Chapter 4,
Reguirements
Elicitation

(@)
-
— 0
i}
-
=
QD
5 S
=0
= o
53%
X
gs
25
on N
O
O S

Preiminaries

Today:
¢+ UML tutorial (continued)
+ Requirements Elicitation lecture

Tomorrow: Communication tutorial
¢ LotusNotes Discussion
+ Meeting management

Next week

+ Analysislecture by Prof. Bruegge
+ REQ/QQOC tutorial by Allen Dutoit

Hauptseminar Requirements Engineering, still available slots
¢ mailto:dutoit@in.tum.de

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Preliminaries (2)

Office Hours for Helma Schneider (new!)
¢ Tuesdays 11:00-12:00
¢ Fridays 11:00-12:30

- Account forms
Magnetic cards for the lab
L otus Notes accounts

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Defining the System Boundary:
What do you see?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Usability Failure

Failurein London Underground:

The driver had taped the button that started the train, relying
on the system that prevented the train from moving when the
doors were open.

The driver left histrain to close a door which was stuck.

When the door finally shut, the train left...

... without the driver!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

L ecture Outline

... some illustrative examples
What is Requirements Elicitation?
What are Requirements?

.. more illustrative examples
Scenarios
User Tasks

Use Cases

Summary

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Software Lifecycle Activities

Requirements : System Object | mplemen- .
o An : : : Testin
Elicitation alysis Design Design tation J
oO—% ,
S | |
v v v |
= class... i Ve
E_I—S > ? E ——p v class... B V
class... ca 2
class....?
Use Case Application Solution
Model Domain Subsystems| 5main Source Test
Objects Objects Code Cases

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

System | dentification

- Development of a system is not smply done by taking a
snapshot of a scene (domain)

- Definition of the system boundary

¢+ What isinside, what isoutside?
- How can we identify the purpose of a system?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Requirements specification

A reguirements specification includes 3 descriptions:

Requirements Elicitation:
Requirements. What do users do?

stem specification .
/ =D < * |Interactions: How do users use the

(natural language) system to accomplish their work?
Analysis:
Reguirements analysis — =~ Soecification: What does the system do?
model (UML)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Requirements Process

Bernd Bruegge & Allen Dutoit

Requirements
Elicitation

Vv

N

Analysis

system

specification

-Model

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

=

analysis model

-Model

10

Requirements Elicitation: Activities

- ldentify actors

~ ldentify scenarios

~ ldentify use cases

- ldentify relationships among use cases
 Refine use cases

~ ldentify nonfunctional reguirements

- ldentify participating objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

11

Requirements Elicitation: Challenges

- Challenging activity
Requires collaboration of people with different backgrounds

* User with application domain knowledge
* Developer with implementation domain knowledge

Bridging the gap between user and developer:

¢ Scenarios: Example of the use of the system as a sequence of
Interactions between the user and the system

+ Usecases. Abstraction that describes a class of scenarios

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

12

Types of Requirements

Functional requirements: Interactions between the system
and its environment independent from implementation

Thewatch system must display the time based on itslocation

Nonfunctional requirements: User visible aspects of the
system not directly related to functional behavior.

Theresponse time must belessthan 1 second
The accuracy must be within a second

Thewatch must be available 24 hours a day except from 2:00am-
2:01lam and 3:00am-3:01am

Constraints (“Pseudo reguirements’): Imposed by the client or
the environment in which the system will operate

Theresponse time must be lessthan 1 second

The accuracy must be within a second

Thewatch must be available 24 hours a day except from 2:00am-
2:01am and 3:00am-3:01lam

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

What is usually not in the Requirements?

- System structure, implementation technol ogy
- Development methodol ogy

-~ Development environment

-~ Implementation language

-~ Reusability

It is desirable that none of these above are constrained by the
client. Fignht for it!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

14

Requirements Validation

Critical step in the development process,

¢ Usually after requirements engineering or requirements analysis.
Also at delivery

Requirements validation criteria:
+ Correctness:
¢ Thereguirementsrepresent theclient’sview.
¢+ Completeness:

¢ All possible scenariosthrough the system are described,
including exceptional behavior by the user or the system

¢ Consistency:

¢ Therearefunctional or nonfunctional requirementsthat
contradict each other

+ Clarity:
¢+ Therearenoambiguitiesin teh requirements.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Requirements Validation (continued)

Realism:
+ Requirements can be implemented and delivered
- Traceability:

¢ Each system function can betraced to a corresponding set of
functional requirements

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

16

Types of Reguirements Elicitation

Greenfield Engineering

* Development startsfrom scratch, no prior system exists, the
reguirements are extracted from the end usersand the client

* Triggered by user needs
Re-engineering

+ Re-design and/or re-implementation of an existing system using
newer technology

* Triggered by technology enabler

Interface Engineering
* Providethe servicesof an existing system in a new environment
+ Triggered by technology enabler or new market needs

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

What is This?

