
C
on

qu
er

in
g

C
om

pl
ex

 a
nd

 C
ha

ng
in

g
Sy

st
em

s
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng Chapter 4,
Requirements
Elicitation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Preliminaries

♦ Today:
w UML tutorial (continued)

w Requirements Elicitation lecture

♦ Tomorrow: Communication tutorial
w Lotus Notes Discussion
w Meeting management

♦ Next week
w Analysis lecture by Prof. Bruegge
w REQ/QOC tutorial by Allen Dutoit

♦ Hauptseminar Requirements Engineering, still available slots
w mailto:dutoit@in.tum.de

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Preliminaries (2)

♦ Office Hours for Helma Schneider (new!)
w Tuesdays 11:00-12:00
w Fridays 11:00-12:30

♦ Account forms

♦ Magnetic cards for the lab

♦ Lotus Notes accounts

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Defining the System Boundary:
What do you see?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Failure in London Underground:

Usability Failure

The driver had taped the button that started the train, relying
on the system that prevented the train from moving when the
doors were open.

The driver left his train to close a door which was stuck.

When the door finally shut, the train left...

… without the driver!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Lecture Outline

… some illustrative examples

♦ What is Requirements Elicitation?

♦ What are Requirements?

… more illustrative examples

♦ Scenarios

♦ User Tasks

♦ Use Cases

♦ Summary

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

Software Lifecycle Activities

Application
Domain
Objects

Subsystems

class...
class...
class...

Solution
Domain
Objects

Source
Code

Test
Cases

?

System
Design

Object
Design

Implemen-
tation

Testing

class....?

Requirements
Elicitation

Use Case
Model

Analysis

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

System Identification

♦ Development of a system is not simply done by taking a
snapshot of a scene (domain)

♦ Definition of the system boundary
t What is inside, what is outside?

♦ How can we identify the purpose of a system?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Requirements specification

A requirements specification includes 3 descriptions:

♦ Requirements: What do users do?

♦ Specification: What does the system do?

♦ Interactions: How do users use the
system to accomplish their work?

Requirements Elicitation:

Analysis:

System specification
(natural language)

Requirements analysis
model (UML)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Requirements Process

Requirements
Elicitation

analysis model
:Model

system
specification

:Model

Analysis

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Requirements Elicitation: Activities

♦ Identify actors

♦ Identify scenarios

♦ Identify use cases

♦ Identify relationships among use cases

♦ Refine use cases

♦ Identify nonfunctional requirements

♦ Identify participating objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Requirements Elicitation: Challenges

♦ Challenging activity

♦ Requires collaboration of people with different backgrounds
w User with application domain knowledge

w Developer with implementation domain knowledge

♦ Bridging the gap between user and developer:
w Scenarios: Example of the use of the system as a sequence of

interactions between the user and the system
w Use cases: Abstraction that describes a class of scenarios

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Types of Requirements
♦ Functional requirements: Interactions between the system

and its environment independent from implementation

♦ Nonfunctional requirements: User visible aspects of the
system not directly related to functional behavior.

♦ Constraints (“Pseudo requirements”): Imposed by the client or
the environment in which the system will operate

The watch system must display the time based on its location

The response time must be less than 1 second
The accuracy must be within a second
The watch must be available 24 hours a day except from 2:00am-

2:01am and 3:00am-3:01am

The response time must be less than 1 second
The accuracy must be within a second
The watch must be available 24 hours a day except from 2:00am-

2:01am and 3:00am-3:01am

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

What is usually not in the Requirements?

♦ System structure, implementation technology

♦ Development methodology

♦ Development environment

♦ Implementation language

♦ Reusability

It is desirable that none of these above are constrained by the
client. Fight for it!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Requirements Validation

♦ Critical step in the development process,
w Usually after requirements engineering or requirements analysis.

