
C
on

qu
er

in
g

C
om

pl
ex

 a
nd

 C
ha

ng
in

g
Sy

st
em

s
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng
Chapter 7,
Object Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Exercise 6.4

6.4 Consider a legacy, fax-based, problem-reporting system for
an aircraft manufacturer. You are part of a reengineering
project replacing the core of the system by a computer-based
system, which includes a database and a notification system.
The client requires the fax to remain an entry point for
problem reports. You propose an E-mail entry point.

Describe a subsystem decomposition, and possibly a design
pattern, which would allow both interfaces.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Possible solution for exercise 6.4

EmailFrontEnd FaxFrontEnd

ProblemReporting

StorageSubsystem NotificationSubsystem

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Exercise 6.5

6.5 You are designing the access control policies for a Web-
based retail store:
w Customers access the store via the Web, browse product

information, input their address and payment information, and
purchase products.

w Suppliers can add new products, update product information,
and receive orders.

w The store owner sets the retail prices, makes tailored offers to
customers based on their purchasing profiles, and provides
marketing services.

You have to deal with three actors: StoreAdministrator,
Supplier, and Customer. Design an access control policy for
all three actors. Customers can be created via the Web,
whereas Suppliers are created by the StoreAdministrator.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Possible solution for exercise 6.5

 Product CustomerInfo SupplierInfo Order
Anonymous GetInfo() Create()
Customer GetInfo()

GetPrice()
UpdateInfo() Create()

Supplier Create()
GetInfo()
UpdateInfo()

 UpdateInfo() Process()

StoreAdministrator UpdatePrice() VerifyInfo() Create() Examine()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Object Design

♦ Object design is the process of adding details to the
requirements analysis and making implementation decisions

♦ The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

♦ Requirements Analysis: Use cases, functional and dynamic
model deliver operations for object model

♦ Object Design: We iterate on where to put these operations in
the object model

♦ Object Design serves as the basis of implementation

♦ 4-Tier Architecture

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

Web Browser
(UI Framework)

Web Server

HTTP

State Profil

A1: Application Server

State
State

State
State

State

A2: Application Server

Profil
Profil

Profil

Profil

Database Server
(Database Framework)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Reengineering Terminology

♦ Reverse Engineering:
w Discovery (or Recovery) of an object model from the code.

♦ Forward Engineering:
w Automatic generation of code from an object model
w Requirements Engineering, Requirements Analysis, System Design, Object

Design, Implementation, Testing, Delivery

♦ Discipline:
w Always change the object model, then generate code (for sure do this when

you change the interface of a public method/class.)
t Generate code under time pressure

– Patch the code!

♦ Roundtrip Engineering
w Forward Engineering + reverse engineering
w Inventory analysis: Determine the Delta between OM and Code
w Together-J and Rationale have tools for reverse engineering

♦ Reengineering (Project Management Issue):
w New functionality (customer dreams up new stuff)
w New technology (technology enablers)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requir ements gap

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

 Object Design Issues

♦ Full definition of associations

♦ Full definition of classes (System Design: Service, Object
Design: API)

♦ Specify the contract for each component

♦ Choice of algorithms and data structures

♦ Detection of new application-domain independent classes
(example: Cache)

♦ Optimization

♦ Increase of inheritance

♦ Decision on control

♦ Packaging

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Terminology of Activities

♦ Object-Oriented Methodologies
w System Design

t Decomposition into subsystems

w Object Design
t Implementation language chosen

t Data structures and algorithms chosen

♦ SA/SD (structured analysis/structured design) uses different
terminology:
w Preliminary Design

t Decomposition into subsystems

t Data structures are chosen

w Detailed Design
t Algorithms are chosen

t Data structures are refined

t Implementation language is chosen

t Typically in parallel with preliminary design, not separate stage

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Object Design Activities

1. Service specification
w Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w How to address nonfunctional requirements
w Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Service Specification

♦ Requirements analysis
w Identifies attributes and operations without specifying their types or

their parameters.

♦ Object design
w Add visibility information
w Add type signature information

w Add contracts (Bertrand Meyer, Eiffel)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Add Visibility

UML defines three levels of visibility:

♦ Private:
w A private attribute can be accessed only by the class in which it is

defined.

w A private operation can be invoked only by the class in which it is
defined.

w Private attributes and operations cannot be accessed by subclasses
or other classes.

♦ Protected:
w A protected attribute or operation can be accessed by the class in

which it is defined and on any descendent of the class.

