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Object Design
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Exercise 6.4

6.4 Consider a legacy, fax-based, problem-reporting system for
an aircraft manufacturer. You are part of a reengineering
project replacing the core of the system by a computer-based
system, which includes a database and a notification system.
The client requires the fax to remain an entry point for
problem reports. You propose an E-mail entry point.

Describe a subsystem decomposition, and possibly a design
pattern, which would allow both interfaces.
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Possible solution for exercise 6.4

 

EmailFrontEnd FaxFrontEnd 

ProblemReporting

StorageSubsystem NotificationSubsystem 
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Exercise 6.5

6.5 You are designing the access control policies for a Web-
based retail store:
w Customers access the store via the Web, browse product

information, input their address and payment information, and
purchase products.

w Suppliers can add new products, update product information,
and receive orders.

w The store owner sets the retail prices, makes tailored offers to
customers based on their purchasing profiles, and provides
marketing services.

You have to deal with three actors: StoreAdministrator,
Supplier, and Customer. Design an access control policy for
all three actors. Customers can be created via the Web,
whereas Suppliers are created by the StoreAdministrator.
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Possible solution for exercise 6.5

 Product CustomerInfo SupplierInfo Order 
Anonymous GetInfo() Create()   
Customer GetInfo() 

GetPrice() 
UpdateInfo()  Create() 

Supplier Create() 
GetInfo() 
UpdateInfo() 

 UpdateInfo() Process() 

StoreAdministrator UpdatePrice() VerifyInfo() Create() Examine() 
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Object Design

♦ Object design is the process of adding details to the
requirements analysis and making implementation decisions

♦ The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

♦ Requirements Analysis: Use cases, functional and dynamic
model deliver operations for object model

♦ Object Design: We iterate on  where to put these operations in
the object model

♦ Object Design serves as the basis of implementation

♦ 4-Tier Architecture
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Web Browser
(UI Framework)

Web Server

HTTP

State Profil

A1: Application Server

State
State

State
State

State

A2: Application Server

Profil
Profil

Profil

Profil

Database Server
(Database Framework)
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Reengineering Terminology

♦ Reverse Engineering:
w Discovery (or Recovery) of an object model from the code.

♦ Forward Engineering:
w Automatic generation of code from an object model
w Requirements Engineering, Requirements Analysis, System Design, Object

Design, Implementation, Testing, Delivery

♦ Discipline:
w Always change the object model, then generate code (for sure do this when

you change the interface of a public method/class.)
t Generate code under time pressure

– Patch the code!

♦ Roundtrip Engineering
w Forward Engineering + reverse engineering
w Inventory analysis: Determine the Delta between OM and Code
w Together-J and Rationale have tools for reverse engineering

♦ Reengineering (Project Management Issue):
w New functionality (customer dreams up new stuff)
w New technology  (technology enablers)
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Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requir ements gap
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 Object Design Issues

♦ Full definition of  associations

♦ Full definition of  classes (System Design: Service, Object
Design: API)

♦ Specify the contract for each component

♦ Choice of algorithms and data structures

♦ Detection of new application-domain independent classes
(example: Cache)

♦ Optimization

♦ Increase of inheritance

♦ Decision on control

♦ Packaging
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Terminology of Activities

♦ Object-Oriented Methodologies
w System Design

t Decomposition into subsystems

w Object Design
t Implementation language chosen

t Data structures and algorithms chosen

♦ SA/SD (structured analysis/structured design) uses different
terminology:
w Preliminary Design

t Decomposition into subsystems

t Data structures are chosen

w Detailed Design
t Algorithms are chosen

t Data structures are refined

t Implementation language is chosen

t Typically in parallel with preliminary design, not separate stage
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Object Design Activities

1. Service specification
w  Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w How to address nonfunctional requirements
w Transforms the object design model to address performance criteria

such as response time or memory utilization.
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Service Specification

♦  Requirements analysis
w Identifies attributes and operations without specifying their types or

their parameters.

♦ Object design
w Add visibility information
w Add type signature information

w Add contracts (Bertrand Meyer, Eiffel)
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Add Visibility

UML defines three levels of visibility:

♦ Private:
w  A private attribute can be accessed only by the class in which it is

defined.

w A private operation can be invoked only by the class in which it is
defined.

w Private attributes and operations cannot be accessed by subclasses
or other classes.

♦ Protected:
w A protected attribute or operation can be accessed by the class in

which it is defined and on any descendent of the class.

