
Bernd Bruegge Software Engineering ##
2

Software Life Cycle

15-413

Bernd Bruegge

Department of Computer Science

Carnegie Mellon University

5 October 1999

Bernd Bruegge Software Engineering ##

Outline of Lecture

v Software Life cycle
– Waterfall model and its problems

u Pure Waterfall Model

u V-Model

u Sawtooth Model

– Alternative process models
u Boehm’s Spiral Model

u Issue-based Development Model (Concurrent Development)

v Software Development Activities

v Software Development Roles

Bernd Bruegge Software Engineering ##

Odds and Ends
v The client is not responding. What is going on?

v We are approaching system design. Managerial and
technical challenges

v Major issues in managing system design
– The initial subsystem decomposition is usually wrong

– The planned design window for technology enablers is
usually wrong

v Two phenonema
u Some of the initial subsystems don’t have enough “meat” =>

Subsystem merger

u Important subsystems have been overlooked => Identification
of new subsystems

“Leftover team
Syndrome”

“Orphan Object
Syndrome”

Bernd Bruegge Software Engineering ##

The leftover team syndrome

v Two subsystems are merged (collapsed) into one

v However, the team structure stays the same
– Too much organizational effort to redo the team organization

v STARS example:
– The appearance of the maintenance subsystem from the

rubble of inspection and repair subsystems

– Inspection and repair team organization stays

Bernd Bruegge Software Engineering ##

Analysis Review leads to a Revision of the
System Design (new Subsystem
Decomposition)

Maintenance
Subsystem

Inspect()
Repair()

Repair
Subsystem

Repair()

Inspection
Subsystem

Inspect()

Inspect

Repair

Inspector

Mechanic

?

Bernd Bruegge Software Engineering ##

Questions to be answered by the Project
Manager

v Who is responsible for the new subsystem?

v How can the labor be assigned?

v Should there be a new team “Maintenance”

v What happens to “Inspection” and “Repair?

v Should we keep the old organization chart?

v Should there be one large team meeting, or shall we continue with two
team meetings?

v Should we schedule additional team meetings?

v Should there be one or two API liaisons?

Bernd Bruegge Software Engineering ##

The Orphan subsystem syndrome

v A new subsystem is appearing

v Who is responsible for the formulation of the use
cases, for the identification of objects, who will
implement it?

v STARS example:
– Work order seem more and more to be a central issue in

STARS?

– Who is responsible for Workorder?

– How extensible to we have to model Work Orders?
u Management says, “Forget work orders for now, let’s do it in the

next iteration”. Can we afford to be so sloppy?

Bernd Bruegge Software Engineering ##

Workorder in STARS

v Keep it simple

v Identify different beasts in the zoo
(Emergency Workorder, Scheduled Workorder,
Preventive Workorder, Condition-Based Workorder)

v Establish a taxonomy with a superclass

v Concentrate on one subclass for the project

v Implement rudimentary methods for Dropping and
Extracting Tasks into the Workorder

v Don’t do a calendar object

Bernd Bruegge Software Engineering ##

The shrinking design window syndrome

v Design window
– The time interval after which design issues have to be

resolved

v Products are promised but don’t materialize
– The product turns out to be too complex

– The product turns out to be useless

– A critical subsystem provider goes bankrupt.

v Issues:
– How long can we stretch the design window?

– Buy or build?
u Pros of building software

u Cons of building software

– How can we get buy without not building when the design
window is closed but nothing got delivered?

Bernd Bruegge Software Engineering ##

Modeling WorkOrders

WorkOrder

DropWork()
LookupWork()

Inspector: Maintenance
Subsystem

Inspect()
Repair()

Mechanic: Maintenance
Subsystem

Inspect()
Repair()

*

*
*

*

Creates
Reads

Bernd Bruegge Software Engineering ##

Manager Questions?

v Should Workorder be a Subsystem or only a class?

v Should the creation of Workorders cause a push
notification? Should Workorders be pulled?

v We have been told by the client, that we should not
model a work order system:

– What is the simplest scenario that we can concentrate on
during 15-413?

v Use a observer pattern for the work order (patterns are
discussed in the next lectures on system design)

Bernd Bruegge Software Engineering ##

Inherent Problems with Software Development
v Requirements are complex

– The client usually does not know all the functional
requirements in advance

v Requirements may be changing
– Technology enablers introduce new possibilities to deal with

nonfunctional requirements

v Frequent changes are difficult to manage
– Identifying milestones and cost estimation is difficult

v There is more than one software system
– New system must often be backward compatible with

existing system (“legacy system”)

– Phased development: Need to distinguish between the
system under development and already released systems

Bernd Bruegge Software Engineering ##

Definitions

v Software lifecycle modeling: Attempt to deal with
complexity and change

v Software lifecycle:
– Set of activities and their relationships to each other to

support the development of a software system

v Software development methodology:
– A collection of techniques for building models - applied

across the software lifecycle

Bernd Bruegge Software Engineering ##

Software Life Cycle

v Software construction goes through a progression of
states

DevelopmentDevelopment
Post-

Development
Pre-

Development

Conception ChildhoodChildhood Adulthood Retirement

Bernd Bruegge Software Engineering ##

Typical Software Lifecycle Questions

v Which activities should I select for the
software project?

v What are the dependencies between
activities?

