
Bruegge/Software 15-413 Software Engineering Fall 1999 1

Object Design

v 8 September 1994

2

Lecture Notes on
Object Design

Bill Scherlis / Bernd Brügge

15-413 Software Engineering Fall 1999

21 October 1999

2 November 1999

Bruegge/Software 15-413 Software Engineering Fall 1999 2

Object Design – The Basis for Implementation

• Object Design
– Add details to requrements analysis

– Make implementation decisions: Build / Buy

– Make implementation decisions: Solution objects

• Design drivers
– Time. Cost. Quality / assurance.

– Features / capability. Performance.

– Future. Product line context.

• Operations in the object model
– Requirements Analysis: Use cases, functional and dynamic models

deliver operations for object model

– Object Design: Iterate on where to put these operations in the
object model

Bruegge/Software 15-413 Software Engineering Fall 1999 3

Build / Buy

• Buy
– Cost

• Project resources

• Development time

– Market leverage
• Ride growth curves

• Quality

– Adoption cost

• Build
– Availability

– Risk
• Control over process

• Future trajectory

• Support: Small vendor

• Support: Large vendor

• Architectural

• Certification

Bruegge/Software 15-413 Software Engineering Fall 1999 4

Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requirements gap

Bruegge/Software 15-413 Software Engineering Fall 1999 5

 Example Object Design Issues

• Full definition of associations

• Full definition of classes

• Encapsulation of algorithms and data structures

• Detection of new application-domain independent classes
(example: Cache)

• Optimization

• Increase of inheritance

• Decision on control

• Packaging

Bruegge/Software 15-413 Software Engineering Fall 1999 6

Example Object Design Criteria

• Rate of change
– Of requirements

– Of OTS environment

• Relatedness within product line

• Performance sensitivity

• Division of labor, division of expertise

• Tolerance for interdependency

Bruegge/Software 15-413 Software Engineering Fall 1999 7

Object Design Activities

• 1. Service specification
– Describes precisely each class interface

• 2. Component selection
– Identify off-the-shelf components and additional solution objects

• 3. Object model restructuring
– Transforms the object design model to improve its

understandability and extensibility

• 4. Object model optimization
– Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 8

Object Design Concepts

• Solution Objects
– Objects in the implementation domain

• Signatures
– Classes, Interfaces

– Methods, Fields

– Packages

• Contracts
– Invariants, Preconditions, Postconditions

– Mechanical attributes

• Specification
– UML Object Constraint Language (OCL)

Bruegge/Software 15-413 Software Engineering Fall 1999 9

Specification – 1

UML Object Constraint Language (OCL)
Context Hashtable inv:

 numElements >= 0

context Hashtable::put(key, entry) pre:

 !containsKey(key)

context Hashtable::put(key, entry) post:

 containsKey(key) and

 get(key) = entry and

 numElements = numElements@pre + 1

Bruegge/Software 15-413 Software Engineering Fall 1999 10

Specification – 2

• Examples
– Textual description of invariants, preconditions, postconditions.

• Typical: Data invariant for complex types

• Often used in code walkthroughs

– State machine for a class
• Lifetime of an object

• How an object responds to events

• Constraints on class clients: order of method calls, etc

• In general
– Range from informal to formal

• When is formal useful?
– Complex invariants and conditions

– High risk: consequences of error

Bruegge/Software 15-413 Software Engineering Fall 1999 11

1. Service Specification

• Requirements analysis
– Identifies attributes and operations

• without specifying their types or their parameters.

• Object design
– Identify missing attributes, operations

– Specify details
1a. Type signature information

1b. Visibility information

1c. Contracts

1d. Exceptions

Bruegge/Software 15-413 Software Engineering Fall 1999 12

GIS subsystems

Visualization

GIS

Storage

Simulation

EmissionModeling

Bruegge/Software 15-413 Software Engineering Fall 1999 13

GIS Object Model: Before
Layer

label

RoadLayer

Highway SecondaryRoad

River Lake

Polygon

State County

WaterLayer PoliticalLayer

PolyLine

Bruegge/Software 15-413 Software Engineering Fall 1999 14

GIS: From System Design to Object Design

• Task specification

• Subsystem model

• Use case: Zoom-the-Map

Bruegge/Software 15-413 Software Engineering Fall 1999 15

GIS Object Model: After
Layer

label

RoadLayer

Highway SecondaryRoad

River Lake

State County

WaterLayer PoliticalLayer

LayerElement
label

LayerElement(polyline)
LayerElement(polygon)
getOutline(bbox,detail)