♦ Public:
w A public attribute or operation can be accessed by any class.
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Information Hiding Heuristics

♦ Build firewalls around classes
w Carefully define public interfaces for classes as well as subsystems
w Never, never, never make attributes public

♦ Apply “Need to know” principle. The fewer an operation
knows
w the less likely it will be affected by any changes

w the easier the class can be changed

♦ Trade-off
w Information hiding vs efficiency
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Information Hiding Design Principles

♦ Only the operations of a class are allowed to manipulate its
attributes
w Access attributes only via operations.

♦ Hide external objects at subsystem boundary
w Define abstract class interfaces which mediate between system and

external world as well as between subsystems

♦ Do not apply an operation to the result of another operation.
w  Write a new operation that combines the two operations.
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Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int
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Contracts

♦ Contracts on a class enable caller and callee to share the same
assumptions about the class.

♦ Contracts include three types of constraints:
w Invariant: A predicate that is always true for all instances of a class.

Invariants are constraints associated with classes or interfaces.
Invariants are used to specify consistency constraints among class
attributes.
w Precondition: A predicate that must be true before an operation is

invoked. Preconditions are associated with a specific operation.
Preconditions are used to specify constraints that a caller must meet
before calling an operation.
w Postcondition: A predicate that must be true after an operation is

invoked. Postconditions are associated with a specific operation.
Postconditions are used to specify constraints that the object must
ensure after the invocation of the operation.
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Expressing constraints in UML

♦ OCL (Object Constraint Language)
w OCL allows constraints to be formally specified on single model

elements or groups of model elements

w A constraint is expressed as an OCL expression returning the value
true or false.  OCL is not a procedural language (cannot constrain
control flow).

♦ OCL expressions for Hashtable operation put():
w Invariant:

t context Hashtable inv: numElements >= 0

w Precondition:
t context Hashtable::put(key, entry) pre:!containsKey(key)

OCL expressionContext is a class 
operation

w Post-condition:
t context Hashtable::put(key, entry) post: containsKey(key) and

get(key) = entry
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Expressing Constraints in UML

♦ A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean

<<invariant>>
numElements >= 0

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

size():int

numElements:int
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Object Design Areas

1. Service specification
w  Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w Transforms the object design model to address performance criteria

such as response time or memory utilization.
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Component Selection

♦ Select existing off-the-shelf class libraries, frameworks or
components

♦ Adjust the class libraries, framework or components
w Change the API if you have the source code.

w Use the adapter or bridge pattern if you don’t have access
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Reuse...

♦ Look for existing classes in class libraries
w JSAPI, JTAPI, ....

♦ Select data structures appropriate to the algorithms
w Container classes

w Arrays, lists, queues, stacks, sets, trees, ...

♦ Define new internal classes and operations only if necessary
w Complex operations defined in terms of lower-level operations

might need new classes and operations



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      24

Object Design Areas

1. Service specification
w  Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

w Use the bridge pattern if the off-the-shelf component comes late
t Use a quick and dirty implementation first

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w Transforms the object design model to address performance criteria

such as response time or memory utilization.
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Restructuring Activities

♦ Realizing associations

♦ Revisiting inheritance to increase reuse

♦ Revising inheritance to remove implementation dependencies
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 Realizing Associations

♦ Strategy for implementing associations:
w Be as uniform as possible
w Individual decision for each association

♦ Example of uniform implementation
w 1-to-1 association:

t  Role names are treated like attributes in the classes  and translate to
references

w 1-to-many association:
t "Ordered many" : Translate to Vector

t "Unordered many" :  Translate to Set

w Qualified association:
t  Translate to Hash table
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Unidirectional 1-to-1 Association

MapAreaZoomInAction

Object design model before transformation

ZoomInAction

Object design model after transformation

MapArea

-zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)
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Bidirectional 1-to-1 Association

MapAreaZoomInAction
11

Object design model before transformation

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

Object design model after transformation



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      29

1-to-Many Association

Layer LayerElement
1 *

Object design model before transformation

LayerElement

-containedIn:Layer
+getLayer()
+setLayer(l)

Layer

-layerElements:Set
+elements()
+addElement(le)
+removeElement(le)

Object design model after transformation
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Qualification

SimulationRunsimname 0..1*
Object design model before transformation

Scenario

Scenario

-runs:Hashtable
+elements()
+addRun(simname,sr:SimulationRun)
+removeRun(simname,sr:SimulationRun)

-scenarios:Vector
+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

Object design model after transformation

SimulationRun
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Increase Inheritance

♦ Rearrange and adjust classes and operations to prepare for
inheritance

♦ Abstract common behavior out of groups of classes
w If a set of operations or attributes are repeated in 2 classes the

classes might be special instances of a more general class.

