
231

7
Object Design

Pooh: Didn't you promise Christopher Robin not to touch
the train?

Tigger: Yes, I did but I am only touching the controls.
Pooh: But aren't the controls part of the train?
Tigger: No, they don't even know each other.
Pooh: Well, isn't it time to introduce them to each other?

—Winnie-the-Pooh

During analysis, we describe the purpose of the system. This results in the identification of
application objects that represent user concepts. During system design, we describe the system
in terms of its architecture, such as its subsystem decomposition, its global control flow, and its
persistency management. During system design, we also define the hardware/software platform
on which we build the system. This results in the selection of off-the-shelf components that
provide a higher level of abstraction than the hardware. During object design, we close the gap
between the application objects and the off-the-shelf components by identifying additional
solution objects and refining existing objects.

Object design includes:

• service specification, during which we precisely describe each class interface

• component selection, during which we identify additional off-the-shelf components and
solution objects

• object model restructuring, during which we transform the object design model to
improve its understandability and extensibility

• object model optimization, during which we transform the object design model to address
performance criteria such as response time or memory utilization

Object design, like system design, is not algorithmic. In this chapter, we show how to
apply existing patterns and concrete components in the problem-solving process. We discuss
these building blocks and the activities related to them. We conclude with the discussion of
management issues associated with object design. We use Java and Java-based technologies in
this chapter. The techniques we describe, however, are also applicable to other languages.

Object Design Page 231 Thursday, September 2, 1999 12:27 PM

232 Chapter 7 • Object Design

7.1 Introduction: Movie examples

Consider the following examples:

Movies, like software systems, are complex systems that contain (often many) bugs when
delivered to the client. It is surprising, considering their cost of production, that any obvious
mistakes should remain in the final product. Movies, however, are like software systems: They
are more complex than they seem.

Many factors conspire to introduce mistakes in a movie: Movies require the cooperation of
many different people; scenes are shot out of sequence; some scenes are reshot out of schedule;
details, such as props and costumes, are changed during production; the pressure of the release
date is high during the editing process, when all the pieces are integrated together. When a scene
is shot, the state of every object and actor in the scene needs to be consistent with the scenes
preceding and following it. This can include the pose of each actor, the condition of his or her
clothes, jewelry, makeup, and hair, if they are drinking, the content of their glasses (e.g., white
wine vs. red wine), the level of their glasses (e.g., full or half full), and so on. When different
segments are combined into a single scenes, an editor, called the continuity editor, needs to
ensure that such details were restored correctly. When changes occur, such as the addition or
removal of a prop, the change must not interfere with other scenes.

Software systems, like movies, are complex, subject to continuous change, integrated
under time pressure, and developed nonlinearly. During object design, developers close the gap
between the application objects identified during analysis and the hardware/software platform
selected during system design. Developers identify and build custom solution objects whose
purpose is to realize any remaining functionality and to bridge the gap between application
objects and the selected hardware/software platform. During object design, developers realize

Speed (1994)

Harry, an LAPD cop, is taken hostage by Howard, a mad bomber. Jack, Harry’s partner, shoots Harry in
the leg to slow down Howard’s advance. Harry is shot in the right leg. Throughout the movie, Harry
limps on the left leg.

Star Wars Trilogy (1977, 1980, & 1983)

At the end of episode V: The Empire Strikes Back (1980), Han Solo is captured and frozen into
carbonite for delivery to Jaba. At the beginning of episode VI, The Return of the Jedi (1983), the frozen
Han Solo is recovered by his friends and thawed back to life. When being frozen, Solo is wearing a
jacket. When thawed, he is wearing a white shirt.

Titanic (1997)

Jack, a drifter, is teaching Rose, a lady from the high society, to spit. He demonstrates by example and
encourages Rose to practice as well. During the lesson, Rose’s mother arrives impromptu. As Jack starts
to turn to face Rose’s mother, there is no spit on his face. As he completes his turn, he has spit on his
chin.

The budgets for Speed, The Empire Strikes Back, The Return of the Jedi, and Titanic were 30, 18, 32.5,
and 200 millions dollars, respectively.

Object Design Page 232 Thursday, September 2, 1999 12:27 PM

An overview of object design 233

custom objects in a way similar to the shooting of movie scenes. They are implemented out of
sequence, by different developers, and change several times before they reach their final form.
Often, the caller of an operation has only an informal specification of the operation and makes
assumptions about its side effects and its boundary cases. This results in mismatches between
caller and callee, missing behavior, or incorrect behavior. To address these issues, developers
construct precise specifications of the classes, attributes, and operations in terms of constraints.
Similarly, developers adjust and reuse off-the-shelf components, annotated with interface
specifications. Finally, developers restructure and optimize the object design model to address
design goals, such as maintainability, extensibility, efficiency, response time, or timely delivery.

In Section 7.2, the next section, we provide an overview of the object design. In
Section 7.3, we define the main object design concepts, such as constraints used to specify
interfaces. In Section 7.4, we describe in more detail the activities of object design. In
Section 7.5, we discuss management issues related with object design. We do not describe
activities such as implementing algorithms and data structures or using specific programming
languages. First, we assume the reader already has experience in those areas. Second, these
activities become less critical as more and more off-the-shelf components become available and
reused.

7.2 An overview of object design

Conceptually, we think of system development as filling a gap between the problem and
the machine. The activities of system development incrementally close this gap by identifying
and defining objects that realize part of the system (Figure 7-1).

Analysis reduces the gap between the problem and the machine by identifying objects
representing user-visible concepts. During analysis, we describe the system in terms of external
behavior, such as its functionality (use case model), the application domain concepts it
manipulates (object model), its behavior in terms of interactions (dynamic model), and its
nonfunctional requirements.

System design reduces the gap between the problem and the machine by defining a
hardware/software platform that provides a higher level of abstraction than the computer
hardware. This is done by selecting off-the-shelf components for realizing standard services,
such as middleware, user interface toolkits, application frameworks, and class libraries.

During object design, we refine the analysis and system design models, identify new
objects, and close the gap between the application objects and off-the-shelf components. This
includes the identification of custom objects, the adjustment of off-the-shelf components, and
the precise specification of each subsystem interface and class. As a result, the object design
model can be partitioned into sets of classes such that they can be implemented by individual
developers.

Object Design Page 233 Thursday, September 2, 1999 12:27 PM

234 Chapter 7 • Object Design

Object design includes four groups of activities (see Figure 7-2):

• Service specification. During object design, we specify the subsystem services (identified
during system design) in terms of class interfaces, including operations, arguments, type
signatures, and exceptions. During this activity, we also find missing operations and
objects needed to transfer data among subsystems. The result of service specification is a
complete interface specification for each subsystem. The subsystem service specification
is often called subsystem API (Application Programmer Interface).

• Component selection. During object design, we use and adapt the off-the-shelf
components identified during system design to realize each subsystem. We select class
libraries and additional components for basic data structures and services. Often, we need
to adjust the components we selected before we can use them, by wrapping custom objects
around them or by refining them using inheritance. During these activities, we face the
same buy versus build trade-off that we faced during system design.

Figure 7-1 Object design closes the gap between application objects identified during requirements and
off-the-shelf components selected during system design (stylized UML class diagram).

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requirements gap

Object Design Page 234 Thursday, September 2, 1999 12:27 PM

Object design concepts 235

• Restructuring. Restructuring activities manipulate the system model to increase code
reuse or meet other design goals. Each restructuring activity can be seen as a graph
transformation on subsets of a particular model. Typical activities include transforming
n-ary associations into binary associations, implementing binary associations as
references, merging two similar classes from two different subsystems into a single class,
collapsing classes with no significant behavior into attributes, splitting complex classes
into simpler ones, rearranging classes and operations to increase the inheritance and
packaging. During restructuring, we address design goals such as maintainability,
readability, and understandability of the system model.

• Optimization. Optimization activities address performance requirements of the system
model. This includes changing algorithms to respond to speed or memory requirements,
reducing multiplicities in associations to speed up queries, adding redundant associations
for efficiency, rearranging execution orders, adding derived attributes to improve the
access time to objects and opening up the architecture, that is, adding access to lower
layers because of performance requirements.

Object design is nonlinear. Although the groups of activities we describe above each
addresses a specific object design issue, they need to occur concurrently. A specific off-the-shelf
component may constrain the number of types of exceptions mentioned in the specification of an
operation and thus may impact the subsystem interface. The selection of a component may
reduce the implementation work while introducing new “glue” objects, which also need to be
specified. Finally, restructuring and optimizing may reduce the number of objects to be
implemented by increasing the amount of reuse in the system.

The larger number of objects and developers, the high rate of change, and the concurrent
number of decisions made during object design make this activity much more complex than
analysis or system design is. This represents a management challenge, as many important
decisions tend to be resolved independently and are not communicated to the rest of the project.
Object design requires much information to be made available among the developers so that
decisions can be made consistently with decisions made by other developers and with design
goals. The Object Design Document, a live document describing the specification of each class,
supports this information exchange.

7.3 Object design concepts

In this section, we present the principal object design concepts:

• application objects versus solution objects (Section 7.3.1)

• types, signatures, and visibility (Section 7.3.2)

• preconditions, postconditions, and invariants (Section 7.3.3)

• UML’s Object Constraint Language (Section 7.3.4)

Object Design Page 235 Thursday, September 2, 1999 12:27 PM

236 Chapter 7 • Object Design

Figure 7-2 Activities of object design (UML activity diagram).

Identifying components

Adjusting components

Specifying constraints

Collapsing classes

Specifying types &

Identifying missing
attributes & operations

Specifying visibility

Specification

signatures

Optimization

Specifying exceptions

Restructuring

Realizing
associations

Revisiting
inheritance

Optimizing access
paths

Caching complex
computations

Delaying complex
computations

Component selection

Object Design Page 236 Thursday, September 2, 1999 12:27 PM

Object design concepts 237

7.3.1 Application objects versus solution objects revisited

As we saw in Chapter 2, Modeling with UML , class diagrams can be used to model both
the application domain and the solution domain. Application objects, also called domain
objects, represent concepts of the domain that the system manipulates. Solution objects
represent support components that do not have a counterpart in the application domain, such as
persistent data stores, user interface objects, or middleware.

During analysis, we identify application objects, their relationships, and attributes and
operations. During system design, we identify subsystems and most important solution objects.
During object design, we refine and detail both sets of objects and identify any remaining
solution objects needed to complete the system.

7.3.2 Types, signatures, and visibility revisited

During analysis, we identified attributes and operations without specifying their types or
their parameters. During object design, we refine the analysis and system design models by
adding type and visibility information. The type of an attribute specifies the range of values the
attribute can take and the operations that can be applied to the attribute. For example, consider
the attribute numElements of a Hashtable class (see Figure 7-3). numElements represent the
current number of entries in a given Hashtable. Its type is int, denoting that it is an integer
number. The type of the numElements attribute also denotes the operations that can be applied to
this attribute: We can add or subtract other integers to numElements.

Operation parameters and return values are typed in the same way as attributes are. The
type constrains the range of values the parameter or the return value can take. Given an
operation, the tuple made out of the types of its parameters and the type of the return value is
called the signature of the operation. For example, the put() operation of Hashtable takes two
parameters of type Object and does not have a return value. The type signature for put() is then
(Object, Object):void. Similarly, the get() operation of Hashtable takes one Object
parameter and returns an Object. The type signature of get() is then (Object):Object.

The visibility of an attribute or an operation specifies whether it can be used by other
classes or not. UML defines three levels of visibility:

• Private. A private attribute can be accessed only by the class in which it is defined.
Similarly, a private operation can be invoked only by the class in which it is defined.
Private attributes and operations cannot be accessed by subclasses or other classes.

• Protected. A protected attribute or operation can be accessed by the class in which it is
defined and on any descendant of the class.

• Public. A public attribute or operation can be accessed by any class.

Visibility is denoted in UML by prefixing the symbol: – (private), # (protected), or
+ (public) to the name of the attribute or the operation. For example, in Figure 7-3, we specify
that the numElements attribute of Hashtable is private, whereas all operations are public.

