
Bernd Brügge Component--Based Software Engineering 1

2

15-413

Functional Modeling

Bernd Bruegge
Carnegie Mellon University
School of Computer Science

Pittsburgh, PA 15213

9999

Bernd Brügge Component--Based Software Engineering 2

Odds and Ends
❖ Client is coming

! Introduction into AIMSS, ACS and GCS
! Wednesday, Sep 15, Wean Hall 4623, currently scheduled for 4-

6 PM (working on a earlier start)
! Authoring and Workflow teams must attend, API liaisons

should attend

❖ No lecture on Thursday Sep 16
! Project Management Lecture is moved to Dec 7

❖ Relevant Talk:
! Takeo Kanade, Robotics Institute, Virtualized Reality
! “Digitizing a 3D Time-Varying Real Event As Is and in Real

Time”
! Friday, Sep 10, 3:30- 5:30 PM , Adamson Wing
! Highly recommended for Augmented Reality and Modeling

teams

❖ First Architecture Team Meeting
! Before Takeo’s talk?

Bernd Brügge Component--Based Software Engineering 3

Odds and Ends ctd

❖ Interface Object (previous slide set) now called Boundary
Object in the newest version of UML

❖ CS account form to be signed by each student

Bernd Brügge Component--Based Software Engineering 4

Can you develop this?

Bernd Brügge Component--Based Software Engineering 5

Recap: Types of Scenarios

❖ As-is scenario:
! Used in describing a current situation. Usually used during re-

engineering. The user describes the system.

❖ Visionary scenario:
! Used to describe a future system. Usually described in

greenfield engineering or reengineering.
! Can often not be done by the user or developer alone

❖ Evaluation scenario:
! User tasks against which the system is to be evaluated

❖ Training scenario:
! Step by step instructions designed to guide a novice user

through a system

Bernd Brügge Component--Based Software Engineering 6

What is This?

Bernd Brügge Component--Based Software Engineering 7

Possible Object Model: Eskimo

Cave
lighting
entrance
enter()
leave()

Eskimo
Size

Dress()
Smile()
Sleep()

Shoe
Size

Color
Type

Wear()

Coat
Size

Color
Type

Wear()

lives in

*

Bernd Brügge Component--Based Software Engineering 8

Modeling the Eskimo’s Environment

Outside
Temparature

Light
Season
Hunt()

Organize()

Eskimo
Size

Dress()
Smile()
Sleep()

Cave
Lighting
Enter()
Leave()

Entrance

lives in

Windhole
Diameter

MainEntrance
Size

 moves
around

*

Bernd Brügge Component--Based Software Engineering 9

Alternative: Head of an Eskimo

Head
Hair

Dress()
Smile()
Sleep()

Face
Nose
smile()
close_eye()

Mouth
NrOfTeeths
Size
open()
speak()

Ear
Size
listen()

*

Bernd Brügge Component--Based Software Engineering 10

The Artist’s View

Picture of
 Sculpture

Picture

Picture of
 Eskimo

View 1 View 2

MouthEyes Nose JacketHands Legs

Bernd Brügge Component--Based Software Engineering 11

System and Object identification

❖ Development of a system is not just done by taking a
picture of a scene or domain

❖ Two important problems during requirements
engineering and requirements analysis:
! Identification of objects
! Definition of the system purpose
! Depending on the purpose of the system, different objects

might be found
" What object is inside, what object is outside?

! How can we identify the purpose of a system?
" Scenarios
" Use cases: Abstractions of scenarios

Bernd Brügge Component--Based Software Engineering 12

Why Scenarios and Use Cases?
❖ Utterly comprehensible by the user

! Use cases model a system from the user users’s point of view
(functional requirements)

" Define every possible event flow through the system
" Description of interaction between objects

❖ Great tools to manage a project. Use cases can form basis
for whole development process
! User manual
! System design and object design
! Implementation
! Test specification
! Client acceptance test

❖ An excellent basis for incremental & iterative development
❖ Use cases have also been proposed for business process

reengineering (Ivar Jacobsen)

Bernd Brügge Component--Based Software Engineering 13

How do we find scenarios?

