
497

A P P E N D I X A

Design Patterns

Design patterns are partial solutions to common
problems, such as separating an interface from a number of alternate implementations, wrapping
around a set of legacy classes, protecting a caller from changes associated with specific
platforms. A design pattern is composed of a small number of classes that, through delegation
and inheritance, provide a robust and modifiable solution. These classes can be adapted and
refined for the specific system under construction. In addition, design patterns provide examples
of inheritance and delegation.

Since the publication of the first book on design patterns for software [Gamma et al.,
1994], many additional patterns have been proposed for a broad variety of problems, including
analysis [Fowler, 1997] [Larman, 1998], system design [Buschmann et al., 1996], middleware
[Mowbray & Malveau, 1997], process modeling [Ambler, 1998], dependency management
[Feiler et al., 1998], and configuration management [Brown et al., 1999]. The term itself has
become a buzzword that is often attributed many different definitions. In this book, we focus
only on the original catalog of design patterns, as it provides a concise set of elegant solutions to
many common problems. This appendix summarizes the design patterns we use in this books.
For each pattern, we provide pointers to the examples in the book that use them. Our goal is to
provide a quick reference that can also be used as an index. We assume from the reader a basic
knowledge of design patterns, object-oriented concepts, and UML class diagrams.

Design Patterns Page 497 Thursday, October 14, 1999 2:35 PM

498 Appendix • Design Patterns

A.1 Abstract Factory: Encapsulating platforms

Purpose This pattern is used to shield an application from the concrete classes provided by a
specific platform, such as a windowing style or an operating system. Consequently, by using this
pattern, an application can be developed to run uniformly on a range of platforms.

Description Each platform (e.g., a windowing style) is represented by a Factory class and a
number of ConcreteClasses for each concept in the platform (e.g., window, button, dialog).
The Factory class provides methods for creating instances of the ConcreteClasses. Porting an
application to a new platform is then reduced to implementing a Factory and a ConcreteClass
for each concept.

Examples
• statically encapsulating windowing styles (Figure 7-28 on page 267)
• dynamically encapsulating windowing styles (Swing, [JFC, 1999])

Related concepts Increasing reuse (Section 7.4.9 on page 265), removing implementation
dependencies (Section 7.4.10 on page 267).

Figure A-1 AbstractFactory design pattern (UML class diagram).

AbstractFactory

AbstractWindow

createWindow()
createButton()

MotifWindow MacWindow

MacFactory

createWindow()
createButton()

MotifFactory

createWindow()
createButton()

AbstractButton

MotifButton MacButton

Client

Design Patterns Page 498 Thursday, October 14, 1999 2:35 PM

499

A.2 Adapter: Wrapping around legacy code

Purpose This pattern encapsulates a piece of legacy code that was not designed to work with
the system. It also limits the impact of substituting the piece of legacy code for a different
component.

Description Assume a Calling Subsystem needs to access functionality provided by an
existing Legacy System. However, the Legacy System does not comply with a
Standard Interface used by the Calling Subsystem. This gap is filled by creating an
Adaptor class which implements the Standard Interface using methods from the
Legacy System. When the caller only accesses the Standard Interface, the Legacy System
can be later replaced with an alternate component.

Example
• Sorting instances of an existing String class with an existing sort() method

(Figure 6-34 on page 202): MyStringComparator is an Adaptor for bridging the gap
between the String class and the Comparator interface used by the Array.sort()
method.

Related concepts The Bridge (Section A.3) fills the gap between an interface and its
implementations.

Figure A-2 Adapter pattern (UML class diagram). The Adapter pattern is used to provide a different
interface (New Interface) to an existing component (Legacy System).

Standard Interface

Request()

adaptee

Legacy System

ExistingRequest()

Adaptor

Request()

Subsystem

Design Patterns Page 499 Thursday, October 14, 1999 2:35 PM

500 Appendix • Design Patterns

A.3 Bridge: Allowing for alternate implementations

Purpose This pattern decouples the interface of a class from its implementation. Unlike the
Adapter pattern, the developer is not constrained by an existing piece of code. Both the
interface and the implementation can be refined independently.

