
Creating an
Object Design Document

with Javadoc

Creating an
Object Design Document

with Javadoc

Thomas Funck

TUM

Why Object Design Documents?Why Object Design Documents?
• All elements (subsystems, classes,

members), even private ones, have to be
documented
– to facilitate communication among developers

– to make it easier to change or extend the code

– to support maintenance

Object Design Document (ODD)Object Design Document (ODD)
• Detailed description of the implementation

of a system

• Structure
– Description of subsystems

– Description of classes

– Description of operations (methods)

– Description of attributes (fields)

– Class diagrams

Description of subsystemsDescription of subsystems
• General description of what the subsystem

does

• Description of the most important classes of
the subsystem
=> How to use the subsystem from within other
subsystems

• In Java usually organized in packages

Structure of an ODD

Description of classesDescription of classes
• What is the class used for

• Which class does this class extend

• Which interfaces does it implement

• How can the class be used
– description of its main functionality (what are

the most important methods)

– which classes use or should use this class

Structure of an ODD

Description of operationsDescription of operations
• An operation can be implemented by more

than one method (method overloading)
=> With Javadoc only methods can be documented

• Description of methods
– which functionality will be invoked
– what types have the parameters to be of and

what is their meaning
– which result will be returned
– which errors could occur
– does a method override a superclass‘ method?

Structure of an ODD

Description of attributesDescription of attributes
• Description of all attributes a class uses

– What kind of data is stored
– What is the data used for
– How can the data be accessed
– Static attributes: which methods use these attr.

• Example:
– Field: Hashtable students;
– Comment: Stores a string of each
student‘s name of the TUM. The
Hashtable maps the string of the
student‘s Matrikelmummer to his name.

Structure of an ODD

Class diagramsClass diagrams
• Class diagrams graphically show

– the inheritance hierachy

– the relationship between classes (which class is
used by another class)

• Should be created for the whole system
and/or subsystems

Structure of an ODD

The Javadoc ToolThe Javadoc Tool

JavadocJavadoc
• Creates a HTML documentation out of Java

source files that contains
– a detailed description of all elements (packages,

classes, attributes, methods)

– a tree of the class hierachy

– an index for all elements

• Extracts special formatted comments from
source files
/** A Javadoc comment */

Using Javadoc commentsUsing Javadoc comments

• Are typed directly before the element to
document
/** Javadoc Comment for this class */
public class MyClass {

 /** Javadoc Comment for field text */
 String text;

 /** Javadoc Comment for method setText */
 void setText(String t) {...}
}

Javadoc commentsJavadoc comments
• Special tags for classes

– @author
– @version

• Special tags for methods
– @param
– @return
– @exception

• Reference to another element
– @see

• Can contain any HTML code

Writing Javadoc commentsWriting Javadoc comments
/**
 * Computes the square root for the
 * specified double value.
 * @param val the value to compute the
 * square root for
 * @return the square root of
 * <TT>val</TT>
 * @exception IllegalArgumentException if
 * <TT>val</TT> is < 0
 * @see #sqrt(int)
 */
public double sqrt(double val) {

//...
}

Writing Javadoc comments (II)Writing Javadoc comments (II)
• The first sentence is used as a kind of short

description
– therefore it should describe the meaning of the

element

– is shown at index entries

• Following the hyperlink of an element will
show you the whole documentation of this
element

Tips for writing commentsTips for writing comments
• Usually it is more usuful to write a detailed

class description than writing long
comments for each method,
especially when methods and parameters
have intuitive names.

Creating an ODD with JavadocCreating an ODD with Javadoc
• Description of operations (methods)

– Type a Javadoc comment for any method

• Description of classes
– Type Javadoc comments for any class and all of

their fields

• Description of subsystems
– Create a HTML-file named „package.html“ that

describes a package. Put it into the package
directory. Do these steps for any package.

Creating an ODD with Javadoc (II)Creating an ODD with Javadoc (II)
• Run Javadoc

– Syntax
javadoc [options] [packagenames] [sourcefiles]

– Example
javadoc -private -author -d doc
 -sourcepath „c:\stars3\“
 stars.ui
 stars.communication
 stars.communication.client

– Type javadoc -help to see all possible options

Further InformationFurther Information
• More information about writing Javadoc

comments at
http://java.sun.com/j2se/javadoc/
writingdoccomments/index.html

at the Javadoc Homepage
http://java.sun.com/j2se/javadoc/
index.html

DemonstrationDemonstration