Object Design Page 237 Thursday, September 2, 1999 12:27 PM

238 Chapter 7 • Object Design

Type information alone is often not sufficient to specify the range of legitimate values. In
the Hashtable example, the int type allows numElements to take negative values, which are
not valid for this attribute. We address this issue next with contracts.

7.3.3 Contracts: Invariants, preconditions, and postconditions

Contracts are constraints on a class that enable caller and callee to share the same
assumptions about the class [Meyer, 1997]. A contract specifies constraints that the caller must
meet before using the class as well as constraints that are ensured by the callee when used.
Contracts include three types of constraints:

• An invariant is a predicate that is always true for all instances of a class. Invariants are
constraints associated with classes or interfaces. Invariants are used to specify consistency
constraints among class attributes.

• A precondition is a predicate that must be true before an operation is invoked.
Preconditions are associated with a specific operation. Preconditions are used to specify
constraints that a caller must meet before calling an operation.

• A postcondition is a predicate that must be true after an operation is invoked.
Postconditions are associated with a specific operation. Postconditions are used to specify
constraints that the object must ensure after the invocation of the operation.

class Hashtable {
private int numElements;

/* Constructors omitted */
public void put (Object key, Object entry) {…};
public Object get(Object key) {…};
public void remove(Object key) {…};
public boolean containsKey(Object key) {…};
public int size() {…};

/* Other methods omitted */
}

Figure 7-3 Declarations for the Hashtable class (UML class model and Java excerpts).

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Object Design Page 238 Thursday, September 2, 1999 12:27 PM

Object design concepts 239

For example, consider the Java interface for a Hashtable depicted in Figure 7-3. This
class provides a put() method to create an entry in the table, associating a key with a value, a
get() method to lookup a value given a key, a remove() method to destroy an entry from the
Hashtable, and a hashKey() method which returns a boolean indicating whether or not an
entry exists.

An example of an invariant for the Hashtable class is that the number of entries in the
Hashtable is nonnegative at all times. For example, if the remove() method results in a
negative value of numElements, the Hashtable implementation is incorrect. An example of a
precondition for the remove() method is that an entry must be associated with the key passed as
a parameter. An example of a postcondition for the remove() method is that the removed entry
should no long exist in the Hashtable after the remove() method returns. Figure 7-4 depicts the
Hashtable class annotated with invariants, preconditions, and postconditions.

/* Hashtable class. Maintains mappings from unique keys to arbitrary objects */
class Hashtable {

/* The number of elements in the Hashtable is nonnegative at all times.
 * @inv numElements >= 0 */
private int numElements;

/* Constructors omitted */

/* The put operation assumes that the specified key is not used.
 * After the put operation is completed, the specified key can be used
 * to recover the entry with the get(key) operation:
 * @pre !containsKey(key)
 * @post containsKey(key)
 * @post get(key) == entry */
public void put (Object key, Object entry) {…};

/* The get operation assumes that the specified key corresponds to an
 * entry in the Hashtable.
 * @pre containsKey(key) */
public Object get(Object key) {…};

/* The remove operation assumes that the specified key exists in the
 * Hashtable.
 * @pre containsKey(key)
 * @post !containsKey(key) */
public void remove(Object key) {…};

/* Other methods omitted */
}

Figure 7-4 Method declarations for the Hashtable class annotated with preconditions, postconditions,
and invariants (Java, constraints in the iContract syntax [iContract]).

Object Design Page 239 Thursday, September 2, 1999 12:27 PM

240 Chapter 7 • Object Design

We use invariants, preconditions, and postconditions to specify special or exceptional
cases unambiguously. For example, the constraints in Figure 7-4 indicate that the remove()
method should be invoked only for entries that exist in the table. Similarly, the put() method
should be invoked only if the key is not already in use. In most cases, it is also possible to use
constraints to completely specify the behavior of an operation. Such a use of constraints, called
constraint-based specification, however, is difficult and can be more complicated than
implementing the operation itself [Horn, 1992]. We will not describe pure constraint-based
specification in the scope of this chapter. Instead, we will focus on specifying operations using
both constraints and natural language, emphasizing boundary cases.

7.3.4 UML’s Object Constraint Language

In UML, constraints are expressed using OCL [OMG, 1998]. OCL is a language that
allows constraints to be formally specified on single model elements (e.g., attributes, operations,
classes) or groups of model elements (e.g., associations and participating classes). A constraint
is expressed as an OCL expression returning the value True or False. OCL is not a procedural
language and thus cannot be used to denote control flow. In this chapter, we focus exclusively on
the aspects of OCL related to invariants, preconditions, and postconditions.

A constraint can be depicted as a note attached to the constrained UML element by a
dependency relationship. A constraint can be expressed in natural language or in a formal
language such as OCL. Figure 7-5 depicts a class diagram of Hashtable example of Figure 7-4
using UML and OCL.

OCL’s syntax is similar to object-oriented languages such as C++ or Java. In the case of an
invariant, the context for the expression is the class associated with the invariant. The keyword
self (e.g., self.numElements in Figure 7-5) denotes any instance of the class. Attributes and
operations are accessed using the dot notation (e.g., self.attribute or
self.operation(params)). The self keyword can be omitted if no ambiguity is introduced.
(Note that OCL uses the keyword self to represent the same concept as the Java and C++
keyword this.) For a precondition or a postcondition, the parameters passed to the associated
operation can be used in the OCL expression. For postconditions, the suffix @pre denotes the

Figure 7-5 Examples of invariants, preconditions, and postconditions in OCL (UML class diagram).

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean

<<invariant>>
self.numElements >= 0

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

size():int

numElements:int

Object Design Page 240 Thursday, September 2, 1999 12:27 PM

Object design activities 241

value of a parameter or an attribute before the execution of the operation. For example, a
postcondition for the put(key, entry) operation expressing that the number of entries in the
table increased by one can be represented as numElements = numElements@pre + 1.

Attaching OCL expressions to diagrams can lead to clutter. For this reason, OCL
expressions can be alternatively expressed textually. The context keyword introduces a new
context for an OCL expression. The word following the context keyword refers to a class, an
attribute, or an operation. Then follows one of the keywords inv, pre, and post, which correspond
to the UML stereotypes <<invariant>>, <<precondition>>, and <<postcondition>>,
respectively. Then follows the actual OCL expression. For example, the invariant for the
Hashtable class and the constraints for the Hashtable.put () operation are written as follows:

7.4 Object design activities

As we have already mentioned in the introduction, object design includes four groups of
activities: specification, component selection, restructuring, and optimization.

Specification activities include:

• identifying missing attributes and operations (Section 7.4.1)

• specifying type signatures and visibility (Section 7.4.2)

• specifying constraints (Section 7.4.3)

• specifying exceptions (Section 7.4.4)

Component selection activities include:

• identifying and adjusting class libraries (Section 7.4.5)

• identifying and adjusting application frameworks (Section 7.4.6)

• a framework example: WebObjects (Section 7.4.7)

Restructuring activities include:

• realizing associations (Section 7.4.8)

• increasing reuse (Section 7.4.9)

• removing implementation dependencies (Section 7.4.10)

context Hashtable inv:
numElements >= 0

context Hashtable::put(key, entry) pre:
!containsKey(key)

context Hashtable::put(key, entry) post:
containsKey(key) and get(key) = entry

Object Design Page 241 Thursday, September 2, 1999 12:27 PM

242 Chapter 7 • Object Design

Optimization activities include:

• revisiting access paths (Section 7.4.11)

• collapsing objects: turning objects into attributes (Section 7.4.12),

• caching the result of expensive computations (Section 7.4.13)

• delaying expensive computations (Section 7.4.14)

To illustrate these four groups of activities in more detail, we use as example an emissions
modeling system called JEWEL (Joint Environmental Workshop and Emissions Laboratory,
[Bruegge et al., 1995], [Kompanek et al., 1996]). JEWEL enables end users to simulate and
visualize air pollution as a function of point sources (e.g., factories, powerplants), area sources
(e.g., cities), and mobile sources (e.g., cars, trucks, trains). The area under study is divided into
grid cells. Emissions are then estimated for each grid cell and each hour of the day. Once the
simulation is completed, the end user can visualize the concentration of various pollutants on a
map along with the emission sources (see Figure 7-6). JEWEL is targeted for government
agencies that regulate air quality and attempt to bring troubled populated areas into compliance
with regulation.

Given its focus on visualization of geographical data, JEWEL includes a Geographical
Information Subsystem (GIS), which is responsible for storing and manipulating maps. The
JEWEL GIS manages geographical information as sets of polygons and segments. Different types
of information, such as roads, rivers, and political boundaries, are organized into different layers
that can be displayed independently. Moreover, data is organized such that it can be seen at
different levels of abstraction. For example, a high-level view of a map only contains main
roads, whereas a detailed view also includes secondary roads. GIS is an ideal example for object
design, given its rich application domain and complex solution domain. First, we start with the
specification of GIS.

Figure 7-6 Map with political boundaries and emission sources (JEWEL, mock-up).

Session

Layer fader

New

Object Design Page 242 Thursday, September 2, 1999 12:27 PM

Object design activities 243

Specification activities

In Figure 7-7, the object model for the GIS for JEWEL describes an organization in three
layers (i.e., the road layer, the water layer, and the political layer). Each layer is composed of
elements. Some of these elements, such as highways, secondary roads, and rivers, are displayed
with lines composed of multiple segments. Others, such as lakes, states, and counties, are
displayed as polygons, which are also represented as collections of line segments.

The ZoomMap use case (Figure 7-8) describes how users can zoom in or out around a
selected point on the map. The analysis model is still abstract. For example, it does not contain
any information at this point about how zooming is implemented or how points are selected.

The system design model focuses on the subsystem decomposition and global system
decisions such as hardware software mapping, persistent storage, or access control. We identify
the top-level subsystems and define them in terms of the services they provide. In JEWEL, for
example (Figures 7-10 and 7-9), we identified the GIS providing services for creating, storing,
and deleting geographical elements, organizing them into layers, and retrieving their outline in
terms of a series of points. These services are used by the Visualization subsystem, which
retrieves geographical information for drawing maps. The geographical data is provided as a set
of flat files and is treated by JEWEL as static data. Consequently, we do not need to support the
interactive editing of geographical data. From the use cases of JEWEL, we also know that users
need to see geographical data from different zooming criteria. During system design, we decide
that the GIS provides zooming and clipping services. The Visualization subsystem specifies

Figure 7-7 Object model for the GIS of JEWEL (UML class diagram).

PoliticalLayerWaterLayerRoadLayer

Highway SecondaryRoad

River Lake

State County

PolyLine Polygon

* *

**

* *

**

* *

* *

Layer

label

Object Design Page 243 Thursday, September 2, 1999 12:27 PM

244 Chapter 7 • Object Design

the level of detail and the bounding box of the map, and the GIS carries out the zooming and
clipping and returns only the points that need to be drawn. This minimizes the amount of data
that needs to be transferred between subsystems. Although the system design model is closer to
the machine, we have yet to describe in detail the interface of the GIS.

Specification activities during object design include:

• identifying missing attributes and operations (Section 7.4.1)

• specifying type signatures and visibility (Section 7.4.2)

• specifying constraints (Section 7.4.3)

• specifying exceptions (Section 7.4.4)

Use case name ZoomMap

Entry condition The map is displayed in a window, and at least one layer is visible.

Flow of events 1. The end user selects the zoom tool from the tool bar. The system changes the
cursor to a magnifying glass.

2. The end user selects a point on the map using the mouse by either clicking the left
or the right mouse button. The point selected by the user will become the new
center of the map.

3. The end user clicks the left mouse to request an increase in the level of detail
(i.e., zoom in) or the right mouse button to request a decrease of the level of detail
(i.e., zoom out).

4. The system computes the new bounding box and retrieves from the GIS the
corresponding points and lines from each visible layer.

5. The system then displays each layer using a predefined color in the new bounding
box.

Exit condition The map is scrolled and scaled to the requested position and detail level.

Figure 7-8 ZoomMap use case for JEWEL.

JEWEL GIS

Purpose

• store and maintain the geographical information for JEWEL

Service

• creation and deletion of geographical elements (roads, rivers, lakes, and boundaries)

• organization of elements into layers

• zooming (selection of points given a level of detail)

• clipping (selection of points given a bounding box)

Figure 7-9 Subsystem description for the GIS of JEWEL.