Description Assume we need to decouple an Abstraction from an Implementor, because
we need to substitute different Implementors for a given Abstraction without any impact on a
calling Subsystem. This is realized by providing an Abstraction class that implements its
services in terms of the methods of an Implementor interface. Concrete Implementors that
need to be substituted refine the Implementor interface.

Examples
• Vendor independence (Figure 6-37 on page 206): The ODBC interface (the Abstraction)

decouples a caller from a database management system. For each database management
system, an ODBC Driver refines the ODBC Implementation (the Implementor). When
the Abstraction makes no assumptions about the Concrete Implementors,
Concrete Implementors can be switched without the calling Subsystem noticing, even
at run-time.

• Unit testing (Figure 9-11 on page 342): the Database Interface (the Abstraction)
decouples the User Interface (the Subsystem) from the Database (a Concrete
Implementor), allowing the User Interface and the Database to be tested
independently. When the User Interface is tested, a Test Stub (another Concrete
Implementor) is substituted for the Database.

Related concepts The Adapter pattern (Section A.2) fills the gap between two interfaces.

Figure A-3 Bridge pattern (UML class diagram).

Abstraction ImplementorSubsystem

RefinedAbstraction

ConcreteConcrete

imp

ImplementorA ImplementorB

Design Patterns Page 500 Thursday, October 14, 1999 2:35 PM

501

A.4 Command: Encapsulating control

Purpose This pattern enables the encapsulation of control such that user requests can be
treated uniformly, independent of the specific request. This pattern protects these objects from
changes resulting from new functionality. Another advantage of this pattern is that control flow
is centralized in the command objects as opposed to being distributed across interface objects.

Description An abstract Command interface defines the common services that all
ConcreteCommands should implement. ConcreteCommands collect data from the Client
Subsystem and manipulate the entity objects (Receivers). Subsystems interested only in the
general Command abstraction (e.g., an undo stack), only access the Command abstract class. Client
Subsystems do not access directly the entity objects.

Examples
• Providing an undo stack for user commands: All user-visible commands are refinements of

the Command abstract class. Each command is required to implement the do(), undo(),
and redo() methods. Once a command is executed, it is pushed onto an undo stack. If the
user wishes to undo the last command, the Command object on the top of the stack is sent
the message undo().

• Decoupling interface objects from control objects (Figure 6-45 on page 215, see also
Swing Actions,[JFC, 1999]): All user visible commands are refinements of the Command
abstract class. Interface objects, such as menu items and buttons, create and send messages
to Command objects. Only Command objects modify entity objects. When the user interface
is changed (e.g., a menu bar is replaced by a tool bar), only the interface objects are
modified.

Related concepts MVC architecture (Figure 6-15 on page 184).

Figure A-4 Command pattern (UML class diagram).

execute()

Receiver

action2()

Subsystem

<<calls>>

action1()

ConcreteCommand1

execute()

ConcreteCommand2

execute()

Command

execute()

<<calls>>

Design Patterns Page 501 Thursday, October 14, 1999 2:35 PM

502 Appendix • Design Patterns

A.5 Composite: Representing recursive hierarchies

Purpose This pattern represents a recursive hierarchy. The services related to the containment
hierarchy are factored out using inheritance, allowing a system to treat a leaf or a composite
uniformly. Leaf specific behavior can be modified without any impact on the containing
hierarchy.

Description The Component interface specifies the services that are shared among
Leaf and Composite (e.g., move(x,y) for a graphic element). A Composite has an
aggregation association with Components and implements each service by iterating over each
contained Component (e.g., the Composite.move(x,y) method iteratively invokes the
Component.move(x,y)). The Leaf services do the actual work (e.g., Leaf.move(x,y) modifies
the coordinates of the Leaf and redraws it).

Examples
• Recursive access groups (Lotus Notes): A Lotus Notes access group can contain any

number of users and access groups.
• Groups of drawable elements: Drawable elements can be organized in groups that can be

moved and scaled uniformly. Groups can also contain other groups.
• Hierarchy of files and directories (Figure 5-7 on page 137): Directories can contain files

and other directories. The same operations are available for moving, renaming, and
uniformly removing files and directories.

