Lecture Notes on
CASE-Tools: Together/J

David Garmire
Carnegie Mellon University

Slides developed by Geunter Teubner
Technische Universitaet Muenchen
Institut fuer Informatik

23 September 1999

Outline of the lecture

0 What is CASE?
* Typical components of CASE tools

0 Major goals and concepts

¢+ Lifecycle support
+ Roundtrip engineering

0 Working with Together/)J
+ The windows of Together/J
+ Creating and modifying class diagrams
+ Handling complexity with packages
¢+ Code and documentation generation

David Garmire 15-413 Software Engineering Fall 1998

What means CASE?

0 The acronym CASE stands for
+ Computer
+ Aided
¢ Software
¢ Engineering

0 The term CASE tool covers tools supporting the software
engineering process. In reality, often even tools which
support only one particular part of this process (such as
compilers, editors, Ul generators) are called CASE tools.

0 Our definition is: CASE tools are browsers and editors for
models in graphical and textual form.

David Garmire 15-413 Software Engineering Fall 1998 3

Typical components of CASE tools

0 Typical functionality
* pbrowsing and editing with a graphical user interface
¢ automatic code generation
¢ documentation generation
0 Project repository
¢ persistent storage of all development documents
* integrated version control system
¢ concurrent, distributed modeling

0 Interface to other tools

+ software development tools
¢+ process and workflow modeling tools
¢ offering a scripting language

David Garmire 15-413 Software Engineering Fall 1998

The goal: Full lifecycle support

0 The goal behind CASE is to support all the activities of
software development with a single tool.

Analysis Design Implementation Testing Maintenance

David Garmire 15-413 Software Engineering Fall 1998 5

Current situation: Quality of support differs

0 Not all aspects of the software engineering process are
supported by today’s CASE-tools !

0 Good support for
* requirements analysis (class diagrams, use cases, etc.)
¢ iImplementation
0 Moderate support for
+ system design
*+ testing
¢+ maintenance
0 Poor support for
¢ requirements elicitation

David Garmire 15-413 Software Engineering Fall 1998

Quality of CASE support today

Quality of support (according to lan Sommerville)

A
Excellent
Good
Moderate
i ||| ||I “\
Requirements Formal Function Data Object-orientedProgramming Testing Maintenance Management
definition specification oriented modeling design

design

Activity

David Garmire 15-413 Software Engineering Fall 1998 7

Level of integration

0 not integrated

+ separate CASE tools exist for different parts of the software
engineering activities

+ each tool has its own set of project documents and a unique
user interface

¢ the user works with multiple tools
0 integrated

¢+ all tools are working on the same project documents

+ a tool can trigger activities of other tools (e.g. start an formal
Integrity check after a model has been changed)

+ the tools share one common user interface
¢+ the user has the feeling of working with one tool

David Garmire 15-413 Software Engineering Fall 1998

Advantages and promises of CASE tools

0 Integrated development environment
¢ unigue user interface
+ automation of tedious tasks (e.g. code generation)
0 Guidance in developing
+ common language for all developers
¢ correct use of description techniques
+ methodical developing steps
0 Consistency between model and documentation

+ documentation is generated out of the model instead being
written separately.

0 Reuse of existing models for new systems

David Garmire 15-413 Software Engineering Fall 1998

Problems and disadvantages of CASE Tools

0 Long learning curves
+ complex functionality
¢ confusing user interfaces
0 Limited to
¢ one notation
+ one language
0 Multi-User support is weak
* “merging” of models is poorly automated
0 Costs

¢+ CASE tools belong to the most expensive tools in SE
¢+ CASE tools require high administration effort

David Garmire 15-413 Software Engineering Fall 1998

10

Impact of CASE technology

0 CASE technology has resulted in significant
Improvements in quality and productivity.

0 However, the scale of these improvements is less than
was initially predicted by early technology developers

+ Many project management problems are not amenable to
automation.