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

18

Possible Object Model: Eskimo

Bernd Bruegge & Allen Dutoit

Eski np
Si ze
Dr ess
Cave [1vesln Snilegg
| i ghting
ent rance —q Sl eep() p—
enter()
| eave()
Shoe Coat
Si ze Sl ze
Col or Col or
Type Type
Wear () Wear ()

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Alternative: Head

Ear

Si ze

i sten()

Bernd Bruegge & Allen Dutoit

Head

Hai r

Dress()
Smle()
Sl eep()

Face

Mbout h

Nose

Slsmle()

cl ose_ey

e()

Teet h
Si ze

open()
speak()

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

20

The Artist’s View

Picture of
Scul pture

I

Pi cture

L~

~N

Eyes

Nose

Bernd Bruegge & Allen Dutoit

W

Pi cture of
Eski no

I

Mout h

Hands

Legs

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Jacket

21

L ecture outline

~ System Boundary

- What Is a Reguirements Specification?
- What is Requirements Elicitation?

- Types of Reguirements

- Moreillustrative examples

© Scenarios
- User Tasks
- Use Cases

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

22

System identification

Two important problems during reguirements elicitation and
analysis.

¢+ Définition of the system purpose

¢ |dentification of objects

¢ Depending on the purpose of the system, different objects might be
found

¢+ What object isinside, what object isoutside?

How can we identify the purpose of a system?
¢ Scenarios. Examples of system use
¢ Use cases. Abstractions of scenarios

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Why Scenarios and Use Cases?

Utterly comprehensible by the user

+ Use cases model a system from the users’ point of view (functional
requirements)

+ Defineevery possible event flow through the system
¢ Description of interaction between objects
Great tools to manage a project. Use cases can form basis for
whole development process
¢ User manual
¢ System design and object design
¢ |mplementation
¢ Test specification
+ Client acceptance test
An excellent basis for incremental & iterative development

Use cases have also been proposed for business process
reengineering (lvar Jacobson)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

How do we find scenarios?

Don’t expect the client to be verbal if the system does not exist
(greenfield engineering)

Don’t wait for information even if the system exists

Engage in adialectic approach (evolutionary, incremental)
* You help theclient to formulate the requirements
+ Theclient helpsyou to understand the requirements
* Therequirements evolve while the scenarios are being developed

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Example: Accident Management System

- What needsto be doneto report a“Cat inaTree’ incident?

- What do you need to do if a person reports “\Warehouse on
Fire?

- Who isinvolved in reporting an incident?

- What does the system do if no police cars are available? If the
police car has an accident on the way to the “cat in atree”
Incident?

~ What do you need to do if the “Cat inthe Tree” turnsinto a
“Grandma has fallen from the Ladder” ?

~ Can the system cope with a simultaneous incident report
“Warehouse on Fire?’

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

26

Scenario Example: Warehouse on Fire

~ Bob, driving down main street in his patrol car notices smoke
coming out of awarehouse. His partner, Alice, reports the
emergency from her car.

- Alice enters the address of the building, a brief description of
Its location (i.e., north west corner), and an emergency level. In
addition to afire unit, she reguests several paramedic unitson
the scene given that area appear to be relatively busy. She
confirms her input and waits for an acknowledgment.

- John, the Dispatcher, is alerted to the emergency by a beep of
his workstation. He reviews the information submitted by Alice
and acknowledges the report. He allocates afire unit and two
paramedic units to the Incident site and sends their estimated
arrival time (ETA) to Alice.

- Alicereceived the acknowledgment and the ETA.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Observations about Warehouse on Fire Scenario

 Concrete scenario
* Describes a single instance of reporting afireincident.

* Does not describe all possible situationsin which afire
can bereported.

- Participating actors
¢ Bob, Aliceand John

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

28

Types of Scenarios

- AS-IS scenario

¢ Used in describing a current situation. Usually used duringre-
engineering. Theuser describesthe system.

~ Visionary scenario

¢ Used to describe a future system. Usually described in greenfield
engineering or reengineering.