❖ Don’t expect the client to be verbal if the system does not
exist (greenfield engineering)

❖ Don’t wait for information even if the system exists
❖ Engage in a dialectic approach (evolutionary,

incremental)
! You help the client to formulate the requirements
! The client helps you to understand the requirements
! The requirements evolve while the scenarios are being

developed

Bernd Brügge Component--Based Software Engineering 14

Example: Accident Management System

❖ What needs to be done to report a “Cat in a Tree”
incident?

❖ What do you need to do if a person reports “Warehouse
on Fire?”

❖ Who is involved in reporting an incident?
❖ What does the system do if no police cars are available? If

the police car has an accident on the way to the “cat in a
tree” incident?

❖ What do you need to do if the “Cat in the Tree” turns
into a “Grandma has fallen from the Ladder”?

❖ Can the system cope with a simultaneous incident report
“Warehouse on Fire?”

Bernd Brügge Component--Based Software Engineering 15

Scenario Example: Warehouse on Fire
❖ Bob, driving down main street in his patrol car notices smoke coming

out of a warehouse. His partner, Alice, reports the emergency from her
car.

❖ Alice enters the address of the building, a brief description of its
location (i.e., north west corner), and an emergency level. In addition to
a fire unit, she requests several paramedic units on the scene given that
area appear to be relatively busy. She confirms her input and waits for
an acknowledgment.

❖ John, the Dispatcher, is alerted to the emergency by a beep of his
workstation. He reviews the information submitted by Alice and
acknowledges the report. He allocates a fire unit and two paramedic
units to the Incident site and sends their estimated arrival time (ETA) to
Alice.

❖ Alice received the acknowledgment and the ETA.

Bernd Brügge Component--Based Software Engineering 16

Observations about Warehouse on Fire Scenario

❖ Concrete scenario
!Describes a single instance of reporting a fire

incident.
!Does not describe all possible situations in which a

fire can be reported.

❖ Participating actors
!Bob, Alice and John

Bernd Brügge Component--Based Software Engineering 17

Next goal, after the scenarios are formulated:

❖ Find a use case in the scenario that specifies all
possible instances of how to report a fire
!Example: “Report Emergency “ in the first paragraph of

the scenario is a candidate for a use case

❖ Describe this use case in more detail
!Describe the entry condition
!Describe the flow of events
!Describe the exit condition
!Describe exceptions
!Describe special requirements (constraints,

nonfunctional requirements)

Bernd Brügge Component--Based Software Engineering 18

Example of steps in formulating a use case

❖ First name the use case
! Use case name: ReportEmergency

❖ Then find the actors
! Generalize the concrete names (“Bob”) to participating actors

(“Field officer”)
! Participating Actors:

" Field Officer (Bob and Alice in the Scenario)
" Dispatcher (John in the Scenario)
" ?

❖ Then concentrate on the flow of events
! Use informal natural language

Bernd Brügge Component--Based Software Engineering 19

Example of steps in formulating a use case

❖ Formulate the Flow of Events:
! The FieldOfficer activates the “Report Emergency” function on her

terminal. FRIEND responds by presenting a form to the officer.

! The FieldOfficer fills the form, by selecting the emergency level, type,
location, and brief description of the situation. The FieldOfficer also
describes possible responses to the emergency situation. Once the
form is completed, the FieldOfficer submits the form, at which point,
the Dispatcher is notified.

! The Dispatcher reviews the submitted information and creates an
Incident in the database by invoking the OpenIncident use case. The
Dispatcher selects a response and acknowledges the emergency report.

! The FieldOfficer receives the acknowledgment and the selected
response.

Start using Abbot’s technique for object identification in
parallel to the use case modeling!

Bernd Brügge Component--Based Software Engineering 20

Example of steps in formulating a use case

❖ Write down the exceptions:
! The FieldOfficer is notified immediately if the connection

between her terminal and the central is lost.
! The Dispatcher is notified immediately if the connection

between any logged in FieldOfficer and the central is lost.

❖ Identify and write down any special requirements:
! The FieldOfficer’s report is acknowledged within 30 seconds.
! The selected response arrives no later than 30 seconds after it is

sent by the Dispatcher.