• Describing subsystem decomposition (Figure 6-3 on page 173): We use a Composite
pattern to describe subsystem decomposition. A subsystem is composed of classes and
other subsystems. Note that subsystems are not actually implemented as Composites to
which classes are dynamically added.

• Describing hierarchies of tasks (Figure 6-8 on page 177): We use a Composite pattern to
describe the organizations of Tasks (Composites) into Subtasks (Components) and
ActionItems (Leaves).We use a similar model to describe Phases, Activities, and
Tasks (Figure 12-6 on page 462).

Related concepts Facade pattern (Section A.6).

Figure A-5 Composite pattern (UML class diagram).

Leaf
leaves

*
Component

Composite

Design Patterns Page 502 Thursday, October 14, 1999 2:35 PM

503

A.6 Facade: Encapsulating subsystems

Purpose The Facade pattern reduces dependencies among classes by encapsulating a
subsystem with a simple unified interface.

Description A single Facade class implements a high-level interface for a subsystem by
invoking the methods of lower level classes. A Facade is opaque in the sense that a caller does
not access the lower level classes directly. The use of Facade patterns recursively yields a
layered system.

Example
• Subsystem encapsulation (Figure 6-30 on page 198):A Compiler is composed of Lexer,
Parser, ParseTree, a CodeGenerator, and an Optimizer. When compiling a string into
executable code, however, a caller only deals with the Compiler class, which invokes the
appropriate methods on the contained classes.

Related concepts Coupling and coherence (Section 6.3.3 on page 174), layers and partitions
(Section 6.3.4 on page 178), Composite pattern (Section A.5).

Figure A-6 An example of Facade pattern (UML class diagram).

Compiler

compile(s)

ParseTree

create()

Lexer

getToken()

CodeGenerator

create()

Parser

generateParseTree()

Optimizer

create()

Compiler

Design Patterns Page 503 Thursday, October 14, 1999 2:35 PM

504 Appendix • Design Patterns

A.7 Observer: Decoupling entities from views

Purpose This pattern allows to maintain consistency across the states of one Publisher and
many Subscribers.

Description A Publisher (called a Subject in [Gamma et al., 1994]) is an object whose
primary function is to maintain some state; for example, a matrix. One or more Subscribers
(called Observers in [Gamma et al., 1994]) use the state maintained by a Publisher; for
example, to display a matrix as a table or a graph. This introduces redundancies between the
state of the Publisher and the Subscribers. To address this issue, Subscribers invoke the
subscribe() method to register with a Publisher. Each ConcreteSubscriber also defines an
update() method to synchronize the state between the Publisher and the
ConcreteSusbcriber. Whenever the state of the Publisher changes, the Publisher invokes
its notify() method, which iteratively invoke each Subscriber.update() method.

Examples
• The Observer interface and Observable class are used in Java to realize an Observer

pattern ([JFC, 1999]).
• The Observer pattern can be used for realizing subscription and notification in an Model/

View/Controller architecture (Figure 6-15 on page 184).

Related concepts Entity, interface, control objects (Section 5.3.1 on page 134).

Figure A-7 The Observer pattern (UML class diagram).

ConcretePublisher

state

getState()
setState()

Subscriber

update()

ConcreteSubscriber

observerState

update()

subscribers

*1
Publisher

filename

subscribe(Subscriber)
unsubscribe(Subscriber)
notify()

Design Patterns Page 504 Thursday, October 14, 1999 2:35 PM

505

A.8 Proxy: Encapsulating expensive objects

Purpose This pattern improves the performance or the security of a system by delaying
expensive computations, using memory only when needed or checking access before loading an
object into memory.

Description The ProxyObject class acts on behalf of a RealObject class. Both classes
implement the same interface. The ProxyObject stores a subset of the attributes of the
RealObject. The ProxyObject handles certain requests completely (e.g., determining the size
of an image), whereas others are delegates to the RealObject. After delegation, the RealObject
is created and loaded in memory.