* elements

Bruegge/Software 15-413 Software Engineering Fall 1999 16

GIS Object Model: After

Layer
+label:String

+Layer(label:String)
+getOutline(bbox:Rect2D,
 detail:double):
 Enumeration(LayerElement)

LayerElement
+label:String

+LayerElement(pl:PolyLine)
+getOutline(bbox:Rect2D,
 detail:double):
 Enumeration(PolyLine)

PolyLine
+label:String

+PolyLine()
+getPoints():
 Enumeration(Point)

Point
-x,y:double
-inDetailLevels:Set
-notInDetailLevel:Set

+Point(x,y:double)
+excludeInLevel(level:double)
+excludeFromLevel(level:double)

1

* points *

* elements

1 polyline
1

Bruegge/Software 15-413 Software Engineering Fall 1999 17

1a. Service Specification: Add Type Signatures

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int

Bruegge/Software 15-413 Software Engineering Fall 1999 18

1b. Service Specification: Add Visibility

UML defines three levels of visibility:

• Private (= Java private):
– Private attributes/operations can be accessed/invoked only within

the class in which they are defined.

– Private attributes/operations cannot be accessed by subclasses or
other classes.

• Protected (nothing comparable in Java):
– Protected attributes/operations can be accessed by the class in

which they are defined and in any descendent class.

• Public (= Java public):
– Public attributes/operations can be accessed by any class.

Bruegge/Software 15-413 Software Engineering Fall 1999 19

Information Hiding : Why Encapsulate?

• Encapsulate
– Apply “need to know” principle.

– The less an operation knows . . .
. . . the less likely it will be affected by any changes
. . . the easier the class can be changed

• Build firewalls around classes
– Define public interfaces for classes as well as subsystems

• The classic trade-off
– Information hiding vs. efficiency

• Modularity vs. performance

Bruegge/Software 15-413 Software Engineering Fall 1999 20

Information Hiding Design Principles

• Encapsulate attributes (fields)
– Only the operations of a class are allowed to manipulate its

attributes

– Access attributes only via operations.

– Example: Java Beans

– (Exception: static finals)

• Encapsulate external objects at the subsystem boundary
– Define abstract class interfaces which mediate between system and

external world as well as between subsystems

• Use combiners
– Do not apply an operation to the result of another operation.

– Write a new operation that combines the two operations.

Bruegge/Software 15-413 Software Engineering Fall 1999 21

1c. Service Specification: Contracts

• Contracts on a class/method enable caller and callee to share
assumptions about the class/method.

• Contracts include three types of constraints:
– Invariant: A predicate that is “always” true for instances of a class.

Invariants are used to specify consistency constraints among class
attributes.

– Precondition: A predicate that must be true before a specific
operation is invoked. A constraint on a caller.

– Postcondition: A predicate that will be true after a specific
operation has been invoked. A constraint on the operation.

Bruegge/Software 15-413 Software Engineering Fall 1999 22

Specification

UML Object Constraint Language (OCL)
Truth-valued expressions. Not procedural.

Context Hashtable inv:

 numElements >= 0

context Hashtable::put(key, entry) pre:

 !containsKey(key)

context Hashtable::put(key, entry) post:

 containsKey(key) and

 get(key) = entry and

 numElements = numElements@pre + 1

Bruegge/Software 15-413 Software Engineering Fall 1999 23

Specification and OCL

• A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean

<<invariant>>
numElements >= 0

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

size():int

numElements:int

Bruegge/Software 15-413 Software Engineering Fall 1999 24

GIS Specification Example

context Point inv:

 Point.allInstances->forAll(p1,p2:Point |

 (p1.x=p2.x and p1.y=p2.y) implies p1=p2)

Bruegge/Software 15-413 Software Engineering Fall 1999 25

1d. Exceptions

LayerElement
+label:String

+LayerElement(pl:PolyLine)
+getOutline(bbox:Rect2D,
 detail:double):
 Enumeration(PolyLine)

<<pre>>
bbox.width > 0 and
bbox.height > 0

<<exception>>
ZeroBoundingBox

Bruegge/Software 15-413 Software Engineering Fall 1999 26

Object Design Areas

• 1. Service specification
– Describes precisely each class interface

• 2. Component selection
– Identify off-the-shelf components and additional solution objects

• 3. Object model restructuring
– Transforms the object design model to improve its

understandability and extensibility

• 4. Object model optimization
– Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 27

2. Component Selection

The most important reuse decisions – OTS components

2a. Select and adjust class libraries
– Examples: AWT, Swing/JFC, MFC, etc.

