ép Design Patterns Page 497 Thursday, October 14, 1999 2:35 PM

T

APPENDIX A

Design Patterns

Design patterns are partial solutions to common
praoblems, such as separating an interface from a number of alternate implementations, wrapping
around a set of legacy classes, protecting a caller from changes associated with specific
platforms. A design pattern is composed of a small number of classes that, through delegation
and inheritance, provide a robust and modifiable solution. These classes can be adapted and
refined for the specific system under construction. In addition, design patterns provide examples
of inheritance and delegation.

Since the publication of the first book on design patterns for software [Gamma et al.,
1994], many additional patterns have been proposed for a broad variety of problems, including
analysis [Fowler, 1997] [Larman, 1998], system design [Buschmann et al., 1996], middleware
[Mowbray & Malveau, 1997], process modeling [Ambler, 1998], dependency management
[Feiler et a., 1998], and configuration management [Brown et al., 1999]. The term itself has
become a buzzword that is often attributed many different definitions. In this book, we focus
only on the original catalog of design patterns, as it provides a concise set of elegant solutionsto
many common problems. This appendix summarizes the design patterns we use in this books.
For each pattern, we provide pointers to the examples in the book that use them. Our goal isto
provide a quick reference that can also be used as an index. We assume from the reader a basic
knowledge of design patterns, object-oriented concepts, and UML class diagrams.

497

ﬁ%

ikl

\ (%)
Design Patterns Page 498 Thursday, October 14, 1999 2:35 PM

T

498

A.1 Abstract Factory: Encapsulating platforms

Appendix « Design Patterns

Client - — — — —=> AbstractFactory
T T
| creat eW ndow()
] creat eButton()
X o
L
N e Mti f Factory — — — — 1 MacFact ory -
N _ r— - _ |
creat eW ndow() creat eW ndow()
lyo | creat eBut t on() | | creat eBut t on() |
Ly | | |
T B |
| | | | il/ |
L — 4 —=| Abstract Wndow | | Abstract Button |
S A S
Mot i f W ndow MacW ndow Mot i f Butt on MacBut t on

Figure A-1 Abstract Fact ory design pattern (UML class diagram).

Purpose This pattern is used to shield an application from the concrete classes provided by a
specific platform, such as awindowing style or an operating system. Consequently, by using this

pattern, an application can be developed to run uniformly on arange of platforms.

Description Each platform (e.g., awindowing style) is represented by a Fact or yclass and a
number of Concr et ed ases for each concept in the platform (e.g., window, button, dialog).
The Fact or yclass provides methods for creating instances of the Concr et eCl asss. Porting an
application to anew platform is then reduced to implementing aFact or yand aConcr et eC ass

for each concept.

Examples

» statically encapsulating windowing styles (Figure 7-28 on page 267)
» dynamically encapsulating windowing styles (Swing, [JFC, 1999])

Related concepts

Increasing reuse (Section 7.4.9 on page 265), removing implementation

dependencies (Section 7.4.10 on page 267).

ﬁ%

*

.
s

\ (%;
Design Patterns Page 499 Thursday, October 14, 1999 2:35 PM

T

499

A.2 Adapter: Wrapping around legacy code

Standard Interface Legacy System
Subsystem - —
Request () Exi sti ngRequest ()
L adapt ee
Adapt or
Request ()

Figure A-2 Adapt er pattern (UML class diagram). The Adapt er pattern is used to provide a different
interface (New Interfacgto an existing component (Legacy Syst em).

Purpose This pattern encapsulates a piece of legacy code that was not designed to work with
the system. It also limits the impact of substituting the piece of legacy code for a different
component.

Description Assume a Cal | i ng Subsyst emneeds to access functionality provided by an
existing Legacy System However, the Legacy System does not comply with a
Standard Interfaceused by the Cal | i ng Subsyst em This gap is filled by creating an
Adaptor class which implements the Standard Interface using methods from the
Legacy Syst emWhen the caller only accesses the Standard Interfacethe Legacy Syst em
can be later replaced with an alternate component.

Example
« Sorting instances of an existing St r i ngclass with an existing sor t () method
(Figure 6-34 on page 202): MySt ri ngConpar at ois an Adapt or for bridging the gap
between the St r i ngclass and the Conpar at orinterface used by the Arr ay. sort ()
method.

Related concepts The Bri dge (SectionA.3) fills the gap between an interface and its
implementations.