Examples
• Protection proxy (Section 6-38 on page 210): An Access association class contains a set

of operations that a Broker can use to access a Portfolio. Every operation in the
PortfolioProxy first checks with isAccessible() if the invoking Broker has
legitimate access. Once access has been granted, PortfolioProxy delegates the operation
to the actual Portfolio object. If access is denied, the actual Portfolio object is not
loaded into memory.

• Storage proxy (Section 7-31 on page 273): An ImageProxy object acts on behalf of an
Image stored on disk. The ImageProxy contains the same information as the Image (e.g.,
width, height, position, resolution) except for the Image contents. The ImageProxy
services all contents independent requests. Only when the Image contents need to be
accessed (e.g., when it is drawn on the screen), the ImageProxy creates the RealImage
object and loads its contents from disk.

Related concepts Caching expensive computations (Section 7.4.13 on page 272).

Figure A-8 The Proxy pattern (UML class diagram).

Object

filename

op1()
op2()
op3()

RealObject

op1()
op2()
op3()

data:byte[]

ProxyObject

filename

op1()
op2()
op3()

1 0..1

Design Patterns Page 505 Thursday, October 14, 1999 2:35 PM

506 Appendix • Design Patterns

A.9 Strategy: Encapsulating algorithms

Purpose This pattern decouples an algorithm from its implementation(s). It serves the same
purpose than the adapter and bridge patterns except that the encapsulated unit is a behavior.

Description An abstract Algorithm class provides methods for initializing, executing, and
obtaining the results of an Algorithm. ConcreteAlgorithm classes refine Algorithm and
provide alternate implementations of the same behavior. ConcreteAlgorithms can be switched
without any impact on the caller.

Examples
• Encryption algorithms (Figure 6-40 on page 212): Vendor-supplied encryption algorithms

pose an interesting problem: How can we be sure that the supplied software does not
include a trap door? Moreover, once a vulnerability is found in a widely used package,
how do we protect the system until a patch is available? To address both issues, we can use
redundant implementations of the same algorithm. To reduce the dependency on a specific
vendor, we encapsulate these implementations with a single Strategy pattern.

Related concepts Adapter pattern (Section A.2) and Bridge pattern (Section A.3).

Figure A-9 An example of Strategy pattern encapsulating multiple implementation of the IDEA
encryption algorithm (UML class diagram). The Message and IDEA classes cooperate to realize the
encryption of plain text. The selection of an implementation can be done dynamically.

Message

getBlock()

IDEA

encrypt(key, block)

IDEA_Vendor_A IDEA_Vendor_B

decrypt(key, block)

Context class

Strategy class

ConcreteStrategy
classes

Design Patterns Page 506 Thursday, October 14, 1999 2:35 PM

507

References
[Ambler, 1998] S. W. Ambler, Process Patterns: Building Large-Scale Systems Using Object

Technology, Cambridge University, Cambridge, 1998.

[Brown et al., 1999] W. J. Brown, H. W. McCormick, & S. W. Thomas, AntiPatterns and Patterns in
Software Configuration Management, Wiley, New York, 1999.

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, & M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. Wiley, Chichester, U.K., 1996.

[Feiler et al., 1998] P. Feiler & W. Tichy. “Propagator: A family of patterns,” in the Proceedings of
TOOLS-23'97, Jul. 28–Aug. 1 1997, Santa Barbara, CA.

[Fowler, 1997] M. Fowler, Analysis Patterns: Reusable Object Models. Addison-Wesley, Reading,
MA, 1997.

[Gamma et al., 1994] E. Gamma, R. Helm, R. Johnson, & J. Vlissides, Design Patters: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1994.

[JFC, 1999] Java Foundation Classes, JDK Documentation. Javasoft, 1999.

[Larman, 1998] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design. Prentice Hall, Upper Saddle River, NJ, 1998.

[Mowbray & Malveau, 1997] T. J. Mowbray & R. C. Malveau. CORBA Design Patterns. Wiley, New York, 1997.

Design Patterns Page 507 Thursday, October 14, 1999 2:35 PM