2b. Select and adjust application frameworks
– Examples: COM, Beans.

Bruegge/Software 15-413 Software Engineering Fall 1999 28

Example: JFC adjustment

<<JFC>>
:JPanel

<<JFC>>
:JScrollPane

<<JFC>>
:JToolbar

<<JFC>>
:JFrame

:MapArea

detail

paintContents()

. . .

Issue: Line representation

 JFC: int[], int[]

GIS: Enum(Point)

Approaches:

1. Code translate method

2. Place the method:

MapArea
Layer

Adapter

Bruegge/Software 15-413 Software Engineering Fall 1999 29

Application Frameworks

• Example: Java Beans
– Event model

• Serialization

• Locks

– Fields
• Private

• Nomenclature

– Introspection

– Persistence
• Customization

– Etc.

• Frameworks

• Patterns

• Libraries

• Components

The API Hourglass

The Service
Interface

Bruegge/Software 15-413 Software Engineering Fall 1999 30

Object Design Areas

• 1. Service specification
– Describes precisely each class interface

• 2. Component selection
– Identify off-the-shelf components and additional solution objects

• 3. Object model restructuring
– Transforms the object design model to improve its

understandability and extensibility

• 4. Object model optimization
– Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 31

3. Restructuring Activities

3a. Realize associations

3b. Increase reuse

3c. Remove implementation dependencies

Bruegge/Software 15-413 Software Engineering Fall 1999 32

Layer
+label:String

+Layer(label:String)
+getOutline(bbox:Rect2D,
 detail:double):
 Enumeration(LayerElement)

LayerElement
+label:String

+LayerElement(pl:PolyLine)
+getOutline(bbox:Rect2D,
 detail:double):
 Enumeration(PolyLine)

PolyLine
+label:String

+PolyLine()
+getPoints():
 Enumeration(Point)

1

* elements

1 pl
1

3a. Realize Associations

Bruegge/Software 15-413 Software Engineering Fall 1999 33

3a. Realize Associations

• Kinds / Dimensions
– 1-1, 1-many, many-many

– 0..1

– Uni-/bi-directional

– Qualified

– Visibility

• Considerations
– Operations needed

– Performance

– References

• Implementation decisions
– Collections

– Use of separate objects

Bruegge/Software 15-413 Software Engineering Fall 1999 34

Unidirectional 1-to-1 Association

MapAreaZoomInAction
11

MapAreaZoomInAction

targetMap:MapArea

Object design model befor e transformation

Object design model after transformation

Bruegge/Software 15-413 Software Engineering Fall 1999 35

Bidirectional 1-to-1 Association

MapAreaZoomInAction
11

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

Object design model before transformation

Object design model after transformation

Bruegge/Software 15-413 Software Engineering Fall 1999 36

1-to-Many Association

Layer LayerElement
1 *

Layer LayerElement

-containedIn:Layer-layerElements:Set
+elements()
+addElement(le)

+getLayer()
+setLayer(l)

+removeElement(le)

Object design model before transformation

Object design model after transformation

Bruegge/Software 15-413 Software Engineering Fall 1999 37

Qualification

Scenario

-runs:Map
+elements()
+addRun(simname, sr:SimulationRun)
+removeRun(simname, sr:SimulationRun)

SimulationRun

-scenarios:Vector
+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

simname
0..11

Scenario

SimulationRun

Bruegge/Software 15-413 Software Engineering Fall 1999 38

3b. Increase Reuse

Increase Inheritance

• In general:
– Taxonomy reflects understanding of application domain

• Rearrange and adjust classes/operations for inheritance

• Abstract common behavior from class groups
– Detect opportunities to “hoist” behaviors

• A subsystem could become a superclass.