Also at delivery

♦ Requirements validation criteria:
w Correctness:

t The requirements represent the client’s view.
w Completeness:

t All possible scenarios through the system are described,
including exceptional behavior by the user or the system

w Consistency:
t There are functional or nonfunctional requirements that

contradict each other
w Clarity:

t There are no ambiguities in teh requirements.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

Requirements Validation (continued)

♦ Realism:
w Requirements can be implemented and delivered

♦ Traceability:
w Each system function can be traced to a corresponding set of

functional requirements

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Types of Requirements Elicitation

♦ Greenfield Engineering
w Development starts from scratch, no prior system exists, the

requirements are extracted from the end users and the client
w Triggered by user needs

♦ Re-engineering
w Re-design and/or re-implementation of an existing system using

newer technology

w Triggered by technology enabler

♦ Interface Engineering
w Provide the services of an existing system in a new environment

w Triggered by technology enabler or new market needs

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

What is This?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Possible Object Model: Eskimo

Eskimo
Size

Dress()
Smile()
Sleep()

Shoe
Size
Color
Type

Wear()

Cave
lighting
entrance
enter()
leave()

livesIn

*
Coat
Size
Color
Type

Wear()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Alternative: Head

Head
Hair

Dress()
Smile()
Sleep()

Face
Nose
smile()
close_ey
e()

Mouth
Teeth
Size
open()
speak()

Ear
Size
listen()

*

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

The Artist’s View

Picture of
 Sculpture

Picture

Picture of
 Eskimo

View 1 View 2

MouthEyes Nose JacketHands Legs

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Lecture outline

♦ System Boundary

♦ What is a Requirements Specification?

♦ What is Requirements Elicitation?

♦ Types of Requirements

♦ More illustrative examples

♦ Scenarios
♦ User Tasks

♦ Use Cases

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

System identification

♦ Two important problems during requirements elicitation and
analysis:
w Definition of the system purpose
w Identification of objects

w Depending on the purpose of the system, different objects might be
found
t What object is inside, what object is outside?

♦ How can we identify the purpose of a system?
w Scenarios: Examples of system use

w Use cases: Abstractions of scenarios

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Why Scenarios and Use Cases?
♦ Utterly comprehensible by the user
w Use cases model a system from the users’ point of view (functional

requirements)
t Define every possible event flow through the system

t Description of interaction between objects

♦ Great tools to manage a project. Use cases can form basis for
whole development process
w User manual
w System design and object design

w Implementation
w Test specification

w Client acceptance test

♦ An excellent basis for incremental & iterative development

♦ Use cases have also been proposed for business process
reengineering (Ivar Jacobson)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

How do we find scenarios?

♦ Don’t expect the client to be verbal if the system does not exist
(greenfield engineering)

♦ Don’t wait for information even if the system exists

♦ Engage in a dialectic approach (evolutionary, incremental)
w You help the client to formulate the requirements

w The client helps you to understand the requirements
w The requirements evolve while the scenarios are being developed

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Example: Accident Management System

♦ What needs to be done to report a “Cat in a Tree” incident?

♦ What do you need to do if a person reports “Warehouse on
Fire?”

♦ Who is involved in reporting an incident?

♦ What does the system do if no police cars are available? If the
police car has an accident on the way to the “cat in a tree”
incident?

♦ What do you need to do if the “Cat in the Tree” turns into a
“Grandma has fallen from the Ladder”?

♦ Can the system cope with a simultaneous incident report
“Warehouse on Fire?”

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Scenario Example: Warehouse on Fire

♦ Bob, driving down main street in his patrol car notices smoke
coming out of a warehouse. His partner, Alice, reports the
emergency from her car.

♦ Alice enters the address of the building, a brief description of
its location (i.e., north west corner), and an emergency level. In
addition to a fire unit, she requests several paramedic units on
the scene given that area appear to be relatively busy. She
confirms her input and waits for an acknowledgment.

♦ John, the Dispatcher, is alerted to the emergency by a beep of
his workstation. He reviews the information submitted by Alice
and acknowledges the report. He allocates a fire unit and two
paramedic units to the Incident site and sends their estimated
arrival time (ETA) to Alice.

♦ Alice received the acknowledgment and the ETA.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Observations about Warehouse on Fire Scenario

♦ Concrete scenario

wDescribes a single instance of reporting a fire incident.
wDoes not describe all possible situations in which a fire

can be reported.

♦ Participating actors

wBob, Alice and John

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Types of Scenarios

♦ As-is scenario
w Used in describing a current situation. Usually used during re-

engineering. The user describes the system.