Object Design Page 244 Thursday, September 2, 1999 12:27 PM

Object design activities 245

7.4.1 Identifying missing attributes and operations

During this step, we examine the service description of the subsystem and identify missing
attributes and operations. During analysis, we may have missed many attributes because we
focused on the functionality of the system. Moreover, we described the functionality of the
system primarily with the use case model (not the object model). We focused on the application
domain when constructing the object model and therefore ignored details related to the system
that are independent of the application domain.

In the JEWEL example, the creation, deletion, and organization of layers and layer
elements are already supported by the Layer class. We need, however, to identify operations to

EmissionModeling The EmissionModeling subsystem is responsible for setting up simulations
and managing its results.

GIS The GIS maintains geographical information for Visualization and for
EmissionModeling.

Simulation The Simulation subsystem is responsible for the simulation of emissions.

Storage The Storage subsystem is responsible for all the persistent data in the
system, including geographical and emission data.

Visualization The Visualization subsystem is responsible for displaying geographical
and emissions data to the user.

Figure 7-10 Subsystem decomposition of JEWEL (UML class diagram).

Visualization

Simulation

EmissionModeling

GIS

Storage

Object Design Page 245 Thursday, September 2, 1999 12:27 PM

246 Chapter 7 • Object Design

realize the clipping and zooming services. Clipping is not a concept that is related to the
application domain, but rather is related to the user interface of the system and thus is part of the
solution domain.

We draw a sequence diagram representing the control and data flow needed to realize the
zoom operation (Figure 7-11). We focus especially on the Layer class. When drawing the
sequence diagram, we realize that a Layer needs to access all its contained elements to gather
their geometry for clipping and zooming. We observe that clipping can be realized
independently of the kind of element being displayed, that is, clipping line segments associated
with a road or a river can be done using the same operation. Consequently, we identify a new
class, the LayerElement abstract class (see Figure 7-12), which provides operations for all
elements that are part of a Layer (i.e., Highway, SecondaryRoad, River, Lake, State, and
County).

We identify the getOutline() operation on the LayerElement class, which is responsible
for scaling and clipping the lines and polygons of individual elements, given a bounding box and
a detail level. The getOutline() operation uses the detail level to scale each line and polygon
and to reduce the number of points for lower levels of detail. For example, when the user zooms
out the map by a factor 2, the GIS returns only half the number of points for a given layer
element, because less detail is needed. We then identify the getOutline() operation on the
Layer class, which is responsible for invoking the getOutline() operation on each
LayerElements and for collecting all lines and polygons of the layer into a single data structure.
Both getOutline() operations return collections of lines and polygons. The Visualization

Figure 7-11 A sequence diagram for the zoomIn() operation (UML sequence diagram). This sequence
diagram leads to the identification of a new class, LayerElement. Because we are focusing on the GIS, we
treat the Visualization subsystem as a single object.

:Layer:Visualization:EndUser

zoomIn(x,y)
computeBoundingBox(x,y)

*getOutline(r,d)
*getOutline(r,d)

points

points

:LayerElement

Newly identified
class

Object Design Page 246 Thursday, September 2, 1999 12:27 PM

Object design activities 247

subsystem then translates the GIS coordinates into screen coordinates, adjusting for scale and
scrolling, and draws the line segments on the screen.

During a review of the object model, we realize that the zooming algorithm of the
LayerElement.getOutline() operation is not trivial: It is not sufficient to select a subset of
points of the LayerElement and scale their coordinates. Because different LayerElements may
share points (e.g., two connecting roads, two neighboring counties), the same set of points need
to be selected to maintain a visually consistent picture for the end user.

For example, Figure 7-13 displays examples of a naive algorithm for selecting points
applied to connecting roads and neighboring counties. The left column displays the points that
are selected for a higher level of detail. The right column displays the points that are selected for
a lower level of detail. In this case, the algorithm arbitrarily selected every other point,
disregarding whether points were shared or not. This leads to elements that are not connected
when displayed at lower levels of details.

To address this problem, we decide to include more intelligence in the PolyLine,
Polygon, and Point classes (Figure 7-14). First, we decide to represent shared points by exactly
one Point object; that is, if two lines share a point, both Line objects have a reference to the
same Point object. This is handled by the Point(x,y) constructor, which checks if the

Figure 7-12 Adding operations to the object model of the JEWEL GIS to realize zooming and clipping
(UML class diagram).

Layer

getOutline(bbox, detail)

LayerElement

label

Political LayerWater LayerRoad Layer

label

Highway Secondary road

River Lake

State County

LayerElement(polyline)
LayerElement(polygon)
getOutline(bbox, detail)

elements

*

Object Design Page 247 Thursday, September 2, 1999 12:27 PM

248 Chapter 7 • Object Design

specified coordinates correspond to an existing point. Second, we add attributes to Point objects
to store the levels of details in which they participate. The inDetailLevels attribute is a set of
all the detail levels in which this Point participates. The notInDetailLevels attribute is a set
of all the detail levels from which this Point has been excluded. If a given detail level is not in
either set, this means that this Point has not yet been considered for the given detail level. The
inDetailLevels and notInDetailLevels attributes (and their associated operations) are then
used by the LayerElement.getOutline() operation to select shared points and maintain
connectivity.

At this point, we identified the missing attributes and operations necessary to support
zooming and clipping of LayerElement. Note that we will probably revisit some of these issues
later when we select existing components or perform the object design of the dependent
subsystems. Next, we proceed to specifying the interface of each of the classes using types,
signatures, contracts, and visibility.

7.4.2 Specifying type signatures and visibility

During this step, we specify the types of the attributes, the signatures of the operations,
and the visibility of attributes and operations. Specifying types refines the object design model
in two ways. First, we add detail to the model by specifying the range of each attribute. For
example, by determining the type of coordinates, we make decisions about the location of the
origin (Point 0, 0) and the maximum and minimum values for all coordinates. By selecting a
double-precision floating-point factor for detail levels, we compute coordinates at different
detail levels by simply multiplying the detail level by the coordinates. Second, we map classes

Figure 7-13 A naive point selection algorithm for the GIS. The left column represents a road crossing and
two neighboring counties. The right column shows that road crossings and neighboring counties may be
displayed incorrectly when points are not selected carefully.

High detail Low detail

Object Design Page 248 Thursday, September 2, 1999 12:27 PM

Object design activities 249

and attributes of the object model to built-in types provided by the development environment.
For example, by selecting String to represent the label attributes of Layers and
LayerElements, we can use all the operations provided by the String class to manipulate
label values.

During this step, we also consider the relationship between the classes we identified and
the classes from off-the-shelf components. For example, a number of classes implementing
collections are provided in the java.util package. The Enumeration interface provides a way
to access an ordered collection of objects. The Set interface provides a mathematical set
abstraction implemented by several classes, such as HashSet. We select the Enumeration
interface for returning outlines and the Set interface from the java.util package for
representing the inDetailLevels and notInDetailLevels attributes.

Finally, we determine the visibility of each attribute and operation during this step. By
doing so, we determine which attributes are completely managed by a class, which should only
be accessible indirectly via the class’s operations, and which attributes are public and can be
modified by any other class. Similarly, the visibility of operations allows us to distinguish
between operations that are part of the class interface and those that are utility methods that can
only be accessed by the class. In the case of abstract classes and classes that are intended to be
refined, we also define protected attributes and methods for the use of subclasses only.
Figure 7-15 depicts the refined specification of the Layer, LayerElement, PolyLine, and Point
classes after types, signatures, and visibility have been assigned.

Once we specified the types of each attribute, the signature of each operation, and their
visibility, we focus on specifying the behavior and boundary cases of each class by using
contracts.

Figure 7-14 Additional attributes and methods for the Point class to support intelligent point selection
and zooming (UML class diagram).

Point

x, y

Point(x, y)
includeInLevel(level)
excludeFromLevel(level)

notInDetailLevels

* *

PolyLine

addPoint(point)
getPoints(bbox)

Polygon

addPoint(point)
getPoints(bbox)

inDetailLevels

* *

Object Design Page 249 Thursday, September 2, 1999 12:27 PM

250 Chapter 7 • Object Design

7.4.3 Specifying constraints

During this step, we attach constraints to classes and operations to more precisely specify
their behavior and boundary cases. Our main goal is to remove as much ambiguity from the
model as possible. We specify class contracts using three types of constraints. Invariants
represent conditions on the attributes of a class that are always True. Preconditions represent
conditions that must be satisfied (usually by the caller) prior to invoking a given operation.
Postconditions represent conditions that are guaranteed by the callee after the operation is
completed. As described in Section 7.3.3 and Section 7.3.4, we can use OCL [OMG, 1998] to
attach constraints to UML models.

In the JEWEL example, the most complex behavior is associated with clipping and
zooming; in particular, the getOutline() operations on the Layer and LayerElement classes.
In the following, we develop constraints to clarify the getOutline() operations, focusing on
the behavior associated with shared points. More specifically, we are interested in specifying the
following constraints.

1. All points returned by Layer.getOutline() are within the specified bounding box.

2. The result of Layer.getOutline() is the concatenation of the invocation of
LayerElement.getOutline() on its elements.

Figure 7-15 Adding type information to the object model of the GIS (UML class diagram). Only selected
classes shown for brevity.

Layer

+Layer(label:String)

detail:double):Enumeration
LayerElement

+label:String

+label:String

+LayerElement(polyline:PolyLine)
+getOutline(bbox:Rectangle2D,

Point

-x, y:double

+Point(x, y:double)
+includeInLevel(level:double)
+excludeFromLevel(level:double)

-notInDetailLevels:Set

detail:double):Enumeration

+getOutline(bbox:Rectangle2D,
*

points

*

elements

-inDetailLevels:Set

PolyLine

+label:String
+PolyLine()
+getPoints():Enumeration

1

1

*

1

polyline

Object Design Page 250 Thursday, September 2, 1999 12:27 PM

Object design activities 251

3. At most, one Point in the system represents a given (x, y) coordinate.
4. A detail level cannot be part of both the inDetailLevels and the notInDetailLevels

sets.
5. For a given detail level, LayerElement.getOutline() can only return Points which

contain the detail level in their inDetailLevels set attribute.
6. The inDetailLevels and notInDetailLevels set can only grow as a consequence of
LayerElement.getOutline(); in other words, once a detail level is in one of these sets, it
cannot be removed.

First, we focus on clipping. Given a LayerElement, the enumeration of points returned by
the getOutline(bbox,detail) operation must be inside the specified rectangle bbox.
Moreover, any point returned by getOutline() must be associated with the LayerElement. We
represent this using a postcondition on the getOutline() operation of LayerElement. Note that
because we currently focus on clipping, we ignore the detail parameter.

The result field represents the result of the getOutline() operation. The forAll OCL
construct applies the constraint to all points of result. Finally, the constraint expresses that all
points in the result must be contained in the rectangle bbox passed as parameter and must be
included in the points aggregation association of Figure 7-15.

We then define the getOutline() operation on a Layer as the concatenation of the
enumerations returned by the getOutline() operation of the LayerElements. In OCL, we use
the iterate construct on collections to go through each LayerElement and collect its outline
into a single enumeration. The including construct appends its parameter to the collection.
OCL automatically flattens the resulting collection.

We then focus on constraints related with zooming. Recall that we added attributes and
operations to the Point class to represent shared points. First, we specify Point uniqueness with
an invariant applied to all Point instances:

/* Constraint 1 */
context LayerElement::getOutline(bbox, detail) post:
result->forAll(p:Point|bbox.contains(p) and points->includes(p))

/* Constraint 2 */
context Layer::getOutline(bbox, detail) post:
elements->iterate(le:LayerElement; result:Enumeration|

result->including(le.getOutline(bbox,detail))

/* Constraint 3 */
context Point inv:
Point.allInstances->forAll(p1, p2:Point |

(p1.x = p2.x and p1.y = p2.y) implies p1 = p2)

Object Design Page 251 Thursday, September 2, 1999 12:27 PM

252 Chapter 7 • Object Design

We leave the derivation of the last three constraints as an exercise for the reader (see
Exercise 2).

