(@)
-
=
B ¢
-
=
CDU)
5 S
=0
= o
53%
X
gs
25
o2
O
O S

Exercise 6.4

6.4 Consider alegacy, fax-based, problem-reporting system for
an aircraft manufacturer. Y ou are part of a reengineering
project replacing the core of the system by a computer-based
system, which includes a database and a notification system.
The client requires the fax to remain an entry point for
problem reports. Y ou propose an E-mail entry point.

Describe a subsystem decomposition, and possibly a design
pattern, which would allow both interfaces.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Possible solution for exercise 6.4

— —

Emai | Fr ont End FaxFr ont End

y Pr obl enReporting [,,’

St or ageSubsyst em 1«// Notificati onSubsystem

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Exercise 6.5

6.5 You are designing the access control policies for a\Web-
based retall store:

¢ Customersaccessthe storeviathe Web, browse product

Information, input their address and payment infor mation, and
pur chase products.

+ Supplierscan add new products, update product infor mation,
and recelve orders.

¢ Thestoreowner setstheretail prices, makestailored offersto
customer s based on their purchasing profiles, and provides
mar keting services.
Y ou have to deal with three actors. StoreAdministrator,
Supplier, and Customer. Design an access control policy for
all three actors. Customers can be created viathe Web,
whereas Suppliers are created by the StoreAdministrator.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Possible solution for exercise 6.5

Product Customerinfo Supplierinfo Order
Anonymous GetlInfo() Create()
Customer GetlInfo() Updatelnfo() Create()
GetPrice()
Supplier Create() Updatelnfo() Process()
Getlnfo()
Updatelnfo()
StoreAdministrator | UpdatePrice() Verifylnfo() Create() Examine()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Design

~ Object design isthe process of adding detailsto the
requirements analysis and making implementation decisions

~ The object designer must choose among different ways to
Implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

-~ Requirements Analysis. Use cases, functional and dynamic
model deliver operations for object model

-~ Object Design: We iterate on where to put these operationsin
the object model

- Object Design serves as the basis of implementation
 4-Tier Architecture

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Web Browser
(Ul Framework)

-

Bernd Bruegge & Allen Dutoit

Web Server

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

A2: Application Server |Al: Application Server
State| |Profil |

g = I |

| | %
N Pr ofil

Database Server

(Database Framewor K|)
HTTP
»

Reengineering Terminology

Reverse Engineering:

+ Discovery (or Recovery) of an object model from the code.
Forward Engineering:

+ Automatic generation of code from an object model

+ Requirements Engineering, Requirements Analysis, System Design, Object
Design, Implementation, Testing, Delivery

Discipline:
+ Always change the object model, then generate code (for sure do thiswhen
you change the interface of a public method/class.)

¢ Generate code under timepressure
— Patch the code!

Roundtrip Engineering
+ Forward Engineering + rever se engineering
+ |Inventory analysis: Determinethe Delta between OM and Code
+ Together-J and Rationale havetoolsfor rever se engineering
Reengineering (Project Management |ssue):
+ New functionality (customer dreams up new stuff)
+ New technology (technology enablers)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Object Design: Closing the Gap

‘ System :

‘Application obj ects: |

—— N ,

1

I
______ V.
‘ Sol ution objects 5 4

I
‘ Cust om obj ect s > \ |

-~

)‘ \ Object de::sign gap
|

‘O‘f-the-shelf corrponents> —————— *————-

I
< ~ System dgsign gap
I

Bernd Bruegge & Allen Dutoit

Machine

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Design | ssues

- Full definition of associations

- Full definition of classes (System Design: Service, Object
Design: API)

- Specify the contract for each component
- Choice of algorithms and data structures

- Detection of new application-domain independent classes
(example: Cache)

- Optimization

" Increase of inheritance
 Decision on control

- Packaging

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

10

Terminology of Activities

Object-Oriented Methodologies
¢ System Design
¢ Decomposition into subsystems
¢ Object Design
+ Implementation language chosen
¢ Data structuresand algorithms chosen

SA/SD (structured analysis/structured design) uses different
terminology:
¢ Preliminary Design
¢ Decomposition into subsystems
+ Datastructuresarechosen
¢ Detailed Design
+ Algorithmsare chosen
¢ Datastructuresarerefined
+ Implementation languageis chosen
¢ Typically in parallel with preliminary design, not separ ate stage

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Object Design Activities

1. Service specification
¢ Describes precisaly each classinterface

2. Component selection
+ |dentify off-the-shelf components and additional solution objects

3. Object model restructuring

+ Transformsthe object design model to improveits
under standability and extensibility

4. Object moddl optimization
+ How to address nonfunctional requirements

+ Transformsthe object design model to address performance criteria
such asresponsetime or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Service Specification

Requirements analysis

¢ |dentifies attributes and operations without specifying their types or
thelr parameters.