¢+ CASE systems are still not integrated.

+ Adopters of CASE technology underestimated the training
and process adaptation costs.

David Garmire 15-413 Software Engineering Fall 1998

11

Forward Engineering

Employee

0 Forward engineering is the

out of the analysis or design

generation of skeleton code A

models. The developer still has Staff Professor

to write the bodies of the

methods.

0 Typical flow of events
Create or modify an object

@
model for a system

public class Staff extends Enpl oyee

+ Generate the code for this ’
model

+ Allow external modification
of this code {

&

David Garmire 15-413 Software Engineering Fall 1998 12

Reverse Engineering

(@
0 Reverse engineering |S the ?ublic class Staff extends Enpl oyee
recreation of an analysis or y
deSIQn mOdeI from eXIStIng public class Professor extends Enpl oyee
code. {
}
_ 3
0 Typical flow of events —
+ Scan a set of already existing l
source code files
* Generate the object model Employee

for these files
+ Allow now modifications on

this object model A

Staff Professor

David Garmire 15-413 Software Engineering Fall 1998 13

Roundtrip Engineering
N

Employee

Object Model

Reverse Engineering A >

Slave Master

E),

public class Slave extends Enpl oyee

Code < } Forward Engineering

David Garmire 15-413 Software Engineering Fall 1998 14

Why roundtrip engineering?

0 Automatic code generation out of the models developed
during the design phase is easier, faster and error free
than doing it manually.

0 Developers can use specialized tools for editing and
debugging that allow faster and easier editing and
shorter turnaround cycles during debugging.

0 With reverse engineering, existing code can be
discussed and modified on a better manageable basis.
Reverse engineering also allows developers to create
models for old, never modeled systems.

David Garmire 15-413 Software Engineering Fall 1998 15

Reverse engineering vs. Reengineering

0 Reverse Engineering

¢+ means analyzing existing software with the purpose of
understanding its design and specification.

+ may be part of a reengineering project but may also be used to
respecify a system for reimplementation.

0 Reengineering

¢ means restructuring or rewriting parts or all of a legacy
system without changing its functionality.

¢+ involves adding effort to make it easier to maintain. The
system may be restructured and redocumented.

David Garmire 15-413 Software Engineering Fall 1998 16

David Garmire

15-413 Software Engineering Fall 1998

17

Together/J

0 supports UML 1.1

0 supports Java, C++ and Object Cobol

0 supports forward and reverse engineering

0 supports generation of documentation from the model
0 IS written in 100% Java

0 A free version (whiteboard edition) can be found under
WwWw. t oget herj . com

David Garmire 15-413 Software Engineering Fall 1998

18

Working with Together/J (continued)

0 Together/J supports
¢ class diagrams
+ sequence diagrams
¢ collaboration diagrams
¢ use case diagrams
¢+ state transition diagrams

0 Diagrams can be modified in two ways:

+ Graphically: by drawing lines (associations, ...), rectangles
(classes, packages, ...) in the diagram pane.

* Menu-based: by selecting an entity in the diagram pane and
using the options in the inspector pane to change its
properties.

David Garmire 15-413 Software Engineering Fall 1998

19

Model management in 15-413

0 Many models will be created during 15-413

0 Together/J doesn’t have a configuration management
system

[1 A model management strategy and has to be defined for
PAID to avoid conflicts. This is to be done by the
architecture team and includes the following topics:

+ which models should be created for PAID

+ how are the models organized (e.g. by subsystems)
+ where are the models stored

+ who is allowed to access different models

¢ selection of a configuration management system

David Garmire 15-413 Software Engineering Fall 1998 20

David Garmire

Skills expected from you

0 Handling the windows of Together/)J
0 Creating and modifying classes

0 Creating and modifying attributes

0 Creating and modifying associations
0 Creating and using packages

0 Creating and using logical packages
0 Handling the other diagram types

0 Creating documentation

0 Code-Generation

15-413 Software Engineering Fall 1998 21

Together/J’s windows

0 After starting Together/J, the main window appears

¢+ i1t contains all project-wide commands such as “Open ...”,
“Save...” and “Exit” as well as the menus for creating
documentation or calling scripts.