With these six constraints, we describe more precisely the behavior of the getOutline()
operations and their relationship with the attributes and operations of the Point class. Note that
we have not described in any way the algorithm by which the LayerElement selects Points,
given a detail level. We leave this decision to the implementation activity of object design.

Next, we describe the exceptions that can be raised by each operation.

7.4.4 Specifying exceptions

During this step, we specify constraints that the caller needs to satisfy before invoking an
operation. In other words, we specify conditions that operations detect and treat as errors by
raising an exception. Languages such as Java and Ada have built-in mechanisms for exception
handling. Other languages, such as C and early versions of C++ do not support explicit
exception handling, so the developers need to establish conventions and mechanisms for
handling exceptions (e.g., return values or a specialized subsystem). Exceptional conditions are
usually associated with the violation of preconditions. In UML, we attach OCL preconditions to
operations and associate the precondition with a dependency to an exception object.

In the JEWEL example (Figure 7-16), we specify that the bbox parameter of the
Layer.getOutline() operation should have a positive width and height and that the detail
parameter should be positive. We associate the ZeroBoundingBox and the ZeroDetail
exceptions with each condition.

Exceptions can be found systematically by examining each parameter of the operation and
by examining the states in which the operation may be invoked. For each parameter and set of
parameters, we identify values or combinations of values that should not be accepted. For
example, we reject nonpositive values for the detail level, because the detail parameter

Figure 7-16 Examples of preconditions and exceptions for the Layer class of the JEWEL GIS.

Layer

+Layer(label:String)

detail:double):Enumeration

+label:String

+getOutline(bbox:Rectangle2D,

<<precondition>>
bbox.width > 0 and

<<precondition>>
detail > 0

bbox.height > 0

<<exception>>
ZeroDetail

<<exception>>
ZeroBoundingBox

Object Design Page 252 Thursday, September 2, 1999 12:27 PM

Object design activities 253

represents a multiplication factor. A zero value for the detail parameters would result in the
collapse of all coordinates onto the origin. A negative detail level would result in an inverted
picture. Note that a systematic discovery of all exceptions for all operations is a time-consuming
exercise, albeit useful. For systems in which reliability is not a primary design goal, the
specification of exceptions can be limited to the public interface of subsystems.

Component selection activities
At this point in object design, we selected the software/hardware platform on which the

system runs. This platform includes off-the-shelf components such as database management
systems, middleware frameworks, infrastructure frameworks, or enterprise application
frameworks. The main objective in selecting off-the-shelf components is to reuse as many
objects as possible, thus minimizing the number of custom objects that need to be developed.
Moreover, an off-the-shelf component often provides a more reliable and efficient solution than
any developer could hope to produce in the context of a single system. A user interface class
library, for example, pays close attention to an efficient display algorithm or to good response
times. An off-the-shelf component also has been used by many more systems and users and
therefore is more robust. Off-the-shelf components, however, have a cost. Their purpose is to
support a wide variety of systems, and thus they are usually complex. Using an off-the-shelf
component requires an investment in learning and often requires a degree of customization.
Using off-the-shelf components is usually a better alternative than building the complete system
from scratch.

7.4.5 Identifying and adjusting class libraries

Assume that we select the Java Foundation Classes (JFC) [JFC, 1999] as an off-the-shelf
component for realizing the Visualization subsystem. We need to display the map as a series
of polylines and polygons returned by the Layer.getOutline() operation. This is usually not
straightforward, as we have to reconcile functionality provided by the GIS and JFC to realize the
Visualization services. For example, this can introduce the need for custom objects whose
only function is to convert data from one subsystem to another.

For displaying graphics, JFC provides a number of reusable components for composing a
user interface. JFC arranges components in a containing hierarchy that constrains the order in
which the components are painted. JFC paints last the components closer to the bottom of the
hierarchy (usually atomic components) such that they appear on the top of all the other
components. A JFrame, also known as main window, defines an area that is exclusively owned
by the application. A JFrame is often made out of several JPanels, each responsible for the layer
of several atomic components. A JScrollPane provides a scrollable view of a component. It
allows a user to view a subset of a component that is too large to display completely.

For the JEWEL Visualization subsystem (see Figure 7-17), we select a JFrame as a
top-level container, a JToolbar and two JButtons for zooming in and out, and a JScrollPane
for scrolling the map. We realize the map proper with the MapArea class, which refines a JPanel
and overwrites the paintContents() operation. The new paintContents() operation

Object Design Page 253 Thursday, September 2, 1999 12:27 PM

254 Chapter 7 • Object Design

computes the visible bounding box from attributes of the JScrollPane, retrieves lists of points

from the Layer classes, scales them, and draws them. The MapArea class also maintains the
current detail level. Actions associated with the zoomIn:JButton and zoomOut:JButton access
operations on the MapArea, to increase and decrease the detail level, respectively. This triggers
the repaint() operation on the MapArea which refreshes the map display.

When examining the drawing primitives provided by JFC, we realize that JFC and the GIS
represent lines differently. On the one hand, the drawPolygon() and drawPolyline()

operations of the Graphics class accept two arrays of coordinates (one for the x coordinates of
the points, the other for the y coordinates; see Figure 7-18). On the other hand, the
getOutline() operation of the GIS returns a Enumeration of Points (see Figure 7-16). There
are two approaches to resolve this mismatch. We can write a utility method on the MapArea class
to translate between the two different data structures or we can ask the developers responsible

for the GIS to change the interface of the Layer class.

Figure 7-17 JFC components for the JEWEL Visualization subsystem (UML object diagram).
Associations denote the containment hierarchy used for ordering the painting of components. We use
stereotypes to distinguish JEWEL classes from classes provided by JFC.

// from java.awt package
class Graphics
//...

void drawPolyline(int[] xPoints, int[] yPoints, int nPoints) {…};
void drawPolygon(int[] xPoints, int[] yPoints, int nPoints) {…};

Figure 7-18 Declaration for drawPolyline() and drawPolygon() operations [JFC, 1999].

<<JFC>>
:JFrame

<<JFC>>
:JPanel

<<JFC>>
:JScrollPane

<<JFC>>
:JToolbar

:MapArea

paintContents()

<<JFC>>
zoomIn:JButton

<<JFC>>
zoomOut:JButtondetail

Object Design Page 254 Thursday, September 2, 1999 12:27 PM

Object design activities 255

We should change the API of the Layer class if we have control over it. In the general
case, however, it is often necessary to write glue operations and classes. For example, if the GIS
was also made of off-the-shelf components, we would not be able to change its API. We can use
the Adapter pattern to address this mismatch (see Section 6.4.4 in Chapter 6, System Design).

7.4.6 Identifying and adjusting application frameworks

An application framework is a reusable partial application that can be specialized to
produce custom applications [Johnson et al., 1988]. In contrast to class libraries, frameworks are
targeted to particular technologies, such as data processing or cellular communications, or to
application domains, such as user interfaces or real-time avionics. The key benefits of
application frameworks are reusability and extensibility. Framework reusability leverages of the
application domain knowledge and prior effort of experienced developers to avoid the recreation
and revalidation of recurring solutions. An application framework enhances extensibility by
providing hook methods, which are overwritten by the application to extend the application
framework. Hook methods systematically decouple the interfaces and behaviors of an
application domain from the variations required by an application in a particular context.
Framework extensibility is essential to ensure timely customization of new application services
and features.

Frameworks can be classified by their position in the software development process.

• Infrastructure frameworks aim to simplify the software development process. Examples
include frameworks for operating systems [Campbell-Islam 1993], debuggers [Bruegge et
al., 1993], communication tasks [Schmidt, 1997], and user interface design [Weinand et
al., 1988]. System infrastructure frameworks are used internally within a software project
and are usually not delivered to a client.

• Middleware frameworks are used to integrate existing distributed applications and
components. Common examples include Microsoft's MFC and DCOM, Java RMI,
WebObjects [Wilson & Ostrem, 1999], implementations of CORBA [OMG, 1995], and
transactional databases.

• Enterprise application frameworks are application specific and focus on domains such
as telecommunications, avionics, environmental modeling [Bruegge & Riedel, 1994]
manufacturing, financial engineering [Birrer, 1993], and enterprise business activities.

Infrastructure and middleware frameworks are essential to rapidly create high-quality
software systems, but they are usually not requested by external customers. Enterprise
frameworks, however, support the development of end-user applications. As a result, buying
infrastructure and middleware frameworks is more cost effective than building them [Fayad &
Hamu, 1997].

Object Design Page 255 Thursday, September 2, 1999 12:27 PM

256 Chapter 7 • Object Design

Frameworks can also be classified by the techniques used to extend them.

• White box frameworks rely on inheritance and dynamic binding for extensibility.
Existing functionality is extended by subclassing framework base classes and overriding
predefined hook methods using patterns such as the template method pattern [Gamma et
al., 1994].

• Black box frameworks support extensibility by defining interfaces for components that
can be plugged into the framework. Existing functionality is reused by defining
components that conform to a particular interface and integrating these components with
the framework, using delegation.

Whitebox frameworks require intimate knowledge of the framework’s internal structure.
Whitebox frameworks produce systems that are tightly coupled to the specific details of the
framework's inheritance hierarchies, and thus changes in the framework can require the
recompilation of the application. Blackbox frameworks are easier to use than whitebox
frameworks, because they rely on delegation instead of inheritance. However, blackbox
frameworks are more difficult to develop, because they require the definition of interfaces and
hooks that anticipate a wide range of potential use cases. Moreover, it is easier to extend and
reconfigure blackbox frameworks dynamically, as they emphasize dynamic object relationships
rather than static class relationships. [Johnson et al., 1988].

Frameworks are closely related to design patterns, class libraries, and components.

Design patterns versus frameworks. The main difference between frameworks and patterns
is that frameworks focus on reuse of concrete designs, algorithms, and implementations in a
particular programming language. In contrast, patterns focus on reuse of abstract designs and
small collections of cooperating classes. Frameworks focus on a particular application domain,
whereas design patterns can be viewed more as building blocks of frameworks.

Class libraries versus frameworks. Classes in a framework cooperate to provide a reusable
architectural skeleton for a family of related applications. In contrast, class libraries are less
domain specific and provide a smaller scope of reuse. For instance, class library components,
such as classes for strings, complex numbers, arrays, and bitsets can be used across many
application domains. Class libraries are typically passive; that is, they do not implement or
constrain the control flow. Frameworks, however, are active; that is, they control the flow of
control within an application. In practice, frameworks and class libraries are complementary
technologies. For instance, frameworks use class libraries, such as foundation classes, internally
to simplify the development of the framework. Similarly, application-specific code invoked by
framework event handlers uses class libraries to perform basic tasks, such as string processing,
file management, and numerical analysis.

Object Design Page 256 Thursday, September 2, 1999 12:27 PM

Object design activities 257

Components versus frameworks. Components are self-contained instances of classes that
are plugged together to form complete applications. In terms of reuse, a component is a
blackbox that defines a cohesive set of operations, which can be used based solely with
knowledge of the syntax and semantics of its interface. Compared with frameworks, components
are less tightly coupled and can even be reused on the binary code level. That is, applications can
reuse components without having to subclass from existing base classes. The advantage is that
applications do not always have to be recompiled when components change. The relationship
between frameworks and components is not predetermined. On the one hand, frameworks can be
used to develop components, where the component interface provides a facade pattern for the
internal class structure of the framework. On the other hand, components can be plugged into
blackbox frameworks. In general, frameworks are used to simplify the development of
infrastructure and middleware software, whereas components are used to simplify the
development of end-user application software.

7.4.7 A framework example: WebObjects

WebObjects is a set of frameworks for developing interactive Web applications accessing
existing data from relational databases. WebObjects consists of two infrastructure frameworks.
The WebObjects framework1 handles the interaction between Web browsers and Web servers.
The Enterprise Object Framework (EOF) handles the interaction between Web servers and
relational databases. The EOF supports database adapters that allow applications to connect to
database management systems from particular vendors. For example, the EOF provides database
adapters for Informix, Oracle, and Sybase servers and ODBC compliant adapters for databases
running on the Windows platform. In the following, we concentrate on the WebObjects

framework. More information on the EOF can be found in [Wilson & Ostrem, 1999].