Object design
+ Add visbility information
+ Add type signatureinformation
+ Add contracts (Bertrand Meyer, Eiffel)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Add Visibility

UML definesthree levels of visihility:

Private:

+ A private attribute can be accessed only by the classin which it is
defined.

+ A private operation can beinvoked only by theclassin which it is
defined.

+ Private attributes and oper ations cannot be accessed by subclasses
or other classes.

Protected:

+ A protected attribute or operation can be accessed by the classin
which it isdefined and on any descendent of the class.

Public:

+ A public attribute or operation can be accessed by any class.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

| nformation Hiding Heuristics

Build firewalls around classes
+ Carefully define public interfacesfor classes aswell as subsystems
* Never, never, never make attributes public

- Apply “Need to know” principle. The fewer an operation
knows

+ thelesslikely it will be affected by any changes
+ the easier the class can be changed

- Trade-off
¢ Information hiding vs efficiency

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

15

Information Hiding Design Principles

~ Only the operations of a class are allowed to manipulate its
attributes

+ Access attributes only via operations.

Hide external objects at subsystem boundary

+ Define abstract classinterfaces which mediate between system and
external world aswell as between subsystems

Do not apply an operation to the result of another operation.
+ Writeanew operation that combinesthe two oper ations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

Add Type Signature I nformation

Hashtable
-numElements:int
+put()
+get()
+remove()
+containskey()
+si1ze()

Hasht abl e

- nunEl enent s: i nt

+put (key: Qbj ect, entry: Qbj ect)
+get (key: Qbj ect) : Obj ect

+r enove(key: Cbj ect)

+cont ai nsKey(key: (bj ect) : bool ean
+si ze():int

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Contracts

Contracts on a class enable caller and callee to share the same
assumptions about the class.

Contracts include three types of constraints:

¢ [nvariant. A predicatethat isalwaystruefor all instances of a class.
| nvariants are constraints associated with classes or interfaces.
| nvariants are used to specify consistency constraints among class
attributes.

* Precondition: A predicatethat must be true before an operation is
Invoked. Preconditions ar e associated with a specific oper ation.
Preconditions are used to specify constraintsthat a caller must meet
before calling an operation.

+ Postcondition: A predicatethat must betrue after an operation is
Invoked. Postconditions are associated with a specific operation.
Postconditions ar e used to specify constraintsthat the object must
ensur e after the invocation of the operation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

EXxpressing constraintsin UML

OCL (Object Constraint Language)

¢+ OCL allowsconstraintsto be formally specified on single model
elementsor groups of model elements

+ A constraint isexpressed asan OCL expression returning the value
trueor false. OCL isnot a procedural language (cannot constrain
control flow).

OCL expressions for Hashtghleape

¢ |nvariant:
¢ context Hashtable

ation put():

ontext isa class

. OCL expressio
operation

* Precondition: S O
¢ context Hashtable: :ut(key, entry) pre: lcontainsk ey(key)

¢ Post-condition:

¢ context Hashtable::put(key, entry) post: containsk ey(key) and
get(key) = entry

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Expressing Constraintsin UML

A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

4

-

<<precondition>>
IcontainsKey(key)

HashTabl e

-’

-

4

<<invariant>>
numElements >=0

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

nunkl enent s: i nt

Lget (key) : (bj ect
renove(key: (bj ect)

size():int

rput (key, entry: Qbj ect)

-
-

rcont ai nsKey(key: Obj ect)” beal ean

<<postcondition>>
get(key) == entry

)

- -] <<postcondition>>

Bernd Bruegge & Allen Dutoit

]

IcontainsKey(key)

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Object Design Areas

1. Service specification
¢ Describes precisdly each classinterface

2. Component selection
¢ |dentify off-the-shelf components and additional solution objects

3. Object model restructuring

+ Transformsthe object design model to improveits
under standability and extensibility

4. Object moddl optimization

+ Transformsthe object design model to address performance criteria
such asresponsetime or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Component Selection

Select existing off-the-shelf class libraries, frameworks or
components

-~ Adjust the class libraries, framework or components
+ Changethe API if you have the sour ce code.
¢ Usethe adapter or bridge pattern if you don’t have access

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

22

Reuse...