ﬁ%

aild

\ (%;
Design Patterns Page 500 Thursday, October 14, 1999 2:35 PM

T

500

Appendix « Design Patterns

A.3 Bridge: Allowing for alternate implementations

Subsyst em

- =

Abstraction

K> Implementor

T

Ref i nedAbstraction

Concrete Concrete
| npl enent or A | npl enent or B

Figure A-3 Bri dge pattern (UML class diagram).

Purpose This pattern decouples the interface of a class from its implementation. Unlike the
Adapt er pattern, the developer is not constrained by an existing piece of code. Both the
interface and the implementation can be refined independently.

Description Assume we need to decouple an Abstractionfrom an Implementor because
we need to substitute different Implementos for agiven Abstractiorwithout any impact on a
calling Subsyst emThis is realized by providing an Abstractionclass that implements its
services in terms of the methods of an Implementorinterface. Concr et e | npl enent osthat
need to be substituted refine the Implementorinterface.

Examples

« Vendor independence (Figure 6-37 on page 206): The ODBCinterface (the Abst racti o
decouples a caller from a database management system. For each database management
system, an ODBC Dr i ver refinesthe ODBC | npl enent at i or{the Implemento¥. When
the Abstractionmakes no assumptions about the Concr et e | npl enent oS,

Concr et e | mpl ement ois can be switched without the calling Subsyst emmoticing, even

at run-time.

* Unit testing (Figure 9-11 on page 342): the Dat abase I nt er f ace(the Abst r act i on
decouplesthe User I nt er f ace(the Subsyst ethfrom the Dat abase(a Concr et e
I mpl enent o1), allowing the User | nt er f aceand the Dat abaseto be tested
independently. When theUser | nt er f aceistested, aTest St ub (another Concret e
I mpl enent o) is substituted for the Dat abase

Related concepts The Adapt er pattern (Section A.2) fills the gap between two interfaces.

ﬁ%

*

.
s

\
é Design Patterns Page 501 Thursday, October 14, 1999 2:35 PM

T

A.4 Command: Encapsulating control

501

<<cal | s>>
Subsystem [— — — = Command
execut e()
] <<cal | s>> é
Recei ver << — — | Concr et eConmandl
actionl() _
action2() < 7 execut e()
L — — — o ConcreteConmand2

execut e()

Figure A-4 Command pattern (UML class diagram).

Purpose This pattern enables the encapsulation of control such that user requests can be
treated uniformly, independent of the specific request. This pattern protects these objects from
changes resulting from new functionality. Another advantage of this pattern is that control flow

is centralized in the command objects as opposed to being distributed across interface objects.

Description An abstract Command interface defines the common services that all
Concr et eCommang should implement. Concr et eCormandscollect data from the Client
Subsyst emand manipulate the entity objects (Recei vers). Subsyst e interested only in the
general Commandabstraction (e.g., an undo stack), only access the Commandabstract class. Client

Subsyst ermdo not access directly the entity objects.

Examples

* Providing an undo stack for user commands: All user-visible commands are refinements of
the Commandabstract class. Each command is required to implement the do(), undo(),

and r edo() methods. Once acommand is executed, it is pushed onto an undo stack. If the

user wishes to undo the last command, the Command object on the top of the stack is sent

the message undo().

* Decoupling interface objects from control objects (Figure 6-45 on page 215, see also

Swing Act i ors,[JFC, 1999]): All user visible commands are refinements of the Command

abstract class. Interface objects, such as menu items and buttons, create and send messages
to Commandobjects. Only Command objects modify entity objects. When the user interface
is changed (e.g., amenu bar isreplaced by atool bar), only the interface objects are

modified.

Related concepts MV C architecture (Figure 6-15 on page 184).

ﬁ%

aild

\
é Design Patterns Page 502 Thursday, October 14, 1999 2:35 PM

t *

502 Appendix « Design Patterns

A.5 Composite: Representing recursive hierarchies

Component *

| |
| Leaf | | Conposite k:>———————
| eaves

Figure A-5 Conposi t e pattern (UML class diagram).

Purpose This pattern represents arecursive hierarchy. The services related to the containment
hierarchy are factored out using inheritance, allowing a system to treat a leaf or a composite
uniformly. Leaf specific behavior can be modified without any impact on the containing
hierarchy.

Description The Conponent interface specifies the services that are shared among
Leaf and Conposite (e.g., nove(x,y) for a graphic element). A Conposite has an
aggregation association with Componen® and implements each service by iterating over each
contained Component (e.g., the Conposite. nove(x,y)method iteratively invokes the
Conponent . nove(x, y)) The Leaf services do the actual work (e.g., Leaf . move(x, y)modifies
the coordinates of the Leaf and redraws it).

