Data Management PAID

5.2 Location Transparency

PAID provides a transparent access to data through the PAID JDBC driver. Calls to the driver are
translated into events and answered by either the local database or any parent PAID server. In that
way the data, the client application accesses, normally is distributed and accessible in a transparent
way: The application does not have to know about the location of the data.

5.3 Data Organization

As mentioned above, data is divided into subsets, and the user has the possibility to install some of
them locally and access the other ones remotely. Therefore it must be assured that at least the top
PAID server has access to all available subsets.
When local data is corrupted in any way, it has to be reinstalled and all the updates that ocurred in
the meanwhile have to be executed another time. The advantage of this behavior is that there is no
need to archive the local databases. It might be nice to have local achiving, because recovery would
be a little bit faster then, but it is not needed.

5.4 Server Loads

The only available data about average or worst case requests and data changes is extracted from
Ingo Schneider's diploma thesis.

5.4.1 FDOK data traffic

The following table shows representative figures for FDOK data traffic. The updates shown are a
total over 5 weeks.

Vehicle Area Update Size Total Size # of Vehicles

Utility Europe w/o 9.8 MB 43.0 MB 23000

Utility Germany 9.4 MB 31.0 MB 15000

Utility Others 0.8 MB 2.1 MB 2000

Passenger Europe w/o 2.2 MB 14.5 MB 35000

Passenger Germany 3.8 MB 20.0 MB 48000

Passenger America 1.2 MB 10.0 MB 21000

Passenger Others 0.2 MB 0.9 MB 2000

System Design Document

PAID Server Loads 15

5.4.2 EPC data traffic

Typical traffic for the Electronic Parts Catalog would be 3 MB/week for database updates, and 7
MB/week for image updates.

6 Global Resource Handling

The main purpose of the database subsystem is to provide an efficient data management for the
Daimler-Chrysler dealerships. Doing this the integrity of the data is of highest importance. This
means that the data from its point of transmission to the point of reception is guaranteed to be safe
and error free. Further the updates and manipulation of the data are also done in an efficient manner.

The data source is divided into two main classes i.e. media source (local data source CD, DVD,
floppy and local cache etc.) and remote data source which is the set of all data located remotely with
respect to the machine. The location of the data has been abstracted from the requester/manipulator
of the data, this means that the database subsystem will try to locate and get data on its own without
any input from the dealer.

System Design Document

16 Software Control Implementation PAID

7 Software Control Implementation

7.1 External control flow (between subsystems)

7.1.1 Adding a new Subset to local database

1. Learning Subsystem on server 1 sends a 'DBGetSubsetData' event to the (remote) server 2.
2. DBHandler on server 2 calls the 'getSubsetData'-method of the local DBController.
3. DBHandler receives the subset data and sends a 'DBSubsetDataEvent' to server 1, recieved by the

Learning subsystem on server 1 and by the Database subsystem (DBHandler) on server 1.
4. DBHandler on server 1 calls the event's 'handle'-method to apply the data to the local database.
5. Learning subsystem on server 1 sends event to Learning subsystem on server 2 to subscribe for

updates on this particular subset.
6. The first update is automatically initiated by Learing subsystem on server 2.
7. DBHandler on server 2 sends an 'DBUpdateEvent to server 1 (along with the update data).

7.1.2 Database query sequence diagram

System Design Document

PAID External control flow (between subsystems) 17

1. StarNetwork subsystem on server 1 (precisely: the PaidJdbcTranslator-component) sends
'DBQueryEvent' to DBHandler on server 1.

2. DBHandler on server 1 calls method 'hasSubset' of the local DBController to determine if the
subset is locally available.

3. DBHandler receives either 'TRUE' or 'FALSE'. If the answer is 'TRUE' it queries the local
database for the specified data.

4. If the data is not locally available, the (local) cache is queried for it.
5. Cache returns the reqested data or a null pointer (marking the data not available)
6. If the Cache cannot provide the data, too, DBHandler sends a 'DBQueryEvent' to the (remote)

server 2.
7. DBHandler on server 2 receives the data.
8. DBHandler on server 2 sends a 'DBQueryResultEvent' to DBHandler on server 1
9. DBHandler on server 1 sends a 'DBQueryResultEvent' to PaidJdbcTranslator (which returns the

given Resultset to starnetwork).

7.2 Concurrent control

No concurrent control diagrams are needed, as this is mainly done by the database management
system and the event-handlers (see main Chapter 'Concurrency Identification').