♦ Public:
w A public attribute or operation can be accessed by any class.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Information Hiding Heuristics

♦ Build firewalls around classes
w Carefully define public interfaces for classes as well as subsystems
w Never, never, never make attributes public

♦ Apply “Need to know” principle. The fewer an operation
knows
w the less likely it will be affected by any changes

w the easier the class can be changed

♦ Trade-off
w Information hiding vs efficiency

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

Information Hiding Design Principles

♦ Only the operations of a class are allowed to manipulate its
attributes
w Access attributes only via operations.

♦ Hide external objects at subsystem boundary
w Define abstract class interfaces which mediate between system and

external world as well as between subsystems

♦ Do not apply an operation to the result of another operation.
w Write a new operation that combines the two operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Contracts

♦ Contracts on a class enable caller and callee to share the same
assumptions about the class.

♦ Contracts include three types of constraints:
w Invariant: A predicate that is always true for all instances of a class.

Invariants are constraints associated with classes or interfaces.
Invariants are used to specify consistency constraints among class
attributes.
w Precondition: A predicate that must be true before an operation is

invoked. Preconditions are associated with a specific operation.
Preconditions are used to specify constraints that a caller must meet
before calling an operation.
w Postcondition: A predicate that must be true after an operation is

invoked. Postconditions are associated with a specific operation.
Postconditions are used to specify constraints that the object must
ensure after the invocation of the operation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Expressing constraints in UML

♦ OCL (Object Constraint Language)
w OCL allows constraints to be formally specified on single model

elements or groups of model elements

w A constraint is expressed as an OCL expression returning the value
true or false. OCL is not a procedural language (cannot constrain
control flow).

♦ OCL expressions for Hashtable operation put():
w Invariant:

t context Hashtable inv: numElements >= 0

w Precondition:
t context Hashtable::put(key, entry) pre:!containsKey(key)

OCL expressionContext is a class
operation

w Post-condition:
t context Hashtable::put(key, entry) post: containsKey(key) and

get(key) = entry

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Expressing Constraints in UML

♦ A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean

<<invariant>>
numElements >= 0

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

size():int

numElements:int

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Object Design Areas

1. Service specification
w Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Component Selection

♦ Select existing off-the-shelf class libraries, frameworks or
components

♦ Adjust the class libraries, framework or components
w Change the API if you have the source code.

w Use the adapter or bridge pattern if you don’t have access

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Reuse...

♦ Look for existing classes in class libraries
w JSAPI, JTAPI,

♦ Select data structures appropriate to the algorithms
w Container classes

w Arrays, lists, queues, stacks, sets, trees, ...

♦ Define new internal classes and operations only if necessary
w Complex operations defined in terms of lower-level operations

might need new classes and operations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Object Design Areas

1. Service specification
w Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

w Use the bridge pattern if the off-the-shelf component comes late
t Use a quick and dirty implementation first

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Restructuring Activities

♦ Realizing associations

♦ Revisiting inheritance to increase reuse

♦ Revising inheritance to remove implementation dependencies

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

 Realizing Associations

♦ Strategy for implementing associations:
w Be as uniform as possible
w Individual decision for each association

♦ Example of uniform implementation
w 1-to-1 association:

t Role names are treated like attributes in the classes and translate to
references

w 1-to-many association:
t "Ordered many" : Translate to Vector

t "Unordered many" : Translate to Set

w Qualified association:
t Translate to Hash table

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Unidirectional 1-to-1 Association

MapAreaZoomInAction

Object design model before transformation

ZoomInAction

Object design model after transformation

MapArea

-zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Bidirectional 1-to-1 Association

MapAreaZoomInAction
11

Object design model before transformation

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

Object design model after transformation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

1-to-Many Association

Layer LayerElement
1 *

Object design model before transformation

LayerElement

-containedIn:Layer
+getLayer()
+setLayer(l)

Layer

-layerElements:Set
+elements()
+addElement(le)
+removeElement(le)

Object design model after transformation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Qualification

SimulationRunsimname 0..1*
Object design model before transformation

Scenario

Scenario

-runs:Hashtable
+elements()
+addRun(simname,sr:SimulationRun)
+removeRun(simname,sr:SimulationRun)

-scenarios:Vector
+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

Object design model after transformation

SimulationRun

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Increase Inheritance

♦ Rearrange and adjust classes and operations to prepare for
inheritance

♦ Abstract common behavior out of groups of classes
w If a set of operations or attributes are repeated in 2 classes the

classes might be special instances of a more general class.