♦ Visionary scenario
w Used to describe a future system. Usually described in greenfield

engineering or reengineering.

w Can often not be done by the user or developer alone

♦ Evaluation scenario
w User tasks against which the system is to be evaluated

♦ Training scenario
w Step by step instructions designed to guide a novice user through a

system

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Heuristics for finding Scenarios

♦ Ask yourself or the client the following questions:
w What are the primary tasks that the system needs to perform?

w What data will the actor create, store, change, remove or add in the
system?

w What external changes does the system need to know about?
w What changes or events will the actor of the system need to be

informed about?

♦ Insist on task observation if the system already exists (interface
engineering or reengineering)
w Ask to speak to the end user, not just to the software contractor
w Expect resistance and try to overcome it

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Outline Requirements with Actors and User Tasks

♦ Actors (see UML Lecture):
w Represent an entity outside the system
w Roles are represented as different actors

w External systems are also represented as actors
w In scenarios, actors are instantiated

Field Officer

Dispatcher

bob:Field Officer

alice:Field Officer

john:Dispatcher

Actors

Actors Instances

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Outline Requirements with User Tasks (2)

♦ User Tasks:
w High-level descriptions of the user’s work
w Initiated by an actor (initiator)

w May involve other actors (participating actors)

w Independent of the system

Report Emergency

Allocate Resources

Field Officer
Dispatcher

User Tasks

initiates initiates

participates

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Describe Interactions with Use Cases

♦ Use Cases (see UML Lecture)
w Detailed description of interactions between users and system
w Specifies all possible scenarios

w Will be used to identify objects during analysis
w Realizes part or all of a User Task

Report Emergency Allocate Resources

Report Emergency
Reserve Resource Dispatch Resource

Use Case

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Describe Interactions with Use Cases (2)

♦ Find a use case in the scenario that specifies all possible
instances of how to report a fire
w Example: “Report Emergency “ in the first paragraph of the

scenario is a candidate for a use case

♦ Describe this use case in more detail
w Describe the flow of events
w Describe the entry condition

w Describe the exit condition
w Describe exceptions

w Describe special requirements (constraints, nonfunctional
requirements)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Example of steps in formulating a use case

Formulate the flow of events:

♦ The FieldOfficer activates the “Report Emergency” function on her
terminal. FRIEND responds by presenting a form to the officer.

♦ The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The
FieldOfficer also describes possible responses to the emergency
situation. Once the form is completed, the FieldOfficer submits the
form, at which point, the Dispatcher is notified.

♦ The Dispatcher reviews the submitted information and creates an
Incident in the database by invoking the OpenIncident use case. The
Dispatcher selects a response and acknowledges the emergency
report.

♦ The FieldOfficer receives the acknowledgment and the selected
response.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Example of steps in formulating a use case

♦ Write down the exceptions:

w The FieldOfficer’s report is acknowledged within 30 seconds.
w The selected response arrives no later than 30 seconds after it is sent

by the Dispatcher.

w The FieldOfficer is notified immediately if the connection between
her terminal and the central is lost.
w The Dispatcher is notified immediately if the connection between

any logged in FieldOfficer and the central is lost.

w Report Emergency Use Case realizes the Report Emergency User
Task

♦ Identify and write down any special requirements:

♦ Associate the Use Case with the corresponding User Task

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

How to Specify a Use Case (Summary)

♦ Name of Use Case

♦ Realized User Task
w Reference to user task that this use case realizes.

♦ Entry condition
w Use a syntactic phrase such as “This use case starts when…”

♦ Flow of Events
w Free form, informal natural language

♦ Exit condition
w Star with “This use cases terminates when…”

♦ Exceptions
w Describe what happens if things go wrong

♦ Special Requirements
w List nonfunctional requirements and constraints

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Use Case Model for Incident Management

FieldOfficer Dispatcher

Report Emergency Allocate Resources

Report Emergency
Reserve Resource Dispatch Resource

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Use Case Associations

♦ Use case association = relationship between use cases

♦ Important types:
w Extends

t A use case extends another use case

w Include
t A use case uses another use case (“functional decomposition”)

w Generalization
t An abstract use case has different specializations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

<<Include>>: Functional Decomposition

♦ Problem:
w A function in the original problem statement is too complex to be

solvable immediately

♦ Solution:
w Describe the function as the aggregation of a set of simpler

functions. The associated use case is decomposed into smaller use
cases

CreateDocument

Check

<<include>>

OCR

<<include>>

Scan

<<include>>

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

<<Include>>: Reuse of Existing Functionality
♦ Problem:
w There are already existing functions. How can we reuse them?