[1 There is exactly one main window for the project.

<« When you open a project, a browser window appears

¢+ it shows one diagram from the project. The user can modify
this diagram in the browser window.

+ the first browser window always displays the top-level object
model of the project.

[1 The user can then open and work with multiple browser
windows for different diagrams simultaneously.

David Garmire 15-413 Software Engineering Fall 1998 22

The main window

The main window contains all
standard menus plus the some
features like documentation
generation in the “Tools” menu.

{P Together/Enterprize
File Edit Search Yiew Toolz Help

SEIRIEIEEY

[Together ,Information] Properties loaded from D:i\Jawva\TogetherdYlib\host.properties
[Together , Information] Properties loaded from D:vJavahsTogetherdhlib\together.properties
[Together , Information] License file license.tg iz found. License iz 0OE.
[Together,Information] Properties loaded from D:VJavasTogetherdilib\config.properties

David Garmire 15-413 Software Engineering Fall 1998 23

A browser window of Together/J

0 shows exactly one diagram of the project

0 Is split into 5 parts

+ The navigation pane: a hierarchy tree representing the package
hierarchy of the project. It is used to switch to other diagrams.

* The diagram pane: a drawing area containing the diagram
itself. Allows graphical modifications of the diagram.

+ The toolbar. It contains different buttons for each diagram

type.

* The text pane: shows the source code for a class that is selected
In the diagram pane. Is not visible for other diagrams than
class diagrams.

* The inspector pane: an area where specific attributes of the
currently selected item can be edited. The contents of this area
changes when you click on different elements of the diagram.

David Garmire 15-413 Software Engineering Fall 1998 24

Elements of a browser window

@ Diagram - D:\WINHNT'Profiles\teubneriD esktopi\Demo\Default_vfPackage
Directory | overview 3 —
F-3 Demo Toolbar
I:{Q:'I} .I.ZJefauIt.uTPackage E
ya
‘ Navigation pane ' Z Diagram pane
£
|-
,?I
Apply |=
Diagram | Disklay | r
Iterm State | E a |_;|_‘
public (+) Shiowy o]
packade local (] show /’
abstract showy -
interface Show
Text pane
| Inspector pane '
I o

' Glass [Attibute | Operation] Link

David Garmire 15-413 Software Engineering Fall 1998 25

Starting or opening a project

0 Select “New Project ...” or “Open Project ...” from the
“File” menu of the main window.

0 Give your project a name and enter a path for all the
files which are produced while you are modeling your
system.

0 When you click on the “Advanced” option, two text
areas appear where you can specify additional paths for
your class files (sourcepath) and directories with Java
classes (classpath) which you want to use in your project.

David Garmire 15-413 Software Engineering Fall 1998 26

Starting a new project

Every project must have a name
and a directory where all project

E':-f’g Mew Project

N\

files and the Java sources are stored.
Language: ® Java [C++ i Op BOL
Froject Bame: I Demo ra legal filename for your Operating System)
Location: Browse. . |
Java Sourcepath: Add... | Java Classpath: Add... |
Cewvimm TP rofilestteubnenDesktopDemo =~ CoavalTogetherclasses; ﬁ
D L_IaxraITngetherJII|b1tngether Fp;

OK | izancel | Help

You can specify alternative source
paths and additional classpaths for
your project.

David Garmire 15-413 Software Engineering Fall 1998

Creating classes

0 To create a new class
+ select the “New Class” button in the toolbar
+ draw a rectangle in the diagram pane
¢ change the default name for the class to the proper one

+ use the inspector pane to modify other properties of the class
(author, version, etc.)