+ Can often not be done by the user or developer alone

Evaluation scenario
¢ User tasks against which the system isto be evaluated

Training scenario

+ Step by step instructions designed to guide a novice user through a
system

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Heuristics for finding Scenarios

-~ Ask yourself or the client the following questions:
+ What arethe primary tasksthat the system needsto perform?

+ \What data will the actor create, store, change, remove or add in the
system?

+ What external changes doesthe system need to know about?

+ \WWhat changes or eventswill the actor of the system need to be
informed about?

Insist on task observation if the system already exists (interface
engineering or reengineering)

* Ask to speak to the end user, not just to the softwar e contractor

* Expect resistance and try to overcome it

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Outline Requirements with Actors and User Tasks

Actors (see UML Lecture):

+ Represent an entity outside the system
+ Rolesarerepresented as different actors
+ External systemsare also represented asactors

¢ |n scenarios, actors are instantiated

Actors Instance@
Actors %

bob:Field Officer

Field Officer alice:Field Officer

Dispatcher

john:Dispatcher

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Outline Requirements with User Tasks (2)

Usear Tasks:

+ High-level descriptionsof theuser’swork
¢ Initiated by an actor (initiator)
¢+ May involve other actors (participating actors)

¢+ Independent of the system %ﬂci pateg
.,

A

Field Officer

Report Emergency Dispatcher

e
- \Enitiatesj

Allocate Resources

Initiates

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Describe | nteractions with Use Cases

Use Cases (see UML Lecture)
¢ Detailed description of interactions between users and system
+ Specifiesall possible scenarios
+ Will be used to identify objectsduring analysis
+ Realizespart or all of a User Task

- Use Case -

Report Emergency Allocate Resources

Report Emergency <:::::::::> <:::::::::>

Reserve Resource Dispatch Resource

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Describe | nteractions with Use Cases (2)

Find a use case In the scenario that specifies all possible
Instances of how to report afire

+ Example: “Report Emergency “ in thefirst paragraph of the
scenario isa candidate for a use case

Describe this use case in more detail
¢ Describetheflow of events
¢ Describethe entry condition
¢ Describe the exit condition
¢ Describe exceptions

* Describe special requirements (constraints, nonfunctional
reguirements)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Example of stepsin formulating a use case

Formulate the flow of events;

~ The FieldOfficer activates the “ Report Emergency” function on her
terminal. FRIEND responds by presenting a form to the officer.

~ The FieldOfficer fills the form, by selecting the emergency level,
type, location, and brief description of the situation. The
FeldOfficer also describes possible responses to the emergency
situation. Once the form is completed, the FieldOfficer submits the
form, a which point, the Dispatcher is notified.

~ The Dispatcher reviews the submitted information and creates an
Incident in the database by invoking the Openlncident use case. The
Dispatcher selects aresponse and acknowledges the emergency
report.

- The FeldOfficer receives the acknowledgment and the selected
response.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Example of stepsin formulating a use case

- Write down the exceptions:

+ The FieldOfficer isnotified immediately if the connection between
her terminal and the central islost.

+ The Digpatcher isnotified immediately if the connection between
any logged in FieldOfficer and the central islost.

|dentify and write down any special requirements:

+ The FieldOfficer’sreport isacknowledged within 30 seconds.

¢ Theselected response arrives no later than 30 seconds after it is sent
by the Dispatcher.

- Associate the Use Case with the corresponding User Task

* Report Emergency Use Caserealizesthe Report Emergency User
Task

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

How to Specify a Use Case (Summary)

Name of Use Case
Realized User Task

+ Referenceto user task that this use case realizes.
Entry condition

+ Usea syntactic phrase such as*” Thisuse case startswhen...”
Fow of Events

¢ Freeform, informal natural language
Exit condition

¢ Star with “ Thisuse casesterminates when...”
Exceptions

¢ Describe what happensif things go wrong
Special Reguirements

¢ List nonfunctional requirements and constraints

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Use Case Model for I ncident Management

Fiel dOficer Di spat cher

Report Emergency Allocate Resources

Report Emergency <:::::::::> <:::::::::>

Reserve Resource Dispatch Resource

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Use Case Associations

Use case association = relationship between use cases

| mportant types:
+ Extends
¢ A usecase extends another use case
¢ Include
¢ A usecaseusesanother use case (“functional decomposition”)
¢ Generalization
¢ An abstract use case has different specializations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

39

<<|nclude>>: Functional Decomposition

Problem:

+ A function in the original problem statement istoo complex to be
solvable immediately

Solution:

* Describethefunction as the aggregation of a set of smpler
functions. The associated use case is decomposed into smaller use

cases
© Cr eat eDocunent
~
P ~
7 \ N
7 ‘ ~
. 7 \\)
<<i ncl ude>> e . \ S << ncl ude>>
(2”7 <<include>>yy N
Scan OCR Check

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

<<Include>>: Reuse of Existing Functionality

Problem:
¢ Therearealready existing functions. How can wereuse them?