Examples

* Recursive access groups (Lotus Notes): A Lotus Notes access group can contain any
number of users and access groups.

* Groups of drawable elements: Drawable elements can be organized in groups that can be
moved and scaled uniformly. Groups can also contain other groups.

* Hierarchy of files and directories (Figure 5-7 on page 137): Directories can contain files
and other directories. The same operations are available for moving, renaming, and
uniformly removing files and directories.

* Describing subsystem decomposition (Figure 6-3 on page 173): We use aConposi t e
pattern to describe subsystem decomposition. A subsystem is composed of classes and
other subsystems. Note that subsystems are not actually implemented as Conposi t &to
which classes are dynamically added.

» Describing hierarchies of tasks (Figure 6-8 on page 177): We use aConposi t epattern to
describe the organizations of Tasks (Conposi t e into Subt asks (Component) and
Acti onl t em(Leaves).We use asimilar model to describePhases, Acti viti esand
Tasks (Figure 12-6 on page 462).

Related concepts Facadepattern (Section A.6).

4= aild

é Design Patterns Page 503 Thursday, October 14, 1999 2:35 PM

T

503

A.6 Facade: Encapsulating subsystems

iler
Conpi | e \ Conpi | er
conpi |l e(s)
CodeGener at or Lexer
create() get Token()
Optim zer Par ser
create() gener at ePar seTree()
Par seTr ee
create()

Figure A-6 An example of Facade pattern (UML class diagram).

Purpose The Facade pattern reduces dependencies among classes by encapsulating a
subsystem with a simple unified interface.

Description A single Facade class implements a high-level interface for a subsystem by
invoking the methods of lower level classes. A Facade is opaque in the sense that a caller does
not access the lower level classes directly. The use of Facade patterns recursively yields a
layered system.
Example
* Subsystem encapsulation (Figure 6-30 on page 198):A Conpi | eriscomposed of Lexer,
Par ser, Par seTr ee aCodeGener at of and an Opt i mi zer. When compiling a string into
executable code, however, a caller only deals with the Conpi | er class, which invokes the
appropriate methods on the contained classes.

Related concepts Coupling and coherence (Section 6.3.3 on page 174), layers and partitions
(Section 6.3.4 on page 178), Conposi t epattern (Section A.5).

ﬁ%

ikl

\ (%;
Design Patterns Page 504 Thursday, October 14, 1999 2:35 PM

T

504 Appendix < Design Patterns

A.7 Observer: Decoupling entities from views

subscri bers

Publ i sher K >—— Subscriber
- 1 *
fil ename
subscri be(Subscri ber) update()

unsubscri be(Subscri ber)

notify()

ConcretePublisher (== — — — — - Concr et eSubscri ber
state observer State

get State() updat e()

set State()

Figure A-7 TheObserver pattern (UML class diagram).

Purpose This pattern allows to maintain consistency across the states of one Publ i sherand
many Subscribes.

Description A Publ i sher (called a Subj ect in [Gamma et al., 1994]) is an object whose
primary function is to maintain some state; for example, a matrix. One or more Subscribes
(called Observers in [Gamma et al., 1994]) use the state maintained by a Publ i sher; for
example, to display a matrix as a table or a graph. This introduces redundancies between the
state of the Publ i sher and the Subscribes. To address this issue, Subscribes invoke the
subscri be()method to register with aPubl i sher. Each Concr et eSubscr i bealso defines an
update() method to synchronize the state between the Publisher and the
Concr et eSushcr i berWhenever the state of the Publ i sher changes, the Publ i sherinvokes
itsnot i f y() method, which iteratively invoke each Subscri ber . updat e()nethod.

Examples
* The hser verinterface and Qoser vabl eclass are used in Javato realize an Coser ver
pattern ([JFC, 1999)).
*» The Observer pattern can be used for realizing subscription and notification in an Model/
View/Controller architecture (Figure 6-15 on page 184).

Related concepts Entity, interface, control objects (Section 5.3.1 on page 134).

ﬁ%

*

aild

\ (%;
Design Patterns Page 505 Thursday, October 14, 1999 2:35 PM

T

A.8 Proxy: Encapsulating expensive objects

505

Object

fil ename
op2()
op3()

op1()
A

Pr oxyObj ect Real Obj ect
fil enanme dat a: byte[]
opl() opl()
op2() op2()
op3() op3()

Figure A-8 TheProxy pattern (UML class diagram).

Purpose This pattern improves the performance or the security of a system by delaying
expensive computations, using memory only when needed or checking access before loading an
object into memory.