0 You can always change the properties of the class later.

David Garmire 15-413 Software Engineering Fall 1998 28

Creating classes (example)

& Diagram - D:A\WINNT \Profiles\teubner\DesktopiDemo\Default. vIPackage

Directory | overview =

E-E3 Demo Person
—3 .
— > DefaultvPackage
— B Class1.java
—B Personjava
— B FProfessorjava
— B Staffjava

Staff
Apply

Fropetty Yalle

narme Class E q|

Elickage Class java — Gener&te?\)l‘"ogethar

extends i

implements mblic class C =)

visihility public e

override none /

stereotype @ . 5

alias Select the “New class” button in the

| note ~| toolbar and draw a rectangle in the

Properties | HyperlinkTo | Doc | diagram pane. You can then insert the Col 1 Madified

name of your new class.

David Garmire 15-413 Software Engineering Fall 1998

Adding and editing attributes

0 To add an attribute
¢+ right click on the class in the diagram pane
+ select “New attribute ...” from the context menu
+ enter the name of the attribute

0 To modify an attribute
¢+ click on the attribute in the diagram pane

+ use the inspector pane to change to change to properties of the
attribute

David Garmire 15-413 Software Engineering Fall 1998 30

Adding and editing attributes

Diagram - D:AWINNT \Profiles\teubner\DesktopiDemo\Default. vIPackage

DirEETDWI Dverdevw IE B

E-25 Demo

—E3 ..

— > DefaultvPackage
— B Ferson.java

—B Frofessorjava

5

— B Staff java i
.

/F

Person

E = =
=—f11;stI-Ing: int |

— B Stud entjava

Professor Staff Student [
’H
Apply
Property Yalue = =
name firstiarme — q| Ll—‘
type et i R
pattern choose .. /, H
associates I _
e public class Person |
initial value e
i private int firstName:
static }
visikility
override |:h
transient |_
volatile - = o g =
=l Click on the attribute in the diagram pane f
Properties | HymerlinkTo | Do | and use the inspector pane to modify the [=
attribute.

David Garmire 15-413 Software Engineering Fall 1998

Generalization (Inheritance)

0 To define a generalization
¢ click on the “Generalization” button in the toolbar

¢ draw a line from the subclass to the superclass. You don’t
have to hit certain points of the rectangles; it’s enough when
you start the line within the subclass and release the mouse
button in the superclass.

0 To change a generalization

+ click on one end of the arrow and drag it to the new subclass
respective superclass.

David Garmire 15-413 Software Engineering Fall 1998 32

Generalization (Inheritance)

Diagram - D:AWINNT \Profiles\teubner\DesktopiDemo\Default. vIPackage

DirEETDWI e e ety I h B
Person

E-25 Demo

—E3 ..

— > DefaultvPackage
— B Ferson.java

—B Frofessorjava

— B Staff java

— B Student java

#firatName: 3tring
#lastlName: 3tring

+setFirstlame: void
+getFiratlane: 3tring
+setLastName:woid
+oetLastName: 3trin

0 | mw

Student

S N (G

‘;" +learn:boolean
Apply |
Diagraml Display | .
Property Walue ﬁ J LI—‘
narme =default= — // Generated athar 1=
stereotype /’
alias '
note public class Persogl

AEEEbgSet %

-

Select the “Generalization” button in the
toolbar and draw a line from the subclass

Propetties | Hyperlink To | Do |

(“Student”) to the superclass (“Person”).

David Garmire 15-413 Software Engineering Fall 1998

Mastering complexity with Packages

0 Large systems can easily lead to ravioli models which
are nearly unreadable.

¢+ Example: The system architecture of StarNetwork (next slide)

0 UML packages are organizing constructs on project level
+ they are hierarchical (a package can contain other packages)

¢+ a UML package can correspond to
— aJava package (such as java.util, java.math)
— a PAID subsystem

¢ during code generation every package becomes a directory.
Together/J parses all packages recursively.