Look for existing classes in class libraries
+ JSAPI, JTAPI,

Select data structures appropriate to the algorithms
¢ Container classes
* Arrays, lists, queues, stacks, sets, trees, ...

Define new internal classes and operations only if necessary

¢ Complex operationsdefined in terms of lower-level operations
might need new classes and operations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

23

Object Design Areas

1. Service specification
¢ Describes precisely each classinterface
2. Component selection
+ |dentify off-the-shelf components and additional solution objects
+ Usethebridge pattern if the off-the-shelf component comes late
¢ Useaquick and dirty implementation first
3. Object model restructuring

+ Transformsthe object design model to improveits
under standability and extensibility

4. Object model optimization

+ Transformsthe object design model to address performance criteria
such asresponsetime or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Restructuring Activities

Realizing associations
Revisiting inheritance to increase reuse
Revising inheritance to remove implementation dependencies

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

25

Realizing Associations

Strategy for implementing associations:
¢+ Beasuniform aspossible
+ Individual decision for each association

Example of uniform implementation
¢ 1-to-1 association:

¢+ Rolenamesaretreated like attributesin the classes and trandateto
refer ences

¢ 1-to-many association:
¢ "Ordered many" : Trandlateto Vect or
¢ "Unordered many" : Trandateto Set
+ Qualified association:
¢+ TrandatetoHash table

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

26

Unidirectional 1-to-1 Association

Object design model before transformation

Zoom nActi on MapAr ea

Object design model after transformation

Zoom nActi on MapAr ea

-zoom n: Zoonl nActi on

+getZoon1nAction§) _
+set Zoond nAction(action)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Bidirectional 1-to-1 Association

Object design model before transformation

Zoom nActi on MapAr ea
1 1
Object design model after transformation
Zoom nActi on MapAr ea
-t arget Map: MapAr ea -zoom n: Zoonl nAct i on
+get Tar get I\/HpE) +get Zoom nAct i on?) _
+set Tar get Map(nap) +set Zoon nActi on(acti onj

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

28

1-to-Many Association

Object design model before transformation

Layer

Object design model after transformation

Layer

-layerElements:Set

+elements()
+addElement(le)
+removeElement(le)

Bernd Bruegge & Allen Dutoit

1

LayerElement

LayerElement

-containedIn:Layer

+getLayer()
+setLayer(l)

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

29

Qualification

Object design model before transformation

Scenario

simname

-1

Object design model after transformation

Scenario

-runs:Hashtable

+elements()

+addRun(simname,sr:SimulationRun)
+removeRun(simname,sr:SimulationRun)

Bernd Bruegge & Allen Dutoit

SimulationRun

SimulationRun

—-scenarios:Vector

+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

| ncrease | nheritance

Rearrange and adjust classes and operations to prepare for
Inheritance

- Abstract common behavior out of groups of classes

+ |f aset of operationsor attributesarerepeated in 2 classesthe
classes might be special instances of a more general class.

Be prepared to change a subsystem (collection of classes) into a
superclass in an inheritance hierarchy.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Building a super class from several classesl/11/01

Prepare for inheritance. All operations must have the same
signature but often the signatures do not match:

+ Some oper ations have fewer argumentsthan others: Use
overloading (Possible in Java)

* Similar attributesin the classes have different names. Rename
attribute and change all the oper ations.

¢ Operationsdefined in one class but noin theother: Usevirtual
functions and class function overriding.

- Abstract out the common behavior (set of operations with same
signature) and create a superclass out of it.

- Superclasses are desirable. They
* increase modularity, extensibility and reusability
+ improve configuration management

~ Turn the superclass into an abstract interface if possible
¢ Use Bridge pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Object Design Areas

1. Service specification
¢ Describes precisdly each classinterface

2. Component selection
+ |dentify off-the-shelf components and additional solution objects

3. Object model restructuring

+ Transformsthe object design model to improveits
under standability and extensibility

4. Object model optimization

+ Transformsthe object design model to address performance criteria
such asresponsetime or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Design Optimizations

Design optimizations are an important part of the object design
phase:

+ Therequirements analysis model is semantically correct but often
too inefficient if directly implemented.