A later implementation of the PAID Database Subsystem should include transaction handling on
DBSQLManipulateEvents to enable all aplications to manipulate data using multiple queries during
one transactions.

The incoming updates, however, are handled using transactions.

System Design Document

18 Software Control Implementation PAID

7.3 Internal control (within a single process)

7.3.1 DBGetSubsetDataEvent sequence diagram

1. dbHandler receives a 'DBGetSubsetDataEvent' from the event bus.
2. dbHandler calls the 'handle'-method of the event and provides the local dbController as Parameter.
3. the event calls dbController.getSubsetData along with the requested subset's identifier.
4. dbController calls 'getSubsetDB' to find the local DB holding the specified subset's data
5. If the subset was found in one of the databases, the method 'getSubsetData' of this database is

called.
6. The local DB returns the subset data
7. The dbController returns the subset data
8. If subsetData is a null pointer (means the subset is not locally available), the event posts itself

('DBGetSubsetEvent') to the remote servers event bus
9. In any other case, the event's handle method posts a 'DBSubsetData'-event (containig the subset

data) to the event bus .

7.3.2 DBListSubsetsEvent sequence diagram

System Design Document

PAID Internal control (within a single process) 19

1. dbEventHandler receives a 'DBListSubsetsEvent' from the event bus.
2. dbEventHandler calls the event's 'handle'-method and gives the local dbController as parameter.
3. The event calls dbController.listSubsets.
4. dbController returns ist list of availaible subsets.
5. the event's 'handle'-method posts a 'DBListSubsetsResult'-event on the event bus.

7.3.3 DBManipulateEvent sequence diagram

1. dbHandler receives a 'DBManipulateEvent' from the event bus.
2. dbHandler calls the event's 'handle'-method and gives the local dbController as parameter.
3. The event calls dbController.manipulateData along with the contained SQL statement.
4. dbController uses its 'getSubsetDB'-method to determine the local database holding the subset on

which to apply the SQL statement.
5. dbController calls the 'manipulateData'-method of the local DB returned by 'getSubsetDB'.
6. The local database returns the number of affected rows.
7. dbController returns the number of affected rows to the event's 'handle'-method.

System Design Document

20 Software Control Implementation PAID

8. A 'DBManipulationResultEvent' containing the number of affected rows is posted on the event
bus.

7.3.4 DBQueryEvent sequence diagram

1. The event handler receives a 'DBQueryEvent' from the event bus.
2. The event handler calls the event's ' handle'-method along with the local dbController as

parameter.
3. The event's 'handle'-method calls dbController.executeQuery along with the SQL query to be

executed
4. dbController uses ist 'getSubsetDB'-method to determine the local database holding the subset on

which the query should be executed.
5. If the result is not a null pointer, the 'executeQuery'-method of the local DB is executed
6. The local DB returns a resultset containing the requested data.
7. dbController returns either a resultset or a null pointer.
8. If the subset is not availaible in the local databases (a null pointer has been returned), local cache

is read to find out if this query has been executed before.
9. The local cache returns either a resultset containing the data or a null pointer.
10.If the requested data is now available, a 'DBQueryResultEvent' is posted on the event bus.
11.If the cache returned a null pointer (the query has not been executed before), the event's 'handle'-

method posts itself ('DBQueryEvent') on the parent server's event bus.

System Design Document

PAID Internal control (within a single process) 21

7.3.5 DBSubsetDataEvent sequence diagram

1. The event handler receives a 'DBSubsetDataEvent' from the event bus.
2. The event handler calls the event's 'handle'-method along with the local dbController as

parameter.
3. The event's 'handle'-method calls the 'applySubsetData'-method of the dbController along with the

subset data contained in the event.
4. dbController calls its 'getSubsetDB'-method to ensure that the subset is not already in the

database.
5. If 'getSubsetDB' returned a null pointer, the most applicable local database is selected and ist

'applySubsetData'-method is called.

7.3.6 DBUpdateEvent sequence diagram

1. The event handler receives a 'DBUpdateEvent' from the event bus.
2. The event handler calls the 'handle'-method of the event and provides the local dbController as

parameter.
3. 'dbController.applyUpdate' is called along with the subset data containing the update.

System Design Document

22 Software Control Implementation PAID

4. DhController uses its 'getSubsetDB' to determine the database holding the original (outdated)
subset.

5. If the method didn't return a null pointer (which means that the subset is not in any of the local
databases and therfore cannot be updated) the 'applySubsetData'-method of the local DB is called.