David Garmire 15-413 Software Engineering Fall 1998 34

David Garmire

Start durch

StarNetwork
Systemuberblick

ibergabe

Zentrale.

Browser

Werkstatt 1D’

WWW-Server

dy h generierte HTML-!

User iiberpriifen,

verschiedene Systeme

Startkonfiguration
start
Ubergabe Userinfo, Startkonfiguration senvice B Konfigurations-
anfordem n\;;;:;z(n;afl\:.
Start, Konfigurationsdaten S islesen service
fiir Servicelocationen <X (%4
Lzenescussel QURRRRXKXK
K tizenzkontroll
K X frontend in
] of Zentrale
sxan‘ Start,Ubergabe <2
Integration Abfrage Nutzung StarBus, Benutzer
registrierter
Start der in Oberflache Ap‘ﬁ‘ka“me" D*Zg::;g:éf:ﬂie"fg Server beim Handler
Startklassen Nutzung Diensie falls vorhanden
3”? Sz"e"'g;‘;e Service Manager holen
ler Lizenzinfo 1 Nutzung , L
Tools StarBus
Tracing
Service
Steuerung
StarBus-Service
! Bookmark-
verwaltuns
StarList Auslesen
Verbindung zu Steuerun, Auftragsinfo
DMS fiir 9 loschen 9
Shoppinglisten
|
bearbeiten
Zugriff tber
Shoppinglist- —
Interface Auslesen
Starldent
Shoppingliste
| |
FDK auslesen
ber FIN,
Daten T 1SBI-Backend
manuelle Service (ISBI++) "Voyager"
Zugriff aber Identifikation
Navigator-
interface
| manuelles Feedback Feedback Feedback-
Registration am GUI, (vom Benutzer ausgelost) Service Backend
Applikationswechsel
Nutzung von
Diensten, information
Zugang zu StarBus, auslesen Verwaltung
PaRwort tberpriifen Bookmarks ,
Zugriff uber
Feedback-
Interface
FDK
Daten manuelle
i Identifikation
L im . lesen der
StarNetwork ‘]
L
. StarBroadcast auch
[Nutzung StarBus >, Stabus Empfanger [| Ruckkanal Sender
eedback ——¥ Feedback
StarBroker . 1 |
\ auf
Service AnstoR bestimmter Aktionen - | zentralem
anfordem mittels Kommandoschnitistelle . Handlersystem =1 " server
Auslesen spezieller
gemeinsame Fahrzeuginformation > FOK andere
o Erzeugen und Test auf .
Bibliotheken StarParts — ——» Bookmarkverwaltung Datenquellen
(@uch for Tools) Existenz von Vorgangen | |
Tool Interfaces
Oberflichenelemente StarWorkshop
h Service
Standardobservables . =
Model/View/Control 15 A Eng ineerin
Collection-Classes

Standardalgorithmen

(+2=417

IsthisUML “

35

Creating packages

0 Packages are created in the same way as classes are:
+ select the “New Package” button in the toolbar
+ draw a rectangle in the diagram pane
¢ change the default name for the package to the proper one

¢ use the inspector pane to modify other properties of the
package (author, version, etc.)

0 To organize classes and interfaces into packages simply
drag the class/interface into the package.

David Garmire 15-413 Software Engineering Fall 1998

36

Mastering complexity with Packages

Create a package

MTAProfiles\teubneriDezktopiDemo\Default. ¥fPack age
. — =
Directary | Cverview] —
-3 Demo Humans]
i;' +Euployee Institutions
umans
Institutions =] . +hepartnent
+3tudent +College
DefaultvFackage = +itaff Hniversity
B wayDescription java _/ +Person 4+Tnstitution
e A /A. L
/P Z interface Z.
| wayllescription
A
C
Aol |; dphicd IWayDescription! ol
e rtulWayDescription: String
Diagraml Display' =
Froperty Yalue | ﬁ ‘| ’|
harme =default= =1
stereotype /"
alias
hiote l:. I:.
= =

The project consists of nine classes and on
interface. Humans contains five classes,
Institutions contains four classes.