– Does system design depend on analysis? Does
analysis depend on design?

v How should I schedule the activities?
– Should analysis precede design?

– Can analysis and design be done in parallel?

– Should they be done iteratively?

Bernd Bruegge Software Engineering ##

Possible Identification of Software Development
Activities

Requirements Analysis

System Design

What is the problem?

What is the solution?

Program Design
What are the mechanisms

Program Implementation How is the solution
constructed?

Testing Is the problem solved?

Delivery Can the customer use the solution?

Maintenance Are enhancements needed?

that best implement the
solution?

Problem
Domain

Problem
Domain

Implementation
Domain

Implementation
Domain

Bernd Bruegge Software Engineering ##

Alternative Identification of Software
Development Activities

Problem
Domain

Implementation
Domain

 Requirements Analysis

System Design

What is the problem?

What is the solution?

 Object Design What is the solution in the context

 Implementation How is the solution constructed?

of an existing hardware system?

Bernd Bruegge Software Engineering ##

Software Development as Application
Domain: A Use Case Model

<<include>>

<<include>>
<<include>>

Client End userDeveloperProject manager

Software development

System developmentProblem definition System operation

Administrator

Bernd Bruegge Software Engineering ##

Software Development as Application
Domain: Simple Object Model

Object Design
Document

System Design
document

Problem
Statement

15-413
Software Development

Executable
 systemTest Manual

Requirements Analysis
document

SPMP

Bernd Bruegge Software Engineering ##

General Object Model of the Software
Lifecycle

Process group

Activity

Work Product

Resource

Task

Process

Money

Time

Participant

produces

consumes

Phase

*

*

*
*

*

Software life cycle

*

Bernd Bruegge Software Engineering ##

IEEE Std 1074: Standard for Software
Lifecycle

IEEE Std 1074IEEE Std 1074

Project
Management

Project
Management

Pre-
Development

Pre-
Development

Develop-
ment

Develop-
ment

Post-
Development

Post-
Development

Cross-
Development

(Integral Processes)

Cross-
Development

(Integral Processes)

> Project Initiation
>Project Monitoring
 &Control
> Software Quality
 Management

> Concept
 Exploration
> System
 Allocation

> Requirements
 Analysis
> Design
> Implemen-
 tation

> Installation
> Operation &
 Support
> Maintenance
> Retirement

> V & V
> Configuration
 Management
> Documen-
 tation
> Training

Process Group

Processes

Bernd Bruegge Software Engineering ##

Processes, Activities and Tasks

v Process Group: Consists of Set of Processes

v Process: Consists of Activities

v Activity: Consists of sub activities and tasks

Process
Group

Process
Group

ProcessProcess

ActivityActivity

DevelopmentDevelopment

DesignDesign

TaskTask

Design
Database

Design
Database

Make a
Purchase

Recommendation

Make a
Purchase

Recommendation

Bernd Bruegge Software Engineering ##

Example

v The Design Process is part of Development

v The Design Process consists of the following
Activities

– Perform Architectural Design

– Design Database (If Applicable)

– Design Interfaces

– Select or Develop Algorithsm (If Applicable)

– Perform Detailed Design (= Object Design)

v The Design Database Activity has the following
Tasks

– Review Relational Databases

– Review Object-Oriented Databases

– Make a Purchase recommendation

–

Bernd Bruegge Software Engineering ##

Modeling Dependencies in a Software
Lifecycle

System
operation
activity

System
development
activity

Problem
definition
activity

System
upgrade
activity

Market
creation
activity

System
development
activity

• Note that the dependency association can mean one of two things:
• Activity B depends on Activity A
• Activity A must temporarily precede Activity B

• Which one is right?