Solution:

+* Theinclude association from a use case A to a use case B indicates
that an instance of the use case A performsall the behavior
described in the use case B (* A delegatesto B”)

Example:

¢+ Theusecase“ViewMap” describes behavior that can be used by
the use case “Openlncident” (“ViewMap” isfactored out)

Note: The base case cannot exist alone. It isalways called with the
supplier use case

© <<i ncl ude>>
o Tt
@

@ Openl nci dent

7
Base Use -
Case <<i ncl ude>>

Al | ocat eResour ces

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

<<Extend>> Association for Use Cases

Problem:;

¢ Thefunctionality in the original problem statement needsto be
extended.

Sol ution:;

+ An extend association from a use case A to a use case B indicates
that use case B is an extension of use case A.

Example:

+ Theusecase“ ReportEmergency” iscomplete by itself , but can be
extended by the use case “Help” for a specific scenario in which the
user requireshelp

Note: In an extend assocation, the base use case can be
executed without the use case extension

~
~ /©
~ o -
~ -

~ -

-
< - Hel p
-~ P
-

Fiel dOfficer e -
©4 <<ext end>>

Report Emer gency

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Generalization association In use cases
* Problem:

+ You have common behavior among use cases and want to factor this
out.

Sol ution;

+ The generalization association among use cases factors out common
behavior. The child use casesinherit the behavior and meaning of
the parent use case and add or override some behavior.

Example:

¢ Consider theuse case “ValidateUser”, responsible for verifying the
identity of the user. The customer might require two realizations:
“CheckPassword” and “ CheckFinger print”

CheckPassvvor d

@D
Parent
Case Val | dat eUser Child

CheckFl nger pri nt Use Case

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

How do | find use cases?
-~ Select anarrow vertical slice of the system (i.e. one
scenario)

¢ Discussit in detail with the user to understand the user’s
preferred style of interaction

- Select ahorizontal dlice (i.e. many scenarios) to define
the scope of the system.

¢+ Discuss the scope with the user
- Use mock-ups as visual support

* Find out what the user does
* Questionnaires (Good)
¢ Task observation (Better)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

From Use Cases to Objects

Top Level Use Case

‘ ‘ L evel 2 Use Cases

/ /
@ Operations

A B

Participating

) K \ r | Objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Finding Participating Objects in Use Cases
"~ For any use case do the following

¢ Find termsthat developersor usersneed to clarify in order to
under stand the flow of events

+ Alwaysstart with the user’sterms, then negotiate:
— FieldOfficer StationBoundary or FieldOfficer Station?
—IncidentBoundary or IncidentForm?
— EOPControl or EOP?

+ |dentify real world entitiesthat the system needsto keep track of.
Examples. FieldOfficer, Dispatcher, Resource

+ |dentify real world proceduresthat the system needsto keep track
of. Example: EmergencyOperationsPlan

+ |dentify data sourcesor sinks. Example: Printer
+ |dentify interface artifacts. Example: PoliceStation

+ Dotextual analysisto find additional objects (Use Abott’s
technique)

* Model the flow of eventswith a sequence diagram

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Summary

Requirements Elicitation:

+ Greenfield Engineering, Reengineering, I nterface Engineering
Scenarios:

¢ Supports communication with client

+ As-Isscenarios, Visionary scenarios, Evaluation scenarios

¢ User tasks: high level abstractions of scenarios

¢ Use cases. detailed abstractions of scenarios
Pure functional decomposition is bad:

Pure object identification is bad:
+ May lead to wrong objects, wrong attributes, wrong methods

The key to successful analysis:
¢ Start with scenarios, user tasks, and use cases
¢ Then find the participating objects

¢+ |f somebody asks“What isthis?”, do not answer right away.
Ask (or observe): “What isit used for?”

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

47

Exercises (solutions next Thursday)

2.6 Draw a sequence diagram for the war enouseOnFi r e scenario
(as described in this presentation). Include the objects bob,
alice, john, system, and instances of other classes you may
need. Draw only the first five message sends.

2.7 Draw a sequence diagram for the Report I nci dent use case
(as described in thislecture). Make sure it is consistent with
the sequence diagram of the previous exercise. Draw only the
first five message sends.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