Figure 7-19 shows an example of a dynamic publishing site built with WebObjects. The
WebBrowser originates an HTTP request in the form of a URL, which is sent to the WebServer.
If the WebServer detects that the request is to a static HTML page, it passes it on the
StaticHTML object, which selects and sends the page back to the Web browser as a response.
The Web browser then renders it for the user. If the WebServer detects that the request requires a
dynamic HTML page, it passes the request to a WebObjects WOAdapter. The WebObjects Adapter
packages the incoming HTML request and forwards it to the WebObjectsApplication object.
Based on Templates defined by the developer and relevant data retrieved from the
RelationalDatabase, the WebObjectsApplication then generates an HTML response page,
which is passed back through the WOAdaptor to the WebServer. The WebServer then sends the
page to the WebBrowser, which renders it for the user.

1. “WebObjects” is unfortunately the name of both the complete development environment and the Web framework.
When referring to the framework, we always use the phrase, “WebObjects framework.” When referring to the
development environment, we simple use the term, “WebObjects.”

Object Design Page 257 Thursday, September 2, 1999 12:27 PM

258 Chapter 7 • Object Design

A key abstraction provided by the WebObjects framework is an extension of the HTTP
protocol to manage state. HTTP is a stateless request-response protocol, that is, a response is
formulated for each request, but no state is maintained between successive requests. In many
Web-based applications, however, state needs to be kept between requests. For example in
JEWEL, emissions computations can take up to 30 days. The end user must be able to monitor
and access the state of the emissions computation even if the Web browser is restarted. Several
techniques have been proposed to keep track of state information in Web applications, including
dynamically generated URLs, cookies, and hidden HTML fields. WebObjects provides the classes
shown in Figure 7-20 to achieve the same purpose.

The WOApplication class represents the application running on the WebServer waiting
for requests from the associated WebBrowser. A cycle of the request-response loop begins
whenever the WOAdaptor receives an incoming HTTP request. The WOAdaptor packages this
request in a WORequest object and forwards it to the application object of class WOApplication.
Requests are always triggered by a URL submitted by the WebBrowser. A top-level URL
represents a special request and causes the creation of a new instance of type WOSession. The
class WOSession encapsulates the state of an individual session, allowing it to track different
users, even within a single application. A WOSession consists of one or more WOComponents,
which represent a reusable Web page or portion of a Web page for display within an individual
session. WOComponents may contain dynamic elements. When an application accesses the
database, one or more of the dynamic elements of a component are filled with information
retrieved from the database. The WOSessionStore provides persistency for WOSession objects:
It stores sessions in the server and restores them by the application upon request.

Figure 7-19 An example of dynamic site with WebObjects (UML component diagram).

WebBrowser

RelationalDatabase

StaticHTML

WOAdaptor
WebServer

WoRequest
Template

WebObjectsApplication

WORequest

EOF

Object Design Page 258 Thursday, September 2, 1999 12:27 PM

Object design activities 259

The essence of building a WebObjects application is to refine the classes WOApplication,
WOSession, and WOComponent and to intercept the flow of requests sent and received between
them. Inherited methods from these classes are overridden when the developer needs to extend
the default behavior. The earliest control point for refining objects of type WOApplication is
when they are constructed. The last point of control is when the application object terminates.
By adding code to the application object constructor or overriding the WOApplication
terminate() method, the developer can customize the behavior of the WebObjects application as
desired.

Once we have extended the object design model with off-the-shelf components and their
related classes, we restructure the model to improve reusability and extensibility.

Restructuring activities
Once we have specified the subsystem interfaces, identified additional solution classes,

selected components, and adapted them to fit our solution, we need to transform the object
design model into a representation that is closer to the target machine. In this section, we
describe three restructuring activities:

• realizing associations (Section 7.4.8)
• revisiting inheritance to increase reuse (Section 7.4.9)
• revisiting inheritance to remove implementation dependencies (Section 7.4.10)

7.4.8 Realizing associations

Associations are UML concepts that denote collections of bidirectional links between two
or more objects. Object-oriented programming languages, however, do not provide the concept
of association. Instead, they provide references, in which one object stores a handle to another
object. References are unidirectional and take place between two objects. During object design,

Figure 7-20 WebObject’s State Management Classes. The HTTP protocol is inherently stateless. The
State Management Classes allow to maintain information between individual requests.

WOSession WOComponent DynamicElement

WOApplication

WORequest

WOAdaptor

*

*

*
*

WebServer WOSessionStore

*

Object Design Page 259 Thursday, September 2, 1999 12:27 PM

260 Chapter 7 • Object Design

we realize associations in terms of references, taking into account the multiplicity of the
associations and their direction. Note that many UML modeling tools accomplish the
transformation of associations into references automatically. Even if a tool accomplishes this
transformation, it is nevertheless important that developers understand its rationale, as they have
to deal with the generated code.

Unidirectional one-to-one associations. The simplest association is a one-to-one association.
For example, ZoomInAction, the control object implementing the ZoomIn use case, has a one-
to-one association with the MapArea whose detail level the ZoomInAction object modifies
(Figure 7-21). Assume, moreover, that this association is unidirectional; that is, a ZoomInAction
accesses the corresponding MapArea, but a MapArea does not need to access the corresponding
ZoomInAction object. In this case, we realize this association using a reference from the
ZoomInAction, that is, an attribute of ZoomInAction named targetMap of type MapArea.

Creating the association between ZoomInAction and MapArea translates into setting the
targetMap attribute to refer to the correct MapArea object. Because each ZoomInAction object
is associated with exactly one MapArea, a null value for the targetMap attribute can only occur
when a ZoomInAction object is being created. A null targetMap is otherwise considered an
error.

Bidirectional one-to-one associations. Assume that we modify the MapArea class so that the
user can zoom by simply clicking on the map with the left and right button. In this case, a
MapArea needs to access its corresponding ZoomInAction object. Consequently, the association
between these two objects needs to be bidirectional. We add the zoomIn attribute to MapArea
(Figure 7-22). This, however, is not sufficient: By adding a second attribute to realize the
association, we introduce redundancy into the model. We need to ensure that if a given MapArea
has a reference to a specific ZoomInAction, the ZoomInAction has a reference to that same

Figure 7-21 Realization of a unidirectional, one-to-one association (UML class diagram; arrow denotes
the transformation of the object model).

MapAreaZoomInAction
11

MapAreaZoomInAction

targetMap:MapArea

Object design model before transformation

Object design model after transformation

Object Design Page 260 Thursday, September 2, 1999 12:27 PM

Object design activities 261

MapArea. To ensure consistency, we change the visibility of the attributes to private and add two
methods to each class to access and modify them. setZoomInAction() on the MapArea sets the

zoomIn attribute to its parameter and then invokes setTargetMap() on ZoomInAction to

change its targetMap attribute.2 Finally, we need to address the initialization of the association

and its destruction by calling setTargetMap() and setZoomInAction() when MapArea and

ZoomInAction objects are created and destroyed. This ensures that both reference attributes are
consistent at all times.

2. Note that the setZoomInAction() and the setTargetMap() methods need to check first if the attribute needs to
be modified before invoking the other method, such that they avoid an infinite recursion (see code in Figure 7-22).

class MapArea extends JPanel {
private ZoomInAction zoomIn;
/* Other methods omitted */
void setZoomInAction (action:ZoomInAction) {

if (zoomIn != action) {
zoomIn = action;
zoomIn.setTargetMap(this);

}
}

}
class ZoomInAction extends AbstractAction {

private MapArea targetMap;
/* Other methods omitted */
void setTargetMap(map:MapArea) {

if (targetMap != map) {
targetMap = map;
targetMap.setZoomInAction(this);

}
}

}

Figure 7-22 Realization of a bidirectional one-to-one association (UML class diagram and Java excerpts;
arrow denotes the transformation of the object design model).

MapAreaZoomInAction
11

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

Object design model before transformation

Object design model after transformation

Object Design Page 261 Thursday, September 2, 1999 12:27 PM

262 Chapter 7 • Object Design

The direction of an association can often change during the development of the system.
Unidirectional associations are much simpler to realize. Bidirectional associations are more
complex and introduce mutual dependencies among classes. For example, in Figure 7-22, both
the MapArea and the ZoomInAction classes need to be recompiled and tested when we change
either class. In the case of a unidirectional association from the ZoomInAction class to the
MapArea class, we do not need to worry about the MapArea class when we change the
ZoomInAction class. Bidirectional associations, however, are sometimes necessary in the case
of peer classes that need to work together closely. The choice between a unidirectional or a
bidirectional association is a trade-off that we need to evaluate in the context of a specific pair of
classes. To make the trade-off easier, however, we can systematically make all attributes private
and provide corresponding setAttribute() and getAttribute() operations to modify the
reference. This minimizes changes to class interfaces when making a unidirectional association
bidirectional (and vice versa).

One-to-many associations. One-to-many associations, unlike one-to-one associations, cannot
be realized using a single reference or a pair of references. Instead, we realize the “many” part
using a collection of references. For example, the Layer class of the JEWEL GIS has a one-to-
many association with the LayerElement class. Because LayerElements have no specific order
with respect to Layers and because a LayerElement can be part of a Layer at most once, we use
a set of references to model the “many” part of the association. Moreover, we decide to realize
this association as a bidirectional association and so add the addElement(), removeElement(),
getLayer() and setLayer() methods to the Layer and LayerElement classes to update the
layerElements and containedIn attributes (see Figure 7-23). As in the one-to-one example,
the association needs to be initialized and destroyed when Layer and LayerElement objects are
created and destroyed.

Figure 7-23 Realization of a bidirectional, one-to-many association (UML class diagram; arrow denotes
the transformation of the object design model).

Layer LayerElement
1 *

Layer LayerElement

-containedIn:Layer-layerElements:Set
+elements()
+addElement(le)

+getLayer()
+setLayer(l)

+removeElement(le)

Object design model before transformation

Object design model after transformation

Object Design Page 262 Thursday, September 2, 1999 12:27 PM

Object design activities 263

Note that the collection on the “many” side of the association depends on the constraints
on the association. For example, if the LayerElements of a Layer need to be ordered (e.g.,
indicating the order in which they should be drawn), we need to use an Array or a Vector
instead of a Set. Similarly, if an association is qualified, we use a Hashtable to store the
references.

Many-to-many associations. In this case, both end classes have attributes that are collections
of references and operations to keep these collections consistent. For example, the Polyline
class of the JEWEL GIS has an ordered many-to-many association with the Point class. This
association is realized by using a Vector attribute in each class, which is modified by the
operations addPoint(), removePoint(), addPolyline(), and removePolyline() (see
Figure 7-24). As in the previous example, these operations ensure that both Vectors are
consistent. Note, however, that the association between Polyline and Point should be
unidirectional, given that none of the Point operations needs to access the Polylines that
include a given Point. We could then remove the polylines attribute and its related methods,
in which case a unidirectional many-to-many association or a unidirectional one-to-many
association becomes identical at the object design level.

Associations as separate objects. In UML, associations can be associated with an association
class that holds the attributes and operations of the association. We first transform the
association class into a separate object and a number of binary associations. For example,
consider the SimulationRun association in JEWEL (Figure 7-25). A SimulationRun relates an
EmissionSource object and a SimulationResult object. The SimulationRun association
class also holds attributes specific to the run, such as the date it was created, the user who ran the

Figure 7-24 Realization of a bidirectional, many-to-many association (UML class diagram; arrow
denotes the transformation of the object design model).

Polyline Point
* *

Polyline

-points:Vector
+elements()
+addPoint(p)
+removePoint(p)

Object design model before transformation

Object design model after transformation

Point

-polylines:Vector
+elements()
+addPolyline(l)
+removePolyline(l)

{ordered}

Object Design Page 263 Thursday, September 2, 1999 12:27 PM

264 Chapter 7 • Object Design

simulation, and the CPU time it took to complete the simulation. We first convert the association
to an object called SimulationRun and two binary associations between the SimulationRun
object and the other objects. We can then use the techniques discussed earlier to convert each
binary association to a set of reference attributes.