Bernd Bruegge Software Engineering ##

v Many models have been proposed to deal with the
problems of defining activities and associating them
with each other

v The waterfall model
– First described by Royce in 1970

v There seem to be at least as many versions as there are
authorities - perhaps more

Life-Cycle Model: Variations on a Theme

Bernd Bruegge Software Engineering ##

The Waterfall Model of the Software Life
Cycle

Requirements Analysis
and Definition

System and
Software Design

System Testing

Implementation and
Unit Testing

Bernd Bruegge Software Engineering ##

Problems with Waterfall Model
v Managers love waterfall models:

– Nice milestones

– No need to look back (linear system), one activity at a time

– Easy to check progress : 90% coded, 20% tested

v Different stakeholders need different abstractions
– => V-Model

v Software development is iterative
– During design problems with requirements are identified

– During coding, design and requirement problems are found

– During testing, coding, design& requirement errors are found

– => Spiral Model

v System development is a nonlinear activity
– => Issue-Based Model

Bernd Bruegge Software Engineering ##

V Model: Distinguishes between
Development and Verification Activities

Level of Detail

Project Time

Low

High

Acceptance
Testing

Problem with V-Model:
Client’s Perception is the same as the
Developer’s Perception

Client’s Understanding
Developer’s Understanding

Requirements
Elicitation

Analysis

Design

System
 Testing

Object Design Unit Testing

Integration Testing

Bernd Bruegge Software Engineering ##

Sawtooth Model Client’s Understanding
Developer’s Understanding

Requirements
Elicitation

Implementation

System
Design

Object
Design

Requirements
Analysis

Unit
Test

Prototype
Demonstration 2

Client

Developer

Client
Acceptance

System
Integration

& Test

Integration
& Test

Prototype
Demonstration 1

Bernd Bruegge Software Engineering ##

“Sharktooth” Model
User’s Understanding

System
Requirements
Elicitation

Implementation

System
Design

Object
Design

Requirements
Analysis

Unit
Test

Prototype
Demo 1

Prototype
Demo 2

Client

Manager

Developer

Design
Review

Client
Acceptance

System
Integration

& Test

Component
Integration

& Test

Manager’s Understanding
Developer’s Understanding

Bernd Bruegge Software Engineering ##

Problems with V Model

v The V model and its variants do not distinguish
temporal and logical dependencies, but fold them into
one type of association

v In particular, the V model does not model iteration

Bernd Bruegge Software Engineering ##

Bernd Bruegge Software Engineering ##

v Identify risks

v Assign priorities to risks

v Develop a series of prototypes for the identified risks
starting with the highest risk.

v Use a waterfall model for each prototype development
(“cycle”)

v If a risk has successfully been resolved, evaluate the
results of the “cycle” and plan the next round

v If a certain risk cannot be resolved, terminate the
project immediately

Spiral Model (Boehm) Deals with Iteration

Bernd Bruegge Software Engineering ##

Spiral Model

Bernd Bruegge Software Engineering ##

Activities (“Rounds”) in Boehm’s Spiral
Model

v Concept of Operations

v Software Requirements

v Software Product
Design

v Detailed Design

v Code

v Unit Test

v Integration and Test

v Acceptance Test

v Implementation

v For each cycle go
through these steps

– Define objectives,
alternatives, constraints

– Evaluate alternative, identify
and resolve risks

– Develop, verify prototype

– Plan next “cycle”

Bernd Bruegge Software Engineering ##

Determine Objectives, Alternatives and Constraints

Project
Start

Project
Start

Bernd Bruegge Software Engineering ##

Evaluate Alternatives, Identify, resolve risks

Build
Prototype

Build
Prototype

Bernd Bruegge Software Engineering ##

Develop & Verify Product

Concept of Operation
Activity

Concept of Operation
Activity

Bernd Bruegge Software Engineering ##

Prepare for Next Activity

Lifecycle Modeling
Process

Lifecycle Modeling
Process

Bernd Bruegge Software Engineering ##

Start of Software Requirements Activity

Start
of Round 2

Bernd Bruegge Software Engineering ##

v Illustrative Prototype
– Develop the user interface with a set of storyboards

– Implement them on a napkin or with a user interface builder
(Visual C++,)

– Good for first dialog with client

v Functional Prototype
– Implement and deliver an operational system with minimum

functionality

– Then add more functionality

– Order identified by risk

v Exploratory Prototype ("Hacking")
– Implement part of the system to learn more about the

requirements.