~ Optimization activities during object design:
1. Add redundant associations to minimize access cost
2. Rearrange computationsfor greater efficiency
3. Store derived attributes to save computation time
~ As an object designer you must strike a balance between
efficiency and clarity.
+ Optimizations will make your models mor e obscure

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Design Optimization Activities

1. Add redundant associations:
+ What arethe most frequent operations? (Sensor data lookup?)

+ How often isthe operation called? (30 times a month, every 50
milliseconds)

2. Rearrange execution order

+ Eliminate dead pathsasearly as possible (Use knowledge of
distributions, frequency of path traversals)

+ Narrow search as soon as possible
* Check if execution order of loop should bereversed

3. Turn classes into attributes

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

35

| mplement Application domain classes

 To collapse or not collapse: Attribute or association?

~ Object design choices:
+ Implement entity as embedded attribute

* |mplement entity as separ ate class with associationsto other
classes

- Associations are more flexible than attributes but often
Introduce unnecessary indirection.

- Abbott's textual analysisrules

- Every student receives an immatriculationnumber at the first
day in TUM.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Optimization Activities: Collapsing Objects

Student

Bernd Bruegge & Allen Dutoit

Matrikelnumber
ID:String
Student
Matrikelnumber:String

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

37

To Collapse or not to Collapse?

- Collapse aclass into an attribute if the only operations defined
on the attributes are Set() and Get().

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

38

Design Optimizations (continued)

Store derived attributes

+ Example: Define new classesto store information locally (database
cache)

Problem with derived attributes:
¢ Derived attributes must be updated when base values change.

¢ Thereare 3 waysto deal with the update problem:

¢ Explicit code: Implementor deter mines affected derived attributes
(push)

¢ Periodic computation: Recompute derived attribute occasionally (pull)

¢ Activevalue: An attribute can designate set of dependent values which

are automatically updated when active value is changed (notification,
data trigger)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Image

filename:String
data:byte[]

width(Q
height()
paint()

Image

filename:String

width(Q)
height()
paint()

ZF

Optimization Activities. Delaying Complex
Computations

ImageProxy

image

filename:String

width(Q
height()
paint()

Bernd Bruegge & Allen Dutoit

Real Image

data:byte[]

width()
height()
paint()

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Documenting the Object Design: The Object Design
Document (ODD)

~ Object design document
+ SameasRAD +...

¢ ... + additionsto object, functional and dynamic models (from solution
domain)

+ ... + Navigational map for object model
¢ ... + Javadoc documentation for all classes

- ODD Management issues

¢ Updatethe RAD modelsin the RAD?

+ Should the ODD be a separate document?

+ Who isthetarget audience for these documents (Customer, developer ?)

+ |f timeisshort: Focuson the Navigational Map and Javadoc
documentation?

Example of acceptable ODD:
+ http://macbrueggel.infor matik.tu-muenchen.de/james97/index.html

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Documenting Object Design: ODD Conventions

Each subsystem in a system provides a service (see Chapter on
System Design)
* Describesthe set of operations provided by the subsystem
~ Specifying a service operation as
+ Signature: Name of operation, fully typed parameter list and return
type
* Abstract: Describesthe operation
+ Pre: Precondition for calling the operation

¢+ Post: Postcondition describing important state after the execution of
the operation

Use JavaDoc for the specification of service operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

JavaDoc

- Add documentation comments to the source code.
- A doc comment consists of characters between /** and */

- When JavaDoc parses a doc comment, leading * characters on
each line are discarded. First, blanks and tabs preceding the
Initial * characters are also discarded.

- Doc comments may include HTML tags
- Example of adoc comment:

/**

* Thisisa doc comment
*/

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

More on JavaDoc

- Doc comments are only recognized when placed immediately
before class, interface, constructor, method or field
declarations.

~ When you embed HTML tags within a doc comment, you
should not use heading tags such as <h1> and <h2>, because
JavaDoc creates an entire structured document and these
structural tags interfere with the formatting of the generated

document.
- Class and Interface Doc Tags
- Constructor and Method Doc Tags

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Class and I nterface Doc Tags

@author name-text
¢ Createsan “Author” entry.

@version version-text
¢ Createsa“Version” entry.