Qualified associations. In this case, one or both association ends are associated with a key
that is used to differentiate between associations. Qualified associations are realized the same
way as one-to-many and many-to-many associations are, except for using a Hashtable object
on the qualified end (as opposed to a Vector or a Set). For example, consider the association
between Scenario and SimulationRun in JEWEL (Figure 7-26). A Scenario represents a
situation that the users are investigating (e.g., a nuclear reactor leak). For each Scenario, users
can create several SimulationRuns, each using a different set of EmissionSources or a
different EmissionModel. Given that SimulationRuns are expensive, users also reuse runs
across similar Scenarios. The Scenario end of the association is qualified with a name,
enabling the user to distinguish between SimulationRuns within the same Scenario. We

Figure 7-25 Transformation of an association class into an object and two binary associations (UML class
diagram; arrow denotes the transformation of the object design model). Once the model contains only binary
associations, each association is realized by using reference attributes and collections of references.

SimulationRun

date
author
CPUtime
getOutline()

EmissionSource SimulationResult
* 1

EmissionSource SimulationResult
* 1

Object design model before transformation

Object design model after transformation

SimulationRun

1 1

date
author
CPUtime
getOutline()

Object Design Page 264 Thursday, September 2, 1999 12:27 PM

Object design activities 265

realize this qualified association by creating a runs attribute on Scenarios and a scenarios
attribute in SimulationRuns. The runs attribute is a Hashtable that is indexed by the name of a
SimulationRun. Because the name is stored in the Hashtable, a specific SimulationRun can
have different names across Scenarios. The SimulationRun end is realized, as before, as a
Vector in the SimulationRun class.

7.4.9 Increasing reuse

Inheritance allows developers to reuse code across a number of similar classes. For
example, JFC, as do most user interface toolkits, provides four types of buttons:

• a push button (JButton), which triggers an action when the end user clicks on the button

• a radio button (JRadioButton), which enables an end user to select one choice out of a set
of options

• a checkbox (JCheckBox), which enables an end user to turn an option on or off

• a menu item (JMenuItem), which triggers an action when selected from a pulldown or a
popup menu

These four buttons share a set of attributes (e.g., a text label, an icon) and behavior (e.g.,
something happens when the end user selects them). However, the behavior of each type of
button is slightly different. To accommodate these differences while reusing as much code as
possible, JFC introduces two abstract classes, AbstractButton and JToggleButton, and
organizes these four types of buttons into the inheritance hierarchy depicted by Figure 7-27. The
AbstractButton class defines the behavior shared by all JFC buttons. JToggleButton defines
the behavior shared by the two state buttons (i.e., JRadioButton and JCheckBoxes).

Figure 7-26 Realization of a bidirectional qualified association (UML class diagram; arrow denotes the
transformation of the object design model).

Scenario

-runs:Hashtable
+elements()
+addRun(simname,sr:SimulationRun)
+removeRun(simname,sr:SimulationRun)

SimulationRun

-scenarios:Vector
+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

simname
0..11

Object design model before transformation

Object design model after transformation

Scenario

SimulationRun

Object Design Page 265 Thursday, September 2, 1999 12:27 PM

266 Chapter 7 • Object Design

There are two main advantages to using a well-designed inheritance hierarchy. First, more
code is reused, leading to less redundancies and thus fewer opportunities for defects. Second, the
resulting code is extensible, including a well-documented interface for creating future
specializations (e.g., new types of buttons in the case of JFC). Reuse through inheritance comes
at a cost, however. Developers must correctly anticipate which behavior should be shared and
which behavior should be refined by the specialization, often without knowing all possible
specializations. Moreover, once developers define an inheritance hierarchy and a paradigm for
sharing code, the interfaces of the abstract classes become increasingly more rigid to change as
many subclasses and client classes depend on them. Object design represents the last
opportunity during development to revisit the inheritance hierarchies among application and
solution objects. Any changes later in the process may introduce hard-to-detect defects and
substantially increase the cost of the system.

There are two main approaches to designing an inheritance hierarchy for reuse. First, we
can examine a number of similar classes and abstract out their common behavior. The
AbstractButton example of Figure 7-27 is an example of this approach. Second, we can
decouple a client class from an anticipated change by introducing a level of abstraction. Most
design patterns [Gamma et al., 1994], including the AbstractFactory pattern below, use
inheritance to protect against an anticipated change.

Consider the problem of writing a single application that works with several windowing
styles (e.g., Windows, Macintosh, and Motif). Given a specific platform, the user works with a
consistent set of windows, scrollbars, buttons, and menus. The application itself should not
know or depend on a specific look and feel. The Abstract Factory pattern (Figure 7-28) solves
this problem by providing an abstract class for each object that can be substituted (e.g.,
AbstractWindow and AbstractButton) and by providing an interface for creating groups of
objects (i.e., the AbstractFactory). Concrete classes implement each abstract class for each
factory. For example, the AbstractButton class is refined by the MacButton class and the
MotifButton class. The AbstractFactory interface provides a createButton() operation to
create a button. A concrete factory implements the AbstractFactory interface for each option.

Figure 7-27 An example of code reuse with inheritance (UML class diagram).

AbstractButton

JButton JMenuItem JToggleButton

JRadioButton JCheckBox

Object Design Page 266 Thursday, September 2, 1999 12:27 PM

Object design activities 267

The MotifFactory.createButton() method returns a MotifButton, whereas the
MacFactory.createButton() method returns a MacButton. Note that both createButton()
methods have the same interface for both specializations. Consequently, the caller only accesses
the AbstractFactory interface and the abstract classes and is thus shielded from concrete
implementations. Moreover, this allows new factories (e.g., BeOSFactory and BeOSButton) to
be implemented in the future without changing the application.

7.4.10 Removing implementation dependencies

In system modeling, we use generalization relationships to classify objects into
generalization/specification hierarchies. This allows us to differentiate the common behavior of
the general case from the behavior that is specific to specialized objects. In an object-oriented
programming language, generalization is realized with inheritance. This allows us to reuse
attributes and operations from higher level classes. On the one hand, inheritance when used as a
generalization mechanism results in fewer dependencies. For example, in the AbstractFactory
design pattern (Figure 7-28), dependencies between the application and a specific look and feel
is removed using the abstract classes AbstractFactory, AbstractButton, and

Figure 7-28 Abstract Factory design pattern (UML class diagram, dependencies represent <<call>>
relationships). This design pattern uses inheritance to support different look and feels (e.g., Motif and
Macintosh). If a new specialization is added, the client does not need to be changed.

AbstractFactory

AbstractWindow

createWindow()
createButton()

MotifWindow MacWindow

MacFactory

createWindow()
createButton()

MotifFactory

createWindow()
createButton()

AbstractButton

MotifButton MacButton

Client

Object Design Page 267 Thursday, September 2, 1999 12:27 PM

268 Chapter 7 • Object Design

AbstractWindow. On the other hand, inheritance introduces dependencies along the hierarchy.
For example, the classes MotifWindow and MacWindow are tightly coupled with
AbstractWindow. In the case of generalization, this is acceptable, given that AbstractWindow,
MotifWindow, and MacWindow are strongly related concepts. These tight dependencies can
become a problem when inheritance is used for other purposes than generalization. Consider the
following example.

Assume for a moment that Java does not provide a Set abstraction and that we needed to
write our own. We decide to reuse the java.util.Hashtable class to implement a set
abstraction that we call MySet. Inserting an element in MySet is equivalent to checking if the
corresponding key exists in the table and creating an entry if necessary. Checking if an element
is in MySet is equivalent to checking if an entry is associated with the corresponding key (see
Figure 7-29, left column).

Such an implementation of a Set allows us to reuse code and provides us with the desired
behavior. It also provides us, however, with unwanted behavior. For example, Hashtable
implements the containsKey() operation to check if the specified object exists as a key in the
Hashtable and the containsValue() operation to check if the specified object exists as an
entry. Both of these operations are inherited by MySet. Given our implementation, the operation
containsValue() invoked on a MySet object always returns null, which is counterintuitive.
Worse, a developer using the MySet can easily confuse the contains() and containsValue()
operations and introduce a fault in the system that is difficult to detect. To address this issue, we
could overwrite all operations inherited from Hashtable that should not be used on MySet. This
would lead to a MySet class that is difficult to understand and reuse.

The fundamental problem in this example is that, although Hashtable provides behavior
that we would like to reuse in implementing Set, because it would save us time, the Set concept
is not a refinement of the Hashtable concept. In contrast, the MacWindow class of the
AbstractFactory example is a refinement of the AbstractWindow class.

We call the use of inheritance for the sole purpose of reusing code implementation
inheritance. Implementation inheritance enables developers to reuse code quickly by
subclassing an existing class and refining its behavior. A Set implemented by inheriting from a
Hashtable is an example of implementation inheritance. Conversely, the classification of
concepts into specialization-generalization hierarchies is called interface inheritance. Interface
inheritance is used for managing the complexity arising for a large number of related concepts.
Interface inheritance is also called subtyping, in which case the superclass is called supertype
and the subclass is called subtype. For example, Real and Integer are subtypes of Number.
MapArea is a subtype of JPanel.

Implementation inheritance should be avoided. Although it provides a tempting
mechanism for code reuse, it yields only short-term benefits and results into systems that are
difficult to modify. Delegation is a better alternative to implementation inheritance if code can
be reused. A class is said to delegate to another class if it implements an operation by merely
resending a message to another class. Delegation makes explicit the dependencies between the

Object Design Page 268 Thursday, September 2, 1999 12:27 PM

Object design activities 269

reused class and the new class. The right column of Figure 7-29 shows an implementation of
MySet using delegation instead of implementation inheritance. Note that the only significant
addition is the attribute table and its initialization in the MySet() constructor.

For a thorough discussion of the trade-offs related to inheritance and delegation, the reader
is referred to [Meyer, 1997].

/* Implementation of MySet using
inheritance */
class MySet extends Hashtable {

/* Constructor omitted */
MySet() {
}

void insert(Object element) {
if (this.get(element) == null){

this.put(element, this);
}

}
boolean contains(Object element){

return
(this.get(element)!=null);

}
/* Other methods omitted */

}

/* Implementation of MySet using
delegation */
class MySet {

Hashtable table;
MySet() {

table = Hashtable();
}
void insert(Object element) {

if (table.get(element)==null){
table.put(element,this);

}
}
boolean contains(Object element) {

return
(table.get(element) != null);

}
/* Other methods omitted */

}

Figure 7-29 An example of implementation inheritance. The left column depicts a questionable
implementation of MySet using implementation inheritance. The right column depicts an improved
implementation using delegation. (UML class diagram and Java).

Hashtable

MySet

insert(element)
contains(element):boolean

put(key,element)
get(key):Object
containsKey(key):boolean
containsValue(element):boolean

Object design model before transformation Object design model after transformation

Hashtable

MySet

insert(element)
contains(element):boolean

put(key,element)
get(key):Object
containsKey(key):boolean
containsValue(element):boolean

table 1

1

Object Design Page 269 Thursday, September 2, 1999 12:27 PM

270 Chapter 7 • Object Design

Optimization activities

The direct translation of an analysis model results into a model that is often inefficient.
During object design, we optimize the object model according to design goals, such as
minimization of response time, execution time, or memory resources. In this section, we
describe four simple optimizations:

• the addition of associations for optimizing access paths

• collapsing objects into attributes

• caching the result of expensive computations

• delaying expensive computations

When applying optimizations, developers must strike a balance between efficiency and
clarity. Optimizations increase the efficiency of the system but also make it more complex and
difficult to understand the system models.

7.4.11 Revisiting access paths

One common source of inefficient system performance is the repeated traversal of
multiple associations when accessing needed information. To identify inefficient access paths,
object designers should ask the following questions [Rumbaugh et al., 1991]:

• For each operation: How often is the operation called? What associations does the
operation have to traverse to obtain the information it needs? Frequent operations should
not require many traversals but should have a direct connection between the querying
object and the queried object. If that direct connection is missing, an additional association
should be added between these two objects.

• For each association: If it has a “many” association on one or both sides, is the
multiplicity necessary? How often is the “many” side of an association involved in a
search? If this is frequent, then the object designer should try to reduce “many” to “one.”
Otherwise, should the “many” side be ordered or indexed to improve access time?