Properties | Hyperlink To | Doc |

David Garmire 15-413 Software Engineering Fall 1998

Providing different views: Logical packages

0 Togetherl allows you to create additional views on your
project. These views are called logical packages but have
nothing in common with the UML or Java packages.

0 You can use this feature to layout the same class
diagram in different ways

0 To create a logical package simply create a new class
diagram within a package. This diagram gets the suffix
“.vfClass” and can be manipulated just like every other
class diagram.

0 You can now simply drag some classes into this new
logical package or create new classes, associations, etc.
there.

David Garmire 15-413 Software Engineering Fall 1998 38

Logical packages: An example

0 In this example we create a new class diagram called
“WhoTeacheswhom” in the package “Humans”.

0 We then drag “Professor”, “Staff” and “Student” into
this new view and create an association between the
classes “Professor” and “Student”. We also add a little
note that a professor does not teach staff members.

0 Note that the new association is handled as if it has
been defined In the default view on the package
“Humans’ but it is visible only in our newly created
logical package “WhoTeacheswhom”.

David Garmire 15-413 Software Engineering Fall 1998 39

Inside a logical package

[aqgra [) Prohile eubneriDe opiDemo = ol es B 0 = 1O =
Directnrg.rl Cverview Q Profes=zor =
=3 Humans Employee

. —— |In our current model of e

_@ DefaultwPackage E an Tniversity, a professor

— &, WhoTeachesWhom viClass doesn't teach staff members! Lo o

—% Emplovee.java |

—® Personjava i |

—® Professorjava e : boosine —

—B Staffjava / |

B Studentjava L Staff

/J:I Eunployee Log®
A Student
i Humanz. Perzon
Apply | —expectedGraduateDate: java.util.Date
Diagrarm I Displa‘y' ::.. +learn:hoolean §

Property Yalue ﬁ ‘| | ’|
narme WhoTeachesywWhom —]
stereotype /
alias
note /

The logical package “WhoTeachesWhom”
can be handled like every other class

» diagram but the classes in this package

4

Propetties HE’FJEHinl{TDl DI:u:l

are only references to those outside
In the package “Humans”.

David Garmire 15-413 Software Engineering Fall 1998

Creating and navigating through diagrams

0 To create a new diagram
+ right-click on the package name for which you want to create
a new diagram
+ select “New Diagram ...” from the context menu

+ select the diagram type and give the diagram a name

0 To switch to another diagram
¢+ right-click on the name of the diagram in the navigation pane

+ select “Browse ...” to open the new diagram in the current
window

¢+ select “Browse Iin new window ...” to open a new browser
window

David Garmire 15-413 Software Engineering Fall 1998 41

Creating and navigating through diagrams

@ Diagram - D-YWINNT \Profilez\teubneriDeszktop\D emoilnstitutions\Default. viPackage

Directory | overview

=25 Institutions

—E3

—& > DefaultvPackage

—"I.. GetZCourseListyvfSequence
—% HowToContactvilseCase
— B CollegeN\ya

—B Departm W

— B Institution

— B University.

Apply

note

Diagram | Display | \
Froperty Walue \

narre Institutions

stereotype

alias

[\ Institution
waylescription
Atring
% eviation: 3tring
\
A
7 University Department
e 1 Lo
/): \T_\:{si. f
o consist of
A
e
| = College |1
Sy '
Qi =

h
2
The currently selected diagram is the standard
view (“Default.vfPackage”) but the package

Propetties HE’FJEHinl{TDl DI:u:l

David Garmire

“Institutions” also contains a sequence
diagram (“GetCourseList”) and a use case
diagram (“HowToContact™).