Description The ProxyQbj ect class acts on behalf of a Real Qbj ect class. Both classes
implement the same interface. The ProxyQhj ect stores a subset of the attributes of the
Real Obj ect The Pr oxyQbj ecthandles certain requests completely (e.g., determining the size
of animage), whereas others are delegates to the Real Cbj ect After delegation, the Real Obj ect
is created and loaded in memory.

Examples

* Protection proxy (Section 6-38 on page 210): An Accessassociation class contains a set
of operationsthat a Br oker can useto accessaPor t f ol i o Every operationin the
Port f ol i oPr oxyfirst checkswithi sAccessi bl e()if theinvoking Br oker has
legitimate access. Once access has been granted, Por t f ol i oPr oxydel egatesthe operation
to the actual Por t f ol i oobject. If accessis denied, the actual Port f ol i oobject is not
loaded into memory.

» Storage proxy (Section 7-31 on page 273): An| nagePr oxyobject acts on behalf of an
I mage stored on disk. The | magePr oxycontains the same information asthe | mage(e.g.,
width, height, position, resolution) except for the | mage contents. Thel magePr oxy
services all contents independent requests. Only when the Image contents need to be
accessed (e.g., when it is drawn on the screen), the | magePr oxycreates the Real | rage
object and loads its contents from disk.

Related concepts Caching expensive computations (Section 7.4.13 on page 272).

ﬁ%

.
s

\
é Design Patterns Page 506 Thursday, October 14, 1999 2:35 PM

T

506 Appendix « Design Patterns

A.9 Strategy: Encapsulating algorithms

Strategy class

Message < IDEA
get Bl ock() encrypt (key, bl ock)
decrypt (key, bl ock)
Context class ConcreteStrategy
classes
[]
| DEA Vendor _A | DEA_Vendor _B

FigureA-9 An example of Strategy pattern encapsulating multiple implementation of the IDEA
encryption algorithm (UML class diagram). The Message and 1DEA classes cooperate to redlize the
encryption of plain text. The selection of an implementation can be done dynamically.

Purpose This pattern decouples an algorithm from its implementation(s). It serves the same
purpose than the adapter and bridge patterns except that the encapsulated unit is a behavior.

Description An abstract Al gori t hnclass provides methods for initializing, executing, and
obtaining the results of an Al gorithmConcr et eAl gorit hnelasses refine Al gori t hmand
provide alternate implementations of the same behavior. Concr et eAl gori t hmean be switched
without any impact on the caller.

Examples
* Encryption agorithms (Figure 6-40 on page 212): Vendor-supplied encryption a gorithms

pose an interesting problem: How can we be sure that the supplied software does not
include atrap door? Moreover, once avulnerability isfound in awidely used package,
how do we protect the system until a patch is available? To address both issues, we can use
redundant implementations of the same algorithm. To reduce the dependency on a specific
vendor, we encapsul ate these implementations with asingle St r at egypattern.

Related concepts Adapter pattern (Section A.2) and Bridge pattern (Section A.3).

ﬁ%

*

aild

\ (%)
Design Patterns Page 507 Thursday, October 14, 1999 2:35 PM

507

References

[Ambler, 1998] S. W. Ambler, Process Patterns: Building Large-Scale Systems Using Object
Technology, Cambridge University, Cambridge, 1998.

[Brown et al., 1999] W. J. Brown, H. W. McCormick, & S. W. Thomas, AntiPatterns and Patternsin
Software Configuration Management, Wiley, New Y ork, 1999.

[Buschmann et al., 1996] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, & M. Stal. Pattern-Oriented
Software Architecture: A System of Patterns. Wiley, Chichester, U.K., 1996.

[Feiler et al., 1998] P. Feiler & W. Tichy. “Propagator: A family of patterns,” in the Proceedings of
TOOLS-23'97, Jul. 28-Aug. 1 1997, Santa Barbara, CA.

[Fowler, 1997] M. Fowler, Analysis Patterns: Reusable Object Models Addison-Wesley, Reading,
MA, 1997.

[Gammaet ., 1994] E. Gamma, R. Helm, R. Johnson, & J. Vlissides, Design Patters: Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1994.

[JFC, 1999] Java Foundation Classes, JDK Documentation. Javasoft, 1999.

[Larman, 1998] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented Analysis

and Design. Prentice Hall, Upper Saddle River, NJ, 1998.
[Mowbray & Malveau, 1997] T.J. Mowbray & R. C. Malveau. CORBA Design Patterns Wiley, New Y ork, 1997.

2,
N