♦ Be prepared to change a subsystem (collection of classes) into a
superclass in an inheritance hierarchy.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Building a super class from several classes1/11/01

♦ Prepare for inheritance. All operations must have the same
signature but often the signatures do not match:
w Some operations have fewer arguments than others: Use

overloading (Possible in Java)
w Similar attributes in the classes have different names: Rename

attribute and change all the operations.
w Operations defined in one class but no in the other: Use virtual

functions and class function overriding.

♦ Abstract out the common behavior (set of operations with same
signature) and create a superclass out of it.

♦ Superclasses are desirable. They
w increase modularity, extensibility and reusability
w improve configuration management

♦ Turn the superclass into an abstract interface if possible
w Use Bridge pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Object Design Areas

1. Service specification
w Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Design Optimizations

♦ Design optimizations are an important part of the object design
phase:
w The requirements analysis model is semantically correct but often

too inefficient if directly implemented.

♦ Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency
3. Store derived attributes to save computation time

♦ As an object designer you must strike a balance between
efficiency and clarity.
w Optimizations will make your models more obscure

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Design Optimization Activities

1. Add redundant associations:
w What are the most frequent operations? (Sensor data lookup?)
w How often is the operation called? (30 times a month, every 50

milliseconds)

2. Rearrange execution order
w Eliminate dead paths as early as possible (Use knowledge of

distributions, frequency of path traversals)
w Narrow search as soon as possible

w Check if execution order of loop should be reversed

3. Turn classes into attributes

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Implement Application domain classes

♦ To collapse or not collapse: Attribute or association?

♦ Object design choices:
w Implement entity as embedded attribute

w Implement entity as separate class with associations to other
classes

♦ Associations are more flexible than attributes but often
introduce unnecessary indirection.

♦ Abbott's textual analysis rules

♦ Every student receives an immatriculationnumber at the first
day in TUM.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Optimization Activities: Collapsing Objects

Student
Matrikelnumber

ID:String

Student

Matrikelnumber:String

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

To Collapse or not to Collapse?

♦ Collapse a class into an attribute if the only operations defined
on the attributes are Set() and Get().

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Design Optimizations (continued)

Store derived attributes
w Example: Define new classes to store information locally (database

cache)

♦ Problem with derived attributes:
w Derived attributes must be updated when base values change.
w There are 3 ways to deal with the update problem:

t Explicit code: Implementor determines affected derived attributes
(push)

t Periodic computation: Recompute derived attribute occasionally (pull)

t Active value: An attribute can designate set of dependent values which
are automatically updated when active value is changed (notification,
data trigger)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Optimization Activities: Delaying Complex
Computations

Image

filename:String

width()
height()
paint()

Image

filename:String
width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String
width()
height()
paint()

image

1 0..1

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Documenting the Object Design: The Object Design
Document (ODD)

♦ Object design document
w Same as RAD +...
w … + additions to object, functional and dynamic models (from solution

domain)
w … + Navigational map for object model
w … + Javadoc documentation for all classes

♦ ODD Management issues
w Update the RAD models in the RAD?
w Should the ODD be a separate document?
w Who is the target audience for these documents (Customer, developer?)
w If time is short: Focus on the Navigational Map and Javadoc

documentation?

♦ Example of acceptable ODD:
w http://macbruegge1.informatik.tu-muenchen.de/james97/index.html

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Documenting Object Design: ODD Conventions

♦ Each subsystem in a system provides a service (see Chapter on
System Design)
w Describes the set of operations provided by the subsystem

♦ Specifying a service operation as
w Signature: Name of operation, fully typed parameter list and return

type

w Abstract: Describes the operation
w Pre: Precondition for calling the operation

w Post: Postcondition describing important state after the execution of
the operation

♦ Use JavaDoc for the specification of service operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

JavaDoc

♦ Add documentation comments to the source code.

♦ A doc comment consists of characters between /** and */
♦ When JavaDoc parses a doc comment, leading * characters on

each line are discarded. First, blanks and tabs preceding the
initial * characters are also discarded.

♦ Doc comments may include HTML tags

♦ Example of a doc comment:
/**
* This is a doc comment

*/

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

More on JavaDoc

♦ Doc comments are only recognized when placed immediately
before class, interface, constructor, method or field
declarations.

♦ When you embed HTML tags within a doc comment, you
should not use heading tags such as <h1> and <h2>, because
JavaDoc creates an entire structured document and these
structural tags interfere with the formatting of the generated
document.

♦ Class and Interface Doc Tags

♦ Constructor and Method Doc Tags

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Class and Interface Doc Tags

@author name-text
w Creates an “Author” entry.