Bernd Brügge Component--Based Software Engineering 21

How to Specify a Use Case (Summary)

❖ Name of Use Case
❖ Actors

! Description of actors involved in use case

❖ Entry condition
! Use a syntactic phrase such as “This use case starts when…”

❖ Flow of Events
! Free form, informal natural language

❖ Exit condition
! Star with “This use cases terminates when…”

❖ Exceptions
! Describe what happens if things go wrong

❖ Special Requirements
! List nonfunctional requirements and constraints

Bernd Brügge Component--Based Software Engineering 22

Use Case Model for Incident Management

ReportEmergency

FieldOfficer Dispatcher
OpenIncident

AllocateResources

Bernd Brügge Component--Based Software Engineering 23

Use Case Associations

❖ Use case association = relationship between use
cases

❖ Important types:
!Extends

" A use case extends another use case

!Include
" A use case uses another use case (“functional

decomposition”)

!Generalization
" An abstract use case has different specializations

Bernd Brügge Component--Based Software Engineering 24

<<Include>>: Functional Decomposition

❖ Problem:
! A function in the original problem statement is too complex to

be solvable immediately

❖ Solution:
! Describe the function as the aggregation of a set of simpler

functions. The associated use case is decomposed into smaller
use cases

CreateDocument

Scan OCR Check

<<include>>

Bernd Brügge Component--Based Software Engineering 25

<<Include>>: Reuse of Existing Functionality
❖ Problem:

! There are already existing functions. How can we reuse them?
❖ Solution:

! The include association from a use case A to a use case B
indicates that an instance of the use case A performs all the
behavior described in the use case B (“A delegates to B”)

❖ Example:
! The use case “ViewMap” describes behavior that can be used

by the use case “OpenIncident” (“ViewMap” is factored out)
❖ Note: The base case cannot exist alone. It is always called with

the supplier use case

ViewMap
OpenIncident

AllocateResources

<<include>>

<<include>>

Base Use
Case

Supplier
Use Case

Bernd Brügge Component--Based Software Engineering 26

<Extend>> Association for Use Cases
❖ Problem:

! The functionality in the original problem statement needs to
be extended.

❖ Solution:
! An extend association from a use case A to a use case B

indicates that use case B is an extension of use case A.
❖ Example:

! The use case “ReportEmergency” is complete by itself , but
can be extended by the use case “Help” for a specific
scenario in which the user requires help

❖ Note: In an extend assocation, the base use case can be executed
without the use case extension

ReportEmergency

FieldOfficer
Help

<<extend>>

Bernd Brügge Component--Based Software Engineering 27

Generalization association in use cases

❖ Problem:
! You have common behavior among use cases and want to factor

this out.
❖ Solution:

! The generalization association among use cases factors out
common behavior. The child use cases inherit the behavior and
meaning of the parent use case and add or override some
behavior.

❖ Example:
! Consider the use case “ValidateUser”, responsible for verifying

the identity of the user. The customer might require two
realizations: “CheckPassword” and “CheckFingerprint”

ValidateUser

CheckPassword

CheckFingerprint

Parent
Case Child

Use Case

Bernd Brügge Component--Based Software Engineering 28

How do I find use cases?

❖ Select a narrow vertical slice of the system (i.e. one
scenario)
!Discuss it in detail with the user to understand the

user’s preferred style of interaction

❖ Select a horizontal slice (i.e. many scenarios) to
define the scope of the system.
!Discuss the scope with the user

❖ Use mock-ups as visual support
❖ Find out what the user does

!Task observation (Good)
!Questionnaires (Bad)

Bernd Brügge Component--Based Software Engineering 29

From Use Cases to Objects

Top Level Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

Bernd Brügge Component--Based Software Engineering 30

Finding Participating Objects in Use Cases
❖ For any use case do the following

! Find terms that developers or users need to clarify in order to
understand the flow of events

" Always start with the user’s terms, then negotiate:
– FieldOfficerStationBoundary or FieldOfficerStation?
– IncidentBoundary or IncidentForm?
– EOPControl or EOP?

! Identify real world entities that the system needs to keep track
of. Examples: FieldOfficer, Dispatcher, Resource

! Identify real world procedures that the system needs to keep
track of. Example: EmergencyOperationsPlan

! Identify data sources or sinks. Example: Printer
! Identify interface artifacts. Example: PoliceStation
! Do textual analysis to find additional objects (Use Abott’s

technique)
! Model the flow of events with a sequence diagram