6. dbController returns if the operation was successfull.
7. If the operation was a success, a 'DBStoreUpdateEvent' is posted on the event bus to store the

update data in the local update queue.

7.3.7 JDBC driver initialization sequence diagram

1. StarNetwork subsystem initiates creation of the paidJdbcDriver.
2. paidJdbcDriver registers at the DriverManager
3. StarNetwork requests a Jdbc connection from the driverManager.
4. driverManager calls 'paidJdbcDriver.connect' to connect to the given URL
5. paidJdbcDriver creates a 'PaidJdbcConnection'.
6. The driver returns the connection to the driverManager.
7. The driverManager returns the connection to StarNetwork

System Design Document

PAID Internal control (within a single process) 23

7.3.8 JDBC executeQuery sequence diagram

1. StarNetwork calls 'connection.createStatement'
2. connection creates a new instance of 'PaidJdbcStatement'
3. connection returns paidJdbcStatement to Starnetwork
4. StarNetwork calls 'paidJdbcStement.executeQuery' along with the query string
5. paidJdbStatement creates a new instance of 'PaidJdbcSQLStatement'
6. paidJdbStatement calls 'translator.executeQuery' along with the query string
7. translator calls 'paidJdbcSQLStement.getSubset' along with the parser (wich is an instance of

PaidJdbcParser)
8. paidJdbcStatement extract the subset from the query string (using the parser) and returns it
9. translator uses 'generateEvent' to create a new 'DBQueryEvent'
10.translator calls 'processor.requestEvent' along with the newly created event and the result event to

be returned
11.processor posts the event on the event bus
12.processor receives the incoming "DBQueryResultEvent" from the event bus
13.processor returns the containes paidJdbcResultset to translator
14.translator returns the resultset to StarNetwork

7.4 User Interface

The Database Subsystem has no user interface. All user interaction is handled by the StarNetwork
Integration / User Interface Team, which provides some Events to show messages and dialogues to
the User.

System Design Document

24 Boundary Conditions PAID

8 Boundary Conditions

8.1 Initialization

� The JDBC driver is loaded by StarNetwork. This is done by either creating an instance of the
driver class (it then normally registeres with the DriverManager) or by changing the Java system
property jdbc.drivers and starting a new JVM.

� The PAID Database Controller must be instanciated during system startup. The Database
Controller then creates a JDBC connection to each database locally available. It also has to
register the Database Event Handler at the Event Bus.

� The Database Subsystem must be instanciated after the Event Bus is set up, so all other
Subsystems can access their persistent storage during initialization. The Database Subsystem itself
only depends on the Event Bus.

8.2 Termination

� All threads are designed to terminate correctly without any loss of data or data inconsistency.
That way, the system can be terminated at any state.

� However, if an incoming event is already handled by the DBEventHandler, the termination
procedure must wait until the handling of this event is finished. So, during system shutdown it is
just necessary to stop all incoming events and the Database Subsystem will be idle within a
minute.

8.3 Failure

� The system is capable of handling all possible failures without any loss of data or data
inconsistency.

System Design Document

PAID Design Rationale 25

9 Design Rationale

9.1 Data access

9.1.1 Non-intrusive implementation

Pro: non-intrusive implementation
(as JDBC driver)

Pro: intrusive implementation
(changing StarNetwork Code)

� Can be done without source code

� Client wants that

� Can be implemented as at much lower cost
(no parser necessary)

� Efficient and less error-prone

� Requests can be tailored to use the complete
database functionality

� Avoids any security problems that might
occur when the SQL query and the affected
subset are transmitted seperately, because this
implementions allows it to have the SQL
statement built at server side so that no server
has to trust ist clients.

� Applications, that are not PAID-aware and
use JDBC methods that can not be redirected,
have very high integration costs

Resolution: we will implement PAID as a JDBC driver as no StarNetwork source code is available.

9.1.2 Unified Data Access Model (Location Transparency)

Pro: unified Data Access Model Pro: a own class for each Data Access Type

� Transparent access

� Requester does not have to know where
the data comes from

� Much less code

� Requester can specify the data source
manually if he wants to

Resolution: Unified Data Access Model. However, the implemented algorithm which decides where
the data is requested from, must be efficient and intelligent.

System Design Document

26 Design Rationale PAID

9.1.3 Persistent storage via SQL in Subsets

Pro: persistent storage via SQL in Subsets Pro: simple Data Storage

� More complex data structures can be
stored.