♦ Be prepared to change a subsystem (collection of classes) into a
superclass in an inheritance hierarchy.
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Building a super class from several classes1/11/01

♦ Prepare for inheritance. All operations must have the same
signature but often the signatures do not match:
w Some operations have fewer arguments than others: Use

overloading (Possible in Java)
w Similar attributes in the classes have different names: Rename

attribute and change all the operations.
w Operations defined in one class but no in the other: Use virtual

functions and class function overriding.

♦ Abstract out the common behavior (set of operations with same
signature) and create a superclass out of it.

♦ Superclasses are desirable. They
w increase modularity, extensibility and reusability
w improve configuration management

♦ Turn the superclass into an abstract interface if possible
w Use Bridge pattern
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Object Design Areas

1. Service specification
w  Describes precisely each class interface

2. Component selection
w Identify off-the-shelf components and additional solution objects

3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

4. Object model optimization
w Transforms the object design model to address performance criteria

such as response time or memory utilization.
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Design Optimizations

♦ Design optimizations are an important part of the object design
phase:
w The requirements analysis model is semantically correct but often

too inefficient if directly implemented.

♦ Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency
3. Store derived attributes to save computation time

♦ As an object designer you must strike a balance between
efficiency and clarity.
w Optimizations will make your models more obscure
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Design Optimization Activities

1. Add redundant associations:
w What are the most frequent operations? ( Sensor data lookup?)
w How often is the operation called? (30 times a month, every 50

milliseconds)

2. Rearrange execution order
w Eliminate dead paths as early as possible (Use knowledge of

distributions, frequency of path traversals)
w Narrow search as soon as possible

w Check if execution order of loop should be reversed

3. Turn classes into attributes
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Implement Application domain classes

♦ To collapse or not collapse: Attribute or association?

♦ Object design choices:
w Implement entity as embedded attribute

w Implement entity as separate class with associations to other
classes

♦ Associations are more flexible than attributes but often
introduce unnecessary indirection.

♦ Abbott's textual analysis rules

♦ Every student receives an immatriculationnumber at the first
day in TUM.
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Optimization Activities: Collapsing Objects

Student
Matrikelnumber

ID:String

Student

Matrikelnumber:String
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To Collapse or not to Collapse?

♦ Collapse a class into an attribute if the only operations defined
on the attributes  are Set() and Get().
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Design Optimizations (continued)

Store derived attributes
w Example: Define new classes to store information locally (database

cache)

♦ Problem with derived attributes:
w Derived attributes must be updated when base values change.
w There are 3  ways to deal with the update problem:

t Explicit code: Implementor determines affected derived attributes
(push)

t Periodic computation: Recompute derived attribute occasionally (pull)

t Active value: An attribute can designate set of dependent values which
are automatically updated when active value is changed (notification,
data trigger)



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      40

Optimization Activities: Delaying Complex
Computations

Image

filename:String

width()
height()
paint()

Image

filename:String
width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String
width()
height()
paint()

image

1 0..1
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Documenting the Object Design: The Object Design
Document (ODD)

♦ Object design document
w Same as RAD +...
w … + additions to object, functional and dynamic models (from solution

domain)
w … + Navigational map for object model
w … + Javadoc documentation for all classes

♦ ODD Management issues
w Update the RAD models in the RAD?
w Should the ODD be a separate document?
w Who is the target audience for these documents (Customer, developer?)
w If time is short:  Focus on the Navigational Map and Javadoc

documentation?

♦ Example of acceptable ODD:
w http://macbruegge1.informatik.tu-muenchen.de/james97/index.html
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Documenting Object Design: ODD Conventions

♦ Each subsystem in a system provides a service (see Chapter on
System Design)
w Describes the set of operations provided by the subsystem

♦ Specifying a service operation  as
w Signature: Name of operation, fully typed parameter list and return

type

w Abstract: Describes the operation
w Pre: Precondition for calling the operation

w Post: Postcondition describing important state after the execution of
the operation

♦ Use JavaDoc for the specification of service operations.
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JavaDoc

♦ Add documentation comments to the source code.

♦ A doc comment consists of characters between /**   and */
♦ When JavaDoc parses a doc comment, leading * characters on

each line are discarded. First, blanks and tabs preceding the
initial * characters are also discarded.

♦ Doc comments may include HTML tags

♦ Example of a doc comment:
/**
* This is a <b> doc </b> comment

*/
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More on JavaDoc

♦ Doc comments are only recognized when placed immediately
before class, interface, constructor, method or field
declarations.

♦ When you embed HTML tags within a doc comment, you
should not use heading tags such as <h1> and <h2>, because
JavaDoc creates an entire structured document and these
structural tags interfere with the formatting of the generated
document.