In interface and reengineering projects, estimates for the frequency of access paths can be
derived from the legacy system. In greenfield engineering projects (i.e., systems that are
developed from scratch and that are not intended to replace a legacy system), the frequency of
access paths are more difficult to estimate. In this case, redundant associations should not be
added before a dynamic analysis of the full system—for example, during system testing—has
determined which associations participate in the performance bottlenecks.

Another source of inefficient system performance is excessive modeling. During analysis
many classes are identified that turn out to have no interesting behavior. In this case, object
designers should ask:

Object Design Page 270 Thursday, September 2, 1999 12:27 PM

Object design activities 271

• For each attribute: What operations use the attribute? Are set() and get() the only
operations performed on the attribute? If yes, does the attribute really belong to this object
or should it be moved to a calling object?

The systematic examination of the object model using the above questions should lead to a
model with selected redundant associations, with fewer inefficient many-to-many associations,
and fewer classes.

7.4.12 Collapsing objects: Turning objects into attributes

During analysis, developers identify many classes that are associated with domain
concepts. During system design and object design, the object model is restructured and
optimized, often leaving some of these classes with only a few attributes and little behavior.
Such classes, when associated only with one other class, can be collapsed into an attribute, thus
reducing the overall complexity of the model.

Consider, for example, an object model that includes Persons identified by a
SocialSecurity object. During analysis, two classes may have been identified. Each Person is
associated with a SocialSecurity class, which stores a unique ID string identifying the
Person. Further modeling did not reveal any additional behavior for the SocialSecurity
object. Moreover, no other classes have associations with the SocialSecurity class. In this
case, the SocialSecurity class should be collapsed into an attribute of the Person class.

Figure 7-30 Alternative representations of a unique identifier for a Person (UML class diagrams).

Person

SocialSecurity

ID:String

Person

SSN:String

Object design model before transformation

Object design model after transformation

Object Design Page 271 Thursday, September 2, 1999 12:27 PM

272 Chapter 7 • Object Design

The decision of collapsing classes is not always obvious. In the case of a social security
system, the SocialSecurity class may have much more behavior, such as specialized routines
for generating new numbers based on birth dates and the location of the original application. In
general, developers should delay collapsing decisions until the beginning of the implementation,
when responsibilities for each class are clear.

7.4.13 Caching the result of expensive computations

Expensive computations often only need to be done once, because the base values from
which the computation is done do not change or change slowly. In such cases, the result of the
computation can be cached as a private attribute. Consider, for example, the
Layer.getOutline() operation. Assume all LayerElements are defined once as part of the
configuration of the system and do not change during the execution. Then, the vector of Points
returned by the Layer.getOutline() operation is always the same for a given bbox and detail.
Moreover, end users have the tendency to focus on a limited number of points around the map as
they focus on a specific city or region. Taking into account these observations, a simple
optimization is to add a private cachedPoints attribute to the Layer class, which remembers the
result of the getOutline() operation for given bbox and detail pairs. The getOutline()
operation then checks the cachedPoints attribute first, returns the corresponding Point
Vector, if found, it otherwise invokes the getOutline() operation on each contained
LayerElement. Note that this approach includes a trade-off: On the one hand, we improve the
average response time for the getOutline() operation; on the other hand, we consume memory
space by storing redundant information.

7.4.14 Delaying expensive computations

An alternate approach to expensive computations is to delay them as long as possible. For
example, consider an object representing an image stored as a file. Loading all the pixels that
constitute the image from the file is expensive. However, the image data does not need to be
loaded until the image is displayed. We can realize such an optimization using a Proxy pattern
[Gamma et al., 1994]. An ImageProxy object takes the place of the Image and provides the same
interface as the Image object (Figure 7-31). Simple operations (such as width() and height()
are handled by ImageProxy. When Image needs to be drawn, however, ImageProxy loads the
data from disk and creates an RealImage object. If the client does not invokes the paint()
operation, the RealImage object is not created, thus saving substantial computation time. The
calling classes only access the ImageProxy and the RealImage through the Image interface.

Object Design Page 272 Thursday, September 2, 1999 12:27 PM

Managing object design 273

7.5 Managing object design

In this section, we discuss management issues related to object design. There are two
primary management challenges during object design:

• Increased communication complexity. The number of participants involved during this
phase of development increases dramatically. The object design models and code are the
result of the collaboration of many people. Management needs to ensure that decisions
among these developers are made consistently with project goals.

• Consistency with prior decisions and documents. Developers often do not appreciate
completely the consequences of analysis and system design decisions before object
design. When detailing and refining the object design model, developers may question
some of these decisions and reevaluate them in the light of lessons learned. The
management challenge is to maintain a record of these revised decisions and to make sure
all documents reflect the current state of development.

Figure 7-31 Delaying expensive computations using a Proxy pattern (UML class diagram).

Image

filename:String

width()
height()
paint()

Image

filename:String

width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String

width()
height()
paint()

image

1 0..1

Object design model before transformation

Object design model after transformation

Object Design Page 273 Thursday, September 2, 1999 12:27 PM

274 Chapter 7 • Object Design

In Section 7.5.1, we discuss the Object Design Document, its development and
maintenance, and its relationship with other documents. In Section 7.5.2, we describe the roles
associated with object design.

7.5.1 Documenting object design

Object design is documented in the Object Design Document (ODD). It describes object
design trade-offs made by developers, guidelines they followed for subsystem interfaces, the
decomposition of subsystems into packages and classes, and the class interfaces. The ODD is
used to exchange interface information among teams and as a reference during testing. The
audience for the ODD includes system architects, (i.e., the developers who participate in the
system design), developers who implement each subsystem, and testers.

The ODD enables developers to understand the subsystem sufficiently well that they can
use it. Moreover, a good interface specification enables other developers to implement classes
concurrently. In general, an interface specification should satisfy the following criteria [Liskov,
1986]:

• Restrictiveness. A specification should be precise enough that it excludes unwanted
implementations. Preconditions and postconditions specifying border cases is one way to
achieve restrictive specifications.

• Generality. A specification, however, should not restrict its implementation. This allows
developers to develop and substitute increasingly efficient or elegant implementations that
may not have been thought of when the subsystem was specified.

• Clarity. A specification should be easily and unambiguously understandable by
developers. However restrictive and general a specification may be, it is useless if it is
difficult to understand. Certain behaviors are more easily described in natural language,
whereas boundary cases can be described with constraints and exceptions.

There are three main approaches to documenting object design.

• Self-contained ODD generated from model. The first approach is to document the object
design model the same way we documented the analysis model or the system design
model: We write and maintain a UML model using a tool and generate the document
automatically. This document would duplicate any application objects identified during
analysis. The disadvantages of this solution include redundancy with the Requirements
Analysis Document (RAD) and a high level of effort for maintaining consistency with the
RAD. Moreover, the ODD duplicates information in the source code and requires a high
level of effort whenever the code changes. This often leads to an RAD and an ODD that
are inaccurate or out of date.

• ODD as extension of the RAD. The second approach is to treat the object design model as
an extension of the analysis model. In other terms, the object design is considered as the

Object Design Page 274 Thursday, September 2, 1999 12:27 PM

Managing object design 275

set of application objects augmented with solution objects. The advantage of this solution
is that maintaining consistency between the RAD and the ODD becomes much easier as a
result of the reduction in redundancy. The disadvantages of this solution include polluting
the RAD with information that is irrelevant to the client and the user. Moreover, object
design is rarely as simple as identifying additional solution objects. Often, application
objects are changed or transformed to accommodate design goals or efficiency concerns.

• ODD embedded into source code. The third approach is to embed the ODD into the source
code. As in the first approach, we first represent the ODD using a modeling tool (see
Figure 7-32). Once the ODD becomes stable, we use the modeling tool to generate class
stubs. We describe each class interface using tagged comments that distinguish source
code comments from object design descriptions. We can then generate the ODD using a
tool that parses the source code and extracts the relevant information (e.g., Javadoc
[Javadoc, 1999a]). Once the object design model is documented in the code, we abandon
the initial object design model. The advantage of this approach is that the consistency
between the object design model and the source code is much easier to maintain: when
changes are made to the source code, the tagged comments need to be updated and the
ODD regenerated. In this section, we only focus on this approach.

The fundamental issue is one of maintaining consistency among two models and the
source code. Ideally, we want to maintain the analysis model, the object design model, and the
source code using a single tool. Objects would then be described once and consistency among
documentation, stubs, and code would be maintained automatically.

Presently, however, UML modeling tools provide facilities for generating a document
from a model or class stubs from a model. The documentation generation facility can be used,
for example, to generate the RAD from the analysis model (Figure 7-32). The class stub
generation facility (called forward engineering) can be used in the self-contained ODD approach
to generate the class interfaces and stubs for each method.

Some modeling tools provide facilities for reverse engineering, that is, recreating a UML
model from source code. Such facilities are useful for creating object models from legacy code.
They require, however, substantial hand processing, as the tool cannot recreate bidirectional
associations based on reference attributes only.

Tool support currently falls short when maintaining two-way dependencies, in particular
between the analysis model and the source code. Some tools, such as Rationale Rose [Rational,
1998], attempt to realize this functionality by embedding information about associations and
other UML constructs in source code comments. Even though this allows the tool to recover
syntactic changes from the source code, developers still need to update the model descriptions to
reflect the changes. Because developers need different tools to change the source code and the
model, the model usually falls behind.

Until modeling tools provide better support for maintaining consistency between object
models and source code, we find that generating the ODD from source code and focusing the

Object Design Page 275 Thursday, September 2, 1999 12:27 PM

276 Chapter 7 • Object Design

RAD on the application domain is the most practical. It reduces the amount of redundant
information that needs to be maintained, and it locates the object design information where it is
the most accessible, that is, the source code. The consistency between the source code and the
analysis model still needs to be maintained manually. This task is easier, however, because fewer
code changes impact the analysis model than impact the object design model.

Figure 7-32 Embedded ODD approach. Class stubs are generated from the object design model. The
object design model is then documented as tagged comments in the source code. The initial object design
model is abandoned and the ODD is generated from the source code instead using a tool such as Javadoc
(UML activity diagram).

RAD
Document
analysis

Analysis

Analysis model

Object design

Initial object
design model

Generate class stubs

Initial class
stubs

ODD
Document

object design

System design

Implementation

Commented code

Subsystem
decomposition Design goals

Object Design Page 276 Thursday, September 2, 1999 12:27 PM

Managing object design 277

The following is an example template for a generated ODD:

The first section of the ODD is an introduction to the document. It describes the general
trade-offs made by developers (e.g., buy vs. build, memory space vs. response time), guidelines
and conventions (e.g., naming conventions, boundary cases, exception handling mechanisms),
and an overview of the document.

Interface documentation guidelines and coding conventions are the single most important
factor that can improve communication between developers during object design. These include
a list of rules that developers should use when designing and naming interfaces. Below are
examples of such conventions.

• Classes are named with singular nouns.
• Methods are named with verb phrases, fields, and parameters with noun phrases.

• Error status is returned via an exception only, not a return value.
• Collections and containers have an elements() method returning an Enumeration.

• Enumerations returned by elements() methods are robust to element removals.

Such conventions help developers design interfaces consistently, even if many developers
contribute to the interface specification. Moreover, making these conventions explicit before
object design makes it easier for developers to follow them. In general, these conventions should
not evolve during the project.

The second section of the ODD, Packages, describes the decomposition of subsystems
into packages and the file organization of the code. This includes an overview of each package,
its dependencies with other packages, and its expected usage.

The third section, Class interfaces, describes the classes and their public interfaces. This
includes an overview of each class, its dependencies with other classes and packages, its public
attributes, operations, and the exceptions they can raise.

The initial version of the ODD can be written soon after the subsystem decomposition is
stable. The ODD is updated every time new interfaces become available or existing ones are
revised. Even if the subsystem is not yet functional, having a source code interface enables

Object Design Document

1. Introduction

1.1 Object design trade-offs

1.2 Interface documentation guidelines

1.3 Definitions, acronyms, and abbreviations

1.4 References

2. Packages

3. Class interfaces

Glossary

Object Design Page 277 Thursday, September 2, 1999 12:27 PM

278 Chapter 7 • Object Design

developers to more easily code dependent subsystems and communicate unambiguously.
Developers usually discover at this stage missing parameters and new boundary cases. The
development of the ODD is different than other documents, as more participants are involved
and as the document is revised more frequently. To accommodate a high rate of change and
many developers, sections 2 and 3 can be generated by a tool from source code comments.