� Storage mechanism is unified to all other
subsystems

� Storage can be replicated if needed

� Simpler and less code

� Every other subsystem has to deal with
SQL queries

Resolution: storage via subsets, because this complex storage is needed by other subsystems

9.1.4 Stored data managed via object oriented Subsets

Pro: object oriented Subsets Pro: subset implementation as class model

� Independence of data model (no code
changes when new applications are
added)

� Code kept simple and clear cut.

� Simpler to implement

� All existing queries must be changed to
be conform with the subsets.

Resolution: storage via object oriented subsets, because independence of data model is required by
the client. As we do not want to change all existing StarNetwork code, we will send the existing
SQL query together with the affected subset. As we do not check the query whether it belongs to the
specified subset, this is a security hole. This issue should be addressed before delivery.

9.1.5 Allowing all possible SQL queries

Pro: allowing all possible SQL queries Pro: reducing complexity
(no predefined queries)

� Some existing queries have to be
changed.

� Decreases the programmer's freedom

� Runs without any code changes

� A lot easier to implement

� Quicker code

Resolution: we will allow any SQL query, because we cannot change the StarNetwork Code not to
use predefined SQL queries.

System Design Document

PAID Data access 27

9.2 Data storage

9.2.1 Simple query cache for query responses

Pro: simple query cache Pro: complex storage mechanism

� A clear separation between cache and
aftersales database

� Cache can be expired easily

� A lot easier to implement. Storing query
responses in the aftersales database is
very difficult, as the atomic amount of
manageable data is a subset and a query
doesn't a complete new subset to the
database

� If a new query just slightly differs to the
last one, the old result can't be used to
answer the new query

Resolution: we will implement a simple query cache, as the performance that might be gained by
implementing a complex storage mechanism would most certainly be lost by the much more complex
caching algorithm.

9.2.2 No local data encryption

Pro: no local data encryption Pro: only encrypted data is stored in DB

� System will be less efficient

� Local data encryption doesn't make much
sense. The local system itself can be seen
as secure.

� This job can be done by someone else

� We don't depend on other encryption
software (all-in-a-box)

Resolution: we won't provide local data encryption, as this job can also be done by the local database
system and/or local file system, if needed.

System Design Document

28 Design Rationale PAID

9.3 Replication

9.3.1 Simple Backward Replication algorithm

Pro: client-side database changes are simply
inserted on parent server

Pro: complex Backward Replication
algorithm

� Client database updates are so small that
no complex algorithm is needed: these
changes don't depend on each other.

� Easy and efficient to implement

� Avoiding any possible conflicts

Resolution: we will simply store the Client database updates, as there probably won't be any
possibility of conflicts; besides the possibility is very low that two dealers will report any changes on
the same car at the same time.

9.3.2 AddSubset packages are extracted when needed

Pro: packages for AddSubset are extracted
form parent server's DB when needed

Pro: packages are stored on the parent server
and are extracted after each update

� This reduces the needed storage space by
50%, because otherwise all local data
must be stored in the database and as a
update package.

� An extracted update is guaranteed to be
100% 'fresh'

� Response time for 'addSubset' would be
much shorter

Resolution: we will extract the needed updates from local database. As it is does not happen very
often that a dealer adds a subset via network, this can take some time.

System Design Document

PAID Replication 29

9.3.3 Client can only add a subset when parent is subscribed

Pro: AddSubset can only be requested when
parent server is subscribed to this subset

Pro: a subset can always be added

� Easier to handle

� If the updates travel through the parent
server anyway, then why not subscribe to
that subset?

� This will simplify the dealer's decision
which subsets he should subscribe to,
because only reasonable subscribable
subsets will be displayed.

� The dealer has total freedom and can do
whatever he wants to do, no matter if it
makes sense or not.

� If a Server runs out of disk space,
addSubset will still be possible.

Resolution: we will only allow an addSubset if the parent server is subscribed to this subset, because
the other possibility does not make much sense.

9.3.4 Only notify when new update arrives

Pro: only send notification when a new
update arrives

Pro: uncoming updates are pushed
immediately

� A busy dealer's connection won't
flooded, if a new update arrives

� Easier to implement; no complex learning
algorithm is needed

� Multicast technology can be used more
efficiently

Resolution: efficient update transport and code simplicity are not as important as a good connectivity
when the dealer is busy.

System Design Document