@version version-text
w Creates a “Version” entry.

@see classname
w Creates a hyperlink “See Also classname”

@since since-text
w Adds a “Since” entry. Usually used to specify that a feature or

change exists since the release number of the software specified in
the “since-text”

@deprecated deprecated-text
w Adds a comment that this method can no longer be used.

Convention is to describe method that serves as replacement
w Example: @deprecated Replaced by setBounds(int, int, int, int).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Constructor and Method Doc Tags

♦ Can contain @see tag, @since tag, @deprecated as well as:

@param parameter-name description
Adds a parameter to the "Parameters" section. The description may

be continued on the next line.

@return description
Adds a "Returns" section, which contains the description of the

return value.

@exception fully-qualified-class-name description
Adds a "Throws" section, which contains the name of the exception

that may be thrown by the method. The exception is linked to its
class documentation.

@see classname
Adds a hyperlink "See Also" entry to the method.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Example of a Class Doc Comment

/**

 * A class representing a window on the screen.

 * For example:

 * <pre>

 * Window win = new Window(parent);

 * win.show();

 * </pre>

 *

 * @author Sami Shaio

 * @version %I%, %G%

 * @see java.awt.BaseWindow

 * @see java.awt.Button

 */

 class Window extends BaseWindow {

 ...

 }

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

Example of a Method Doc Comment

/**

 * Returns the character at the specified index. An index

 * ranges from <code>0</code> to <code>length() - 1</code>.

 *

 * @param index the index of the desired character.

 * @return the desired character.

 * @exception StringIndexOutOfRangeException

 * if the index is not in the range <code>0</code>

 * to <code>length()-1</code>.

 * @see java.lang.Character#charValue()

 */

 public char charAt(int index) {

 ...

 }

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 49

Example of a Field Doc Comment

♦ A field comment can contain only the @see, @since and
@deprecated tags

 /**

 * The X-coordinate of the window.

 *

 * @see window#1

 */

 int x = 1263732;

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 50

Example: Specifying a Service in Java

/** Office is a physical structure in a building. It is possible to create an
instance of a office; add an occupant; get the name and the number of
occupants */

public class Office {
/** Adds an occupant to the office */

* @param NAME name is a nonempty string */

public void AddOccupant(string name);

/** @Return Returns the name of the office. Requires, that Office has
been initialized with a name */

public string GetName();

....

}

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 51

Implementation of Application Domain Classes

♦ New objects are often needed during object design:
w Use of Design patterns lead to new classes
w The implementation of algorithms may necessitate objects to hold

values
w New low-level operations may be needed during the decomposition

of high-level operations

♦ Example: The EraseArea() operation offered by a drawing
program.
w Conceptually very simple
w Implementation

t Area represented by pixels

t Repair () cleans up objects partially covered by the erased area

t Redraw() draws objects uncovered by the erasure

t Draw() erases pixels in background color not covered by other objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 52

Application Domain vs Solution Domain Objects

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Incident
Report

Object Design
(Language of Solution Domain)

Text box Menu Scrollbar

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 53

Package it all up

♦ Pack up design into discrete physical units that can be edited,
compiled, linked, reused

♦ Construct physical modules
w Ideally use one package for each subsystem

w System decomposition might not be good for implementation.

♦ Two design principles for packaging
w Minimize coupling:

t Classes in client-supplier relationships are usually loosely coupled

t Large number of parameters in some methods mean strong coupling
(> 4-5)

t Avoid global data

w Maximize cohesiveness:
t Classes closely connected by associations => same package

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 54

Packaging Heuristics

♦ Each subsystem service is made available by one or more
interface objects within the package

♦ Start with one interface object for each subsystem service
w Try to limit the number of interface operations (7+-2)

♦ If the subsystem service has too many operations, reconsider
the number of interface objects

♦ If you have too many interface objects, reconsider the number
of subsystems

♦ Difference between interface objects and Java interfaces
w Interface object : Used during requirements analysis, system design

and object design. Denotes a service or API

w Java interface: Used during implementation in Java (A Java
interface may or may not implement an interface object)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 55

Summary

♦ Object design closes the gap between the requirements and the
machine.

♦ Object design is the process of adding details to the
requirements analysis and making implementation decisions

♦ Object design includes:
1. Service specification
2. Component selection

3. Object model restructuring
4. Object model optimization

♦ Object design is documented in the Object Design Document,
which can be generated using tools such as JavaDoc.