In Java, this can be done with Javadoc, a tool that generates Web pages from source code
comments. Developers annotate interfaces and class declarations with tagged comments. For
example, Figure 7-33 depicts the interface specification for the Layer class of the JEWEL

example. The header comment in the file describes the purpose of the Layer class, its authors, its
current version, and cross references to related classes. The @see tags are used by Javadoc to
create cross references between classes. Following the header comment is the class and the
method declarations. Each method comment contains a brief description of the purpose of the
method, its parameters, and its return result. When using constraints, we also include
preconditions and postconditions in the method header. The first sentence of the comment and
the tagged comments are extracted and formatted by Javadoc. Keeping material for the ODD
with the source code enables the developers to maintain consistency more easily and more
rapidly. This is critical when multiple persons are involved.

For any system of useful size, the ODD represents a large amount of information that can
translate to several hundreds or thousands of pages of documentation. Moreover, the ODD
evolves rapidly during object design and integration, as developers understand better other
subsystem’s needs and find faults with their specifications. For these reasons, all versions of the
ODD should be made available electronically, for example, as a set of Web pages. Moreover,
different components of the ODD should be put under configuration management and
synchronized with their corresponding source code files. We describe configuration management
issues in more detail in Chapter 10, Software Configuration Management.

7.5.2 Assigning responsibilities

Object design is characterized by a large number of participants accessing and modifying
a large amount of information. To ensure that changes to interfaces are documented and
communicated in an orderly manner, several roles collaborate to control, communicate, and
implement changes. These include the members of the architecture team who are responsible for
system design and subsystem interfaces, liaisons who are responsible for interteam
communication, and configuration managers who are responsible for tracking change.

Below are the main roles of object design.

• The core architect develops coding guidelines and conventions before object design
starts. As for many conventions, the actual set of conventions is not as important as the
commitment of all architects and developers to use the conventions. The core architects
are also responsible for ensuring consistency with prior decisions documented in the SDD
and RAD.

Object Design Page 278 Thursday, September 2, 1999 12:27 PM

Managing object design 279

• The architecture liaisons document the public subsystem interfaces for which they are
responsible. This leads to a first draft of the ODD which is used by developers.
Architecture liaisons also negotiate changes to public interfaces when they become
necessary. Often, the issue is not of consensus, but rather, of communication: developers
depending on the interface may welcome the change if they are notified first. The
architecture liaisons and the core architects form the architecture team.

• The object designers refine and detail the interface specification of the class or subsystem
they implement.

• The configuration manager of a subsystem releases changes to the interfaces and the
ODD once they become available. The configuration manager also keeps track of the
relationship between source code and ODD revisions.

• Technical writers from the documentation team clean up the final version of the ODD.
They ensure that the document is consistent from a structural and content point of view.
They also check for compliance with the guidelines.

/* The class Layer is a container of LayerElements, each representing a
 * polygon or a polyline. For example, JEWEL typically has a road layer, a
 * water layer, a political layer, and an emissions layer.
 * @author John Smith
 * @version 0.1
 * @see LayerElement
 * @see Point
 */
class Layer {

/* Member variables, constructors, and other methods omitted */
Enumeration elements() {…};

/* The getOutline operation returns an enumeration of points representing
 * the layer elements at a specified detail level. The operation only
 * returns points contained within the rectangle bbox.
 * @param box The clipping rectangle in universal coordinates
 * @param detail Detail level (big numbers mean more detail)
 * @return A enumeration of points in universal coordinates.
 * @throws ZeroDetail
 * @throws ZeroBoundingBox
 * @pre detail > 0.0 and bbox.width > 0.0 and bbox.height > 0.0
 * @post forall LayerElement le in this.elements() |
 * forall Point p in le.points() |
 * result.contains(p)
 */
Enumeration getOutline(Rectangle2D bbox, double detail) {…};

/* Other methods omitted */
}

Figure 7-33 Interface description of the Layer class using Javadoc tagged comments (Java excerpts).

Object Design Page 279 Thursday, September 2, 1999 12:27 PM

280 Chapter 7 • Object Design

As in system design, the architecture team is the integrating force of object design. The
architecture team ensures that changes are consistent with project goals. The documentation
team, including the technical writers, ensures that the changes are consistent with guidelines and
conventions.

7.6 Exercises

1. Consider the Polyline, Polygon, and Point classes of Figure 7-14. Write the following
constraints in OCL:

• A Polygon is composed of a sequence of at least three Points.

• A Polygon is composed of a sequence of Points starting and ending at the same
Point.

• The Points returned by the getPoints(bbox) method of a Polygon are within the
bbox rectangle.

2. Consider the Layer, LayerElement, Polyline, and Point classes of Figure 7-14. Write
constraints below in OCL. Note that the last two constraints require the use of the forAll
OCL operator on collections.

• A detail level cannot be part of both the inDetailLevels and the
notInDetailLevels sets of a Point.

• For a given detail level, LayerElement.getOutline() can only return Points
that contain the detail level in their inDetailLevels set attribute.

• The inDetailLevels and notInDetailLevels set can only grow as a consequence
of LayerElement.getOutline(). In other words, once a detail level is in one of
these sets, it cannot be removed.

3. Consider the Point class in Figures 7-14 and 7-15. Assume that we are evaluating an
alternative design in which a global object called DetailTable tracks which Points have
been included or excluded from a given detail level (instead of each Point having a
inDetailLevels and notInDetailLevels attribute). This is realized by two associations
between DetailTable and Point, which are indexed by detailLevel (see Figure 7-34).
Write OCL constraints specifying that, given a detailLevel, a DetailTable can only have
one link to a given Point (i.e., a DetailTable cannot have both an includesPoint and
an excludesPoint association given a Point and detailLevel).

4. Using the transformations described in Sections 7.4.8–7.4.10, restructure the object design
model of Figure 7-34.

5. Incrementally computing the inDetailLevels and notInDetailLevels attributes of a
Point class as depicted in Figure 7-14 is an optimization. Using the terms we introduced in
Section , name the kind of optimization that is performed.

6. Discuss the relative advantages of the Point class of Exercise 3 versus the Point class of
Figure 7-14 from a response time and a memory space point of view.

Object Design Page 280 Thursday, September 2, 1999 12:27 PM

Exercises 281

7. Assume that you are using an application framework instead of the GIS we described in
Section 7.4. The GIS application framework provides a getOutline() method that
returns an Enumeration of GISPoints to represent a Polyline. The JFC
drawPolyline() method takes as parameters two arrays of coordinates and a integer
denoting the number of points in the Polyline (Figure 7-18). Which design pattern
should you use to address this interface mismatch? Draw a UML class diagram to
illustrate your solution.

8. You are the developer responsible for the getOutline() method of the Layer class in
Figure 7-15. You find that the current version of getOutline() does not properly exclude
Polylines consisting of a single Point (as a result of the clipping). You repair the bug.
Who should you notify?

9. You are the developer responsible for the getOutline() method of the Layer class in
Figure 7-15. You change the method to represent detailLevels (that are stored in
inDetailLevels or notInDetailLevels) using a positive integer instead of a floating
point number. Who should you notify?

10. Why is maintaining consistency between the analysis model and the object design model
difficult? Illustrate your point with a change to the object design model.

References

[Birrer, 1993] E. T. Birrer, “Frameworks in the financial engineering domain: An experience report,”
ECOOP'93 Proceedings, Lecture Notes in Computer Science no. 707, 1993.

[Bruegge et al., 1993] B. Bruegge, T. Gottschalk, & B. Luo, “A framework for dynamic program analyzers,”
OOPSLA' 93, (Object-Oriented Programming Systems, Languages, and Applications),
Washington, DC, pp. 65–82, Sept. 1993.

[Bruegge & Riedel, 1994] B. Bruegge & E. Riedel. “A geographic environmental modeling system: Towards an
object-oriented framework,” Proceedings of the European Conference on
Object-Oriented Programming (ECOOP-94), Bologna, Italy, Lecture Notes in
Computer Science, Springer Verlag, Berlin, July 1994.

Figure 7-34 DetailTable is a global object tracking which Points have been included or excluded from
a specified detailLevel. This is an alternative to the inDetailLevels and notInDetailLevels sets
depicted in Figure 7-14.

Point

x, y

detailLevelDetailTable

detailLevel
* *

0..1

0..1

includesPoint

excludesPoint

Object Design Page 281 Thursday, September 2, 1999 12:27 PM

282 Chapter 7 • Object Design

[Bruegge et al., 1995] B. Bruegge, E. Riedel, G. McRae, & T. Russel, “GEMS: An environmental modeling
system,” IEEE Journal for Computational Science and Engineering, pp.55–68, Sept.
1995.

[Fayad & Hamu, 1997] M. E. Fayad & D. S. Hamu, “Object-oriented enterprise frameworks: Make vs. buy
decisions and guidelines for selection,” The Communications of ACM, 1997.

[Gamma et al., 1994] E. Gamma, R. Helm, R. Johnson, & J. Vlissides, Design Patters: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1994.

[Horn, 1992] B. Horn. “Constraint patterns as a basis for object-oriented programming,” in
Proceedings of the OOPSLA’92, Vancouver, Canada, 1992.

[Hueni et al., 1995] H. Hueni, R. Johnson, & R. Engel, “A framework for network protocol software,”
Proceedings of OOPSLA, Austin, TX, Oct. 1995.

[iContract] Java Design by Contract Tool, http://www.reliable-systems.com/tools/iContract/
iContract.htm.

[Javadoc, 1999a] Sun Microsystems, Javadoc homepage, http://java.sun.com/products/jdk/javadoc/.

[Javadoc, 1999b] Sun Microsystems, “How to write doc comments for Javadoc,” http://java.sun.com/
products/jdk/javadoc/writingdoccomments.html.

[JFC, 1999] Java Foundation Classes, JDK Documentation. Javasoft, 1999.

[Johnson et al., 1988] R. Johnson & B. Foote, “Designing reusable classes,” Journal of Object-Oriented
Programming. vol. 1, no. 5, pp. 22–35, 1988.

[Kompanek et al., 1996] A. Kompanek, A. Houghton, H. Karatassos, A. Wetmore, & B. Bruegge, “JEWEL: A
distributed system for emissions modeling,” Conference for Air and Waste
Management, Nashville, TN, June 1996.

[Liskov, 1986] B. Liskov & J. Guttag, Abstraction and Specification in Program Development.
McGraw-Hill, New York, 1986.

[Meyer, 1997] Bertrand Meyer, Object-Oriented Software Construction, 2nd ed. Prentice Hall, Upper
Saddle River, 1997.

[OMG, 1995] Object Management Group, The Common Object Request Broker: Architecture and
Specification. Wiley, New York, 1995.

[OMG, 1998] Object Management Group, OMG Unified Modeling Language Specification.
Framingham, MA, 1998, http://www.omg.org.

[Rational, 1998] Rational Software Corp., Rationale Rose 98: Using Rose. Cupertino, CA, 1998.

[Rumbaugh et al., 1991] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, & W. Lorensen. Object-Oriented
Modeling and Design. Prentice Hall, Englewood Cliffs, NJ, 1991.

[Schmidt, 1997] D. C. Schmidt, “Applying design patterns and frameworks to develop object-oriented
communication software,” Handbook of Programming Languages, vol. 1, Peter Salus
(ed.), MacMillan Computer, 1997.

[Weinand et al., 1988] A. Weinand, E. Gamma, & R. Marty. ET++ – An object-oriented application
framework in C++. In Object-Oriented Programming Systems, Languages, and
Applications Conference Proceedings, San Diego, CA, September 1988.

[Wilson & Ostrem, 1999] G. Wilson & J. Ostrem, WebObjects Developer’s Guide, Apple, Cupertino, CA, 1998.

Object Design Page 282 Thursday, September 2, 1999 12:27 PM