♦ Solution:
w The include association from a use case A to a use case B indicates

that an instance of the use case A performs all the behavior
described in the use case B (“A delegates to B”)

♦ Example:
w The use case “ViewMap” describes behavior that can be used by

the use case “OpenIncident” (“ViewMap” is factored out)
♦ Note: The base case cannot exist alone. It is always called with the

supplier use case

ViewMap

OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use
Case

Supplier
Use Case

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

ReportEmergency

FieldOfficer
Help

<<extend>>

<<Extend>> Association for Use Cases
♦ Problem:
w The functionality in the original problem statement needs to be

extended.

♦ Solution:
w An extend association from a use case A to a use case B indicates

that use case B is an extension of use case A.

♦ Example:
w The use case “ReportEmergency” is complete by itself , but can be

extended by the use case “Help” for a specific scenario in which the
user requires help

♦ Note: In an extend assocation, the base use case can be
executed without the use case extension

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

ValidateUser

CheckPassword

CheckFingerprint

Parent
Case Child

Use Case

Generalization association in use cases
♦ Problem:
w You have common behavior among use cases and want to factor this

out.

♦ Solution:
w The generalization association among use cases factors out common

behavior. The child use cases inherit the behavior and meaning of
the parent use case and add or override some behavior.

♦ Example:
w Consider the use case “ValidateUser”, responsible for verifying the

identity of the user. The customer might require two realizations:
“CheckPassword” and “CheckFingerprint”

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

How do I find use cases?

♦ Select a narrow vertical slice of the system (i.e. one
scenario)
wDiscuss it in detail with the user to understand the user’s

preferred style of interaction

♦ Select a horizontal slice (i.e. many scenarios) to define
the scope of the system.
wDiscuss the scope with the user

♦ Use mock-ups as visual support

♦ Find out what the user does
wQuestionnaires (Good)
wTask observation (Better)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

From Use Cases to Objects

Top Level Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Finding Participating Objects in Use Cases
♦ For any use case do the following
w Find terms that developers or users need to clarify in order to

understand the flow of events
t Always start with the user’s terms, then negotiate:

– FieldOfficerStationBoundary or FieldOfficerStation?

– IncidentBoundary or IncidentForm?

– EOPControl or EOP?

w Identify real world entities that the system needs to keep track of.
Examples: FieldOfficer, Dispatcher, Resource

w Identify real world procedures that the system needs to keep track
of. Example: EmergencyOperationsPlan

w Identify data sources or sinks. Example: Printer
w Identify interface artifacts. Example: PoliceStation

w Do textual analysis to find additional objects (Use Abott’s
technique)

w Model the flow of events with a sequence diagram

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Summary

♦ Requirements Elicitation:
w Greenfield Engineering, Reengineering, Interface Engineering

♦ Scenarios:
w Supports communication with client
w As-Is scenarios, Visionary scenarios, Evaluation scenarios
w User tasks: high level abstractions of scenarios
w Use cases: detailed abstractions of scenarios

♦ Pure functional decomposition is bad:
♦ Pure object identification is bad:
w May lead to wrong objects, wrong attributes, wrong methods

♦ The key to successful analysis:
w Start with scenarios, user tasks, and use cases
w Then find the participating objects
w If somebody asks “What is this?”, do not answer right away.

Ask (or observe): “What is it used for?”

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

Exercises (solutions next Thursday)

2.6 Draw a sequence diagram for the warehouseOnFire scenario
(as described in this presentation). Include the objects bob,
alice, john, system, and instances of other classes you may
need. Draw only the first five message sends.

2.7 Draw a sequence diagram for the ReportIncident use case
(as described in this lecture). Make sure it is consistent with
the sequence diagram of the previous exercise. Draw only the
first five message sends.