– Good for paradigm breaks

Types of Prototypes used in the Spiral Model

Bernd Bruegge Software Engineering ##

v Revolutionary Prototyping
– Also called specification prototyping

– Get user experience with a throwaway version to get the
requirements right, then build the whole system

u Disadvantage: Users may have to accept that features in the
prototype are expensive to implement

u User may be disappointed when some of the functionality and
user interface evaporates because it can not be made available in
the implementation environment

v Evolutionary Prototyping
– The prototype is used as the basis for the implementation of

the final system

– Advantage: Short time to market

– Disadvantage: Can be used only if target system can be
constructed in prototyping language

Types of Prototyping ctd

Bernd Bruegge Software Engineering ##

Prototyping vs Rapid Development

v Revolutionary prototyping is sometimes called rapid
prototyping

v Rapid Prototyping is not a good term because it
confuses prototyping with rapid development

– Prototyping is a technical issue: It is a particular
model in the life cycle process

– Rapid development is a management issue. It is a
particular way to control a project

v Prototyping can go on forever if it is not restricted
u “Time-boxed” prototyping

Bernd Bruegge Software Engineering ##

The Limitations of the Waterfall and
Spiral Models

v Neither of these model deals well with
frequent change

– The Waterfall model assume that once you are done
with a phase, all issues covered in that phase are
closed and cannot be reopened

– The Spiral model can deal with change between
phases, but once inside a phase, no change is
allowed

v What do you do if change is happening more
frequently? (“The only constant is the change”)

Bernd Bruegge Software Engineering ##

An Alternative: Issue-Based Development

v A system is described as a collection of issues
– Issues are either closed or open

– Closed issues have a resolution

– Closed issues can be reopened (Iteration!)

v The set of closed issues is the basis of the system model

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Open

SD.I1:Closed

SD.I2:Closed

SD.I3:Closed

Planning Requirements Analysis System Design

Bernd Bruegge Software Engineering ##

Frequency Change and Software Lifeycle
– PT = Project Time, MTBC = Mean Time Between Change

– Change rarely occurs (MTBC >> PT):
u Waterfall Model

u All issues in one phase are closed before proceeding to the next
phase

– Change occurs sometimes (MTBC = PT):
u Boehm’s Spiral Model

u Change occuring during a phase might lead to an iteration of a
previous phase or cancellation of the project

– “Change is constant” (MTBC << PT):
u Issue-based Development (Concurrent Development Model)

u Phases are never finished, they all run in parallel

– Decision when to close an issue is up to management

– The set of closed issues form the basis for the system to be
developed

Bernd Bruegge Software Engineering ##

Waterfall Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:OpenAnalysisAnalysisAnalysis

Bernd Bruegge Software Engineering ##

Waterfall Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:OpenAnalysis

DesignDesign

AnalysisAnalysis

Bernd Bruegge Software Engineering ##

Waterfall Model: Implementation Phase

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

ImplementationImplementation

DesignDesign

AnalysisAnalysis

Bernd Bruegge Software Engineering ##

Waterfall Model: Project is Done

I1:Closed

I2:Closed I3:Closed

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Open

SD.I3:Open

ImplementationImplementation

DesignDesign

AnalysisAnalysis

Bernd Bruegge Software Engineering ##

Issue-Based Model: Analysis Phase

I1:Open

I2:Open I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open

Analysis:80%Analysis:80%

Design: 10%Design: 10%

Implemen-
tation: 10%
Implemen-
tation: 10%

Bernd Bruegge Software Engineering ##

Issue-Based Model: Design Phase

I1:Closed

I2:Closed I3:Open

A.I1:Open

A.I2:Open

SD.I1:Open

SD.I2:Open

SD.I3:Open

Analysis:40%Analysis:40%

Design: 60%Design: 60%

Implemen-
tation: 0%
Implemen-
tation: 0%

Bernd Bruegge Software Engineering ##

Issue-Based Model: Implementation Phase

I1:Open

I2:Closed I3:Closed

A.I1:Open

A.I2:Closed

SD.I1:Open

SD.I2:Cosed

SD.I3:Open

Analysis:10%Analysis:10%

Design: 10%Design: 10%

Implemen-
tation: 60%
Implemen-
tation: 60%

Bernd Bruegge Software Engineering ##

Issue-Based Model: Project is Done

I1:Closed

I2:Closed I3:Open

A.I1:Closed

A.I2:Closed

SD.I1:Open

SD.I2:Closed

SD.I3:Closed

Analysis:0%Analysis:0%

Design: 0%Design: 0%

Implemen-
tation: 0%
Implemen-
tation: 0%

Bernd Bruegge Software Engineering ##

Process Maturity

v A software development process is
mature if the development activities are
well defined and if management has
some control over the management of the
project

v Process maturity is described with a set
of maturity levels and the associated
measurements (metrics) to manage the
process

v Assumption: With increasing maturity
the risk of project failure decreases.

Bernd Bruegge Software Engineering ##

Capability maturity levels

 1. Initial Level
– also called ad hoc or chaotic

 2. Repeatable Level
– Process depends on individuals ("champions")

 3. Defined Level
– Process is institutionalized (sanctioned by

management)

 4. Managed Level
– Activities are measured and provide feedback for

resource allocation (process itself does not change)

 5. Optimizing Level
– Process allows feedback of information to change

process itself