♦ Class and Interface Doc Tags

♦ Constructor and Method Doc Tags
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Class and Interface Doc Tags

@author name-text
w Creates an “Author” entry.

@version version-text
w Creates a “Version” entry.

@see classname
w Creates a hyperlink “See Also classname”

@since since-text
w Adds a “Since” entry. Usually  used to specify that a feature or

change exists since the release number of the software specified in
the “since-text”

@deprecated deprecated-text
w Adds a comment that this method can no longer be used.

Convention is to describe method that serves as replacement
w Example: @deprecated  Replaced by setBounds(int, int, int, int).
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Constructor and Method Doc Tags

♦ Can contain @see tag, @since tag, @deprecated as well as:

@param parameter-name description
Adds a parameter to the "Parameters" section. The description may

be continued on the next line.

@return description
Adds a "Returns" section, which contains the description of the

return value.

@exception fully-qualified-class-name description
Adds a "Throws" section, which contains the name of the exception

that may be thrown by the method. The exception is linked to its
class documentation.

@see classname
Adds a hyperlink "See Also" entry to the method.
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Example of a Class Doc Comment

/**

               * A class representing a window on the screen.

               * For example:

               * <pre>

               *    Window win = new Window(parent);

               *    win.show();

               * </pre>

               *

               * @author  Sami Shaio

               * @version %I%, %G%

               * @see     java.awt.BaseWindow

               * @see     java.awt.Button

               */

              class Window extends BaseWindow {

                 ...

              }
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Example of a Method Doc Comment

/**

                   * Returns the character at the specified index. An index

                   * ranges from <code>0</code> to <code>length() - 1</code>.

                   *

                   * @param     index  the index of the desired character.

                   * @return    the desired character.

                   * @exception StringIndexOutOfRangeException

                   *              if the index is not in the range <code>0</code>

                   *              to <code>length()-1</code>.

                   * @see       java.lang.Character#charValue()

                   */

                  public char charAt(int index) {

                     ...

                  }
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Example of a Field Doc Comment

♦ A field comment can contain only the @see, @since and
@deprecated tags

                  /**

                   * The X-coordinate of the window.

                   *

                   * @see window#1

                   */

                  int x = 1263732;
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Example: Specifying a Service in Java

/** Office is a physical structure in a building. It is possible to create an
instance of a office; add an occupant; get the name and the number of
occupants */

public class Office {
/** Adds an occupant to the office */

* @param  NAME  name is a nonempty string */

public void AddOccupant(string name);

/** @Return Returns the name of the office. Requires, that Office has
been initialized with a name */

public string GetName();

....

}
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Implementation of Application Domain Classes

♦ New objects are often needed during object design:
w Use of Design patterns lead to new classes
w The implementation of algorithms may necessitate objects to hold

values
w New low-level operations may be needed during the decomposition

of high-level operations

♦ Example: The EraseArea() operation offered by a drawing
program.
w Conceptually very simple
w Implementation

t Area  represented by pixels

t Repair ()  cleans up objects partially covered by the erased area

t Redraw() draws objects uncovered by the erasure

t Draw() erases pixels in background color not covered by other objects
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Application Domain vs Solution Domain Objects

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Incident
Report

Object Design
(Language of Solution Domain)

Text box Menu Scrollbar
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Package it all up

♦ Pack up design into discrete physical units that can be edited,
compiled, linked, reused

♦ Construct physical modules
w Ideally use one package for each subsystem

w System decomposition might not be good for implementation.

♦ Two design principles for packaging
w Minimize coupling:

t Classes in client-supplier relationships are usually loosely coupled

t Large number of parameters in some methods mean strong coupling
(> 4-5)

t Avoid global data

w Maximize cohesiveness:
t Classes closely connected by associations => same package
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Packaging Heuristics

♦ Each  subsystem service is made available by one or more
interface objects within the package

♦ Start with one interface object for each subsystem service
w Try to limit the number of interface operations (7+-2)

♦ If the subsystem service has too many operations, reconsider
the number of interface objects

♦ If you have too many interface objects, reconsider the number
of subsystems

♦ Difference between interface objects and Java interfaces
w Interface object : Used during requirements analysis, system design

and object design. Denotes a service or API

w Java interface: Used during implementation in Java (A Java
interface may or may not implement an interface object)
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Summary

♦ Object design closes the gap between the requirements and the
machine.

♦ Object design is the process of adding details to the
requirements analysis and making implementation decisions

♦ Object design includes:
1. Service specification
2. Component selection

3. Object model restructuring
4. Object model optimization

♦ Object design is documented in the Object Design Document,
which can be generated using tools such as JavaDoc.


