
Christoph Vilsmeier Component based Software Engineering 1

2

Software Engeneering
Lecture Notes on

CASE-Tools: Together

Christoph Vilsmeier

Technische Universität München

Institut für Informatik

(based on slides from Günter Teubner)

Friday, 10th Nov. 2000

Christoph Vilsmeier Component based Software Engineering 2

Outline of the lecture

v What is CASE?
w The acronym

w Typical components of CASE tools

v Major goals and concepts
w Lifecycle support

w Roundtrip engineering

v Working with Together
w Analysis

w Design

w Implementation

w Documentation

Christoph Vilsmeier Component based Software Engineering 3

What does CASE mean?

v The acronym CASE stands for
w Computer

w Aided

w Software

w Engineering

v CASE is the use of computer-based support in the
software development process

Christoph Vilsmeier Component based Software Engineering 4

What is a CASE Tool ?

v A CASE tool is a computer-based product aimed at
supporting one or more software engineering activities
within a software engineering process.

v In reality, often even tools which support only one
particular part of this process (such as compilers,
editors, UI generators) are called CASE tools.

v Our definition is: CASE tools are browsers and editors for
models in graphical and textual form.

Christoph Vilsmeier Component based Software Engineering 5

What is a CASE Environment ?

v A CASE environment is a collection of CASE tools with
an integration approach that supports the interactions
that occur among the tools

v The interaction may be done by
w a shared database

w a repository (checkin, checkout)

w a message broadcast system

Christoph Vilsmeier Component based Software Engineering 6

Functionality of CASE tools

v Typical functionality
w browsing and editing of models with a graphical user

interface

w automatic code generation

w documentation generation

v Ideal functionality
w consistency checks between diagrams

w support of the whole software life cycle

Christoph Vilsmeier Component based Software Engineering 7

Typical components of CASE tools

v Project repository
w persistent storage of all development documents

– Mockups, RAD, SDD, ODD, Meeting Protocols, Source Code

w integrated version control system

w concurrent, distributed modeling

v Interface to other tools
w software development tools

w process and workflow modeling tools

w offering a scripting language

Christoph Vilsmeier Component based Software Engineering 8

The goal: Full lifecycle support

v The goal behind CASE is to support all the activities of
software development with a single tool.

Analysis Design Implementation Testing Maintenance

Christoph Vilsmeier Component based Software Engineering 9

Current situation: Quality of support differs

Not all aspects of the software engineering process are
supported by today’s CASE-tools !

v Good support for
w requirements analysis (class diagrams, use cases, etc.)

w implementation

v Moderate support for
w system design

w testing

w maintenance

v Poor support for
w requirements elicitation

Christoph Vilsmeier Component based Software Engineering 10

Level of integration

v not integrated
w separate CASE tools exist for different parts of the software

engineering activities

w each tool has its own set of project documents and a unique
user interface

w the user works with multiple tools

v integrated
w all tools are working on the same project documents

w a tool can trigger activities of other tools (e.g. start an formal
integrity check after a model has been changed)

w the tools share one common user interface

w the user has the feeling of working with one tool

Christoph Vilsmeier Component based Software Engineering 11

Forward Engineering

v Forward engineering is the
generation of skeleton code
out of the analysis or design
models.
The developer still has to write
the bodies of the methods.

v Typical flow of events
 Create or modify an object

model for a system

w Generate the code for this
model

w Allow external modification
of this code

Employee

Staff Professor

public class Staff extends Employee
{

}

public class Professor extends Employee
{

}

Christoph Vilsmeier Component based Software Engineering 12

Reverse Engineering

v Reverse engineering is the
recreation of an analysis or
design model from existing
code.

v Typical flow of events

w Scan a set of already existing
source code files

w Generate the object model
for these files

w Allow now modifications on
this object model

public class Staff extends Employee
{

}

public class Professor extends Employee
{

}

Employee

Staff Professor

Christoph Vilsmeier Component based Software Engineering 13

Roundtrip Engineering

Reverse Engineering

Forward Engineering

Object Model

Code

public class Staff extends Employee
{

}

public class Professor extends Employee
{

}

Employee

Staff Professor

public class Slave extends Employee
{

}

public class Master extends Employee
{

}

Slave Master

Christoph Vilsmeier Component based Software Engineering 14

Christoph Vilsmeier Component based Software Engineering 15

Together

v supports UML 1.3

v supports Java, C++, CORBA-IDL

v supports cvs integration

v supports forward and reverse engineering

v supports generation of documentation from the model

v written in Java (Windows, Linux, Mac, …)

v A free version (whiteboard edition) is available at

 www.togethersoft.com

Christoph Vilsmeier Component based Software Engineering 16

Online Demo