@see classname
+ Createsa hyperlink “ See Also classhame’

@since since-text

+ Addsa“Since’ entry. Usually used to specify that a feature or
change exists since the release number of the softwar e specified in

the “ since-text”
@deprecated deprecated-text

¢+ Addsacomment that thismethod can no longer be used.
Convention isto describe method that serves asreplacement

+ Example: @deprecated Replaced by setBounds(int, int, int, int).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Constructor and Method Doc Tags

Can contain @see tag, @since tag, @deprecated as well as:

@param parameter-name description

Adds a parameter tothe" Parameters' section. The description may
be continued on the next line.

@return description

Addsa" Returns' section, which containsthe description of the
return value.

@exception fully-qualified-class-name description

Addsa" Throws" section, which containsthe name of the exception
that may bethrown by the method. The exception islinked to its
class documentation.

@see classname
Addsa hyperlink " See Also" entry to the method.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Example of a Class Doc Comment

/**

* A class representing a window on the screen.
* For example:

* <pre>

* Window win = new Window(parent);
* win.show();

* </pre>

*

* @author Sami Shaio

* @version %l %, %G%

* @see java.awt.BaseWindow

* @see java.awt.Button

*/

class Window extends BaseWindow {

Bernd Bruegge & A}len Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

47

Example of a Method Doc Comment

/**

* Returns the character at the specified index. An index

* ranges from <code>0</code> to <code>length() - 1</code>.
* @param index theindex of the desired character.

* @return the desired character.

* @exception StringlndexOutOf RangeException

* If the iIndex is not in the range <code>0</code>
* to <code>length()-1</code>.

* @see javalang.Character#charVaue()

*/

public char charAt(int index) {

}

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Example of a Field Doc Comment

A field comment can contain only the @see, @since and
@deprecated tags

/**

* The X-coordinate of the window.

*

* @see window#l
*/
Int x = 1263732;

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

49

Example: Specifying a Service in Java

[** Officeisaphysical structurein a building. It ispossible to create an
Instance of a office; add an occupant; get the name and the number of

occupants */
public class Office {

[** Adds an occupant to the office */
* @param NAME nameisanonempty string */
public void AddOccupant(string name);

[** @Return Returnsthe name of the office. Requires, that Office has
been initialized with a name*/

public string GetName();

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 50

| mplementation of Application Domain Classes

New objects are often needed during object design:
+ Use of Design patternslead to new classes

+ Theimplementation of algorithms may necessitate objectsto hold
values

+ New low-level operations may be needed during the decomposition
of high-level operations

Example: The EraseArea() operation offered by a drawing
program.
+ Conceptually very simple
* |mplementation
¢ Area represented by pixels

¢ Repair () cleansup objectspartially covered by the erased area
+ Redraw() draws objects uncovered by the erasure

¢ Draw() erases pixelsin background color not covered by other objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 51

Application Domain vs Solution Domain Objects

Requirements Analysis
(Language of Application
Domain)

| ncident
Report

Bernd Bruegge & Allen Dutoit

Object Design

(L anguage of Solution Domain)

| ncident
Report

<

Text box

Menu

Scrollbar

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

52

Packageit all up

Pack up design into discrete physical units that can be edited,
compiled, linked, reused

Construct physical modules

+ |deally use one package for each subsystem

+ System decomposition might not be good for implementation.
Two design principles for packaging

+ Minimize coupling:

¢ Classesin client-supplier relationships are usually loosely coupled
¢ Largenumber of parametersin some methods mean strong coupling
(> 4-5)
+ Avoid global data
+ Maximize cohesiveness.
¢ Classesclosely connected by associations => same package

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 53

Packaging Heuristics

Each subsystem service is made available by one or more
Interface objects within the package
- Start with one interface object for each subsystem service
¢ Try tolimit the number of interface operations (7+-2)

If the subsystem service has too many operations, reconsider
the number of interface objects

If you have too many interface objects, reconsider the number
of subsystems
Difference between interface objects and Java interfaces

* Interface object : Used during requirements analysis, system design
and object design. Denotes a service or API

¢ Javainterface: Used during implementation in Java (A Java
Interface may or may not implement an interface object)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 54

Summary

 Object design closes the gap between the requirements and the
machine.

- Object design isthe process of adding detailsto the
requirements analysis and making implementation decisions
~ Object design includes:
1. Service specification
2. Component selection
3. Object modd restructuring
4. Object model optimization

- Object design is documented in the Object Design Document,
which can be generated using tools such as JavaDoc.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 55