15-413 Software Engineering Fall 1998

42

Creating documentation

0 You can create documentation in HTML format either
for one diagram or for the complete project.

0 To do this, select “Create documentation” from the
menu “Tools” of the main window. Together/J creates

clickable images containing the class diagrams as well
as textual descriptions for all packages and classes.

[1Hint: Separate the documentation directory from your project
directory. Otherwise the documentation folder(s) will appear
as (sub)packages in your project when you open it the next
time. (This is a side-effect of the recursive directory scan
which is always performed when you open a project)

David Garmire 15-413 Software Engineering Fall 1998 43

Generate HTML documentation for the whole project

Eéf’iﬁenerate Documentation Ed
~Diagrams Include
" Current [¥ Diagrams
. Al [+ zpecifications

[+ Include Hidden Objects

—Cwtput
" To Printer
|_ Fage breaks

/Select an appropriate directory
and the “multi-frame” option
for the documentation. You
might also want to launch the
browser immediately after the
documentation has been
generated.

™ To HTML File: | J

® ToHTML directory: |D:IWINH'I"LF'ruﬂleslteubnenDesmn J
|7 multi-frarme

|7 Launch HTML Browser

OK Cancel Help

An example for automatically generated
documentation can be found on the next slide!

David Garmire 15-413 Software Engineering Fall 1998 44

File Edit “iew Go Communicator Help

=

v« 2 3 &N 2 wW S & & N

Back Forward Reload Haome Search Metscape Print Security Stop

Wt " Bookmarks \j{ Location: Ifile:;"h"DIMINNTa"Prcnfilesx'teul:unera"Desktupa’Demu;"DDcsx'_multiframe_html j ﬁv"#’hal's R elated

['_|" Search Engines ['_‘i Wizsenschaft ['_|" Sofhware ['_|" Firmen, Wereine ['_|" Reizen ['_|‘r Daz Leben ... ['_‘i Der ganze Rest

TIIIEY OIS
-

Institution
waylescription
-hame: String

Component Package
Diagram Demo

—abbreviation: String

Component Package
Diagram Docs l,._-"l

Component Package
Diagram Humans

University Department

Component Package

consists of

David Garm ’E| |Ducument: Done >

Diagram Institutions consist of
| College |1
hd
Component r
Package diagram
Institutions Class Institutions.College [

public class Institutions.College
extends Institutions.Institution

Links

Class Institutions.College

* Aggregation InklUnnamed to Institutions Department

Class

B Name consist of
Institutions. Department

Client cardinality 1 B
P | Supplier cardinality 1. * |

45

Generating code

0 Together/J) automatically creates the files with the Java
source code for all classes in a project when you safe the
project. By default, the source files are in the same
directory hierarchy as the project files are.

0 The code contains comments with Together/J-specific
Information. These comments are used when you open
the project again. No developer should modify or delete
them.

David Garmire 15-413 Software Engineering Fall 1998 46

Automatically generated code (example)

File Edt Search Help

ff Generated by Together =
package Institutions;

public class College extends Institutions.Institution {
/=xfdshapeType AggregationLink
@label consist of
BclientCardinality 1
BsupplierCardinality 1..%x/
§§> private Department lnkUnnamed;

¥

These labels within comments are
used by Together/J to re-create the
model. Do not modify or delete them!

David Garmire 15-413 Software Engineering Fall 1998 47

CASE Tutorial in SE Lab

[Spl It Into groups (1 machine has 1 group composed of many people).
¢ Donut — Workflow
* VViennese — Authoring
* Brazilroast - Model
¢+ Konablend - Inspection
+ Bluemountain — Augmented Reality
¢ Java — Repair
0 Go to the Software Engineering Lab.
0 Follow the instructions on the handout.

0 If you have questions, | will be along shortly to help.

David Garmire 15-413 Software Engineering Fall 1998

48