The cost of inheritance

• Performance: dynamic dispatch

• Recompilation

Bruegge/Software 15-413 Software Engineering Fall 1999 39

Building a super class from several classes

• Prepare for inheritance. Refactor operations to have similar
signatures:

– Fewer/mismatched arguments: Overload names

– Mismatched attribute names: Rename attribute, change operations.

• Abstract out the common behavior into supers
– Supers are desirable.

• Better modularity, extensibility and reusability

• Improved configuration management

Bruegge/Software 15-413 Software Engineering Fall 1999 40

Inheritance: Good and Bad

• Kinds of Inheritance
– Interfaces

– Implementations

• The cost of implementation inheritance
– Code rot: Persistence of abstractions beyond their time

– Dependency on small local implementation decisions
• Data representations and invariants

– Example: Jframe and JInternalFrame

• Approaches
– Delegate, don’t inherit

• “Subclass” delegates to the “super”

– Use abstract supers

– Proliferate interfaces

Bruegge/Software 15-413 Software Engineering Fall 1999 41

Refactoring

• Reorganizing hierarchies, signatures, and collaborations
– Without changing overall system function (generally)

• Examples
– Moving from one taxonomy to another taxonomy

– Multiple inheritance to single inheritance

– Relocating methods within a hierarchy

– Renaming to exploit overloading
• I.e., hierarchy transparency at code level

Bruegge/Software 15-413 Software Engineering Fall 1999 42

Object Design Areas

• 1. Service specification
– Describes precisely each class interface

• 2. Component selection
– Identify off-the-shelf components and additional solution objects

• 3. Object model restructuring
– Transforms the object design model to improve its

understandability and extensibility

• 4. Object model optimization
– Transforms the object design model to address performance criteria

such as response time or memory utilization.

Bruegge/Software 15-413 Software Engineering Fall 1999 43

Design Optimizations

• Important part of the object design phase:
– Requirements analysis model is semantically correct but often too

inefficient if directly implemented.

• Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency

3. Store derived attributes to save recomputation time

• As an object designer you must strike a balance between
efficiency and clarity.

– Optimizations will make your models more obscure

Bruegge/Software 15-413 Software Engineering Fall 1999 44

Design Optimizations

• Necessary part of the object design phase:
– Requirements analysis model –

• Semantically correct

• Well structured (modular)

• Probably too inefficient if directly implemented.

– Object designer: balance between efficiency and clarity.
• Efficiency: At run time, compile time, design time.

• Optimizations will make models more obscure

• Optimizations will make programs harder to evolve

Bruegge/Software 15-413 Software Engineering Fall 1999 45

4. Design Optimization Activities

4a. Add redundant associations to reduce access cost
– What are the most frequent operations?

• Sensor data lookup?

– How often is the operation called?
• 30 times/month? 20 times/second?

4b. Turn classes into attributes to avoid recomputation
– Eliminate unnecessary abstraction structure

4c. Cache expensive results
– But can cache coherency be maintained?

4d. Compute lazily
– Delay expensive operations

Bruegge/Software 15-413 Software Engineering Fall 1999 46

4a. Add Redundant Associations

• More generally
– Replace bidirectional by unidirectional

– Replace many-many by 1-many

– Replace 1-many by 1-1

– Add additional associations

• Cache

• When to do this?
– What is the frequency of traversal?

– What is the relative cost of traversal and the operation performed?

– Can search be replaced by indexing?
• E.g., order or hash objects

– Can indexing be replaced by direct reference?
• E.g., cache references

Bruegge/Software 15-413 Software Engineering Fall 1999 47

4b. Collapse Objects

• Can this association be an
attribute?

• Can this object be an
attribute of another object?

– Object design choices:
• Implement entity as

embedded attribute

• Implement entity as
separate class with
associations to other classes

• Associations
– More flexible than attributes

– Can introduce unnecessary
indirection

SSN
ID:String

Person

Person
SSN:String

Bruegge/Software 15-413 Software Engineering Fall 1999 48

4c. Cache Expensive Results

Example: How to deal with disconnection in distributed systems?

• Store derived attributes
– Example: Define new classes to store information locally

• Database cache

Issues:

• Derived attributes must be updated when base values change.
– Cache coherency

• Storage costs can increase

• Approaches to the update problem:
– Periodic computation – Deliberately recompute at intervals (inexact)

– Explicit linking – Modified MVC. Active value. Consistency check.

Bruegge/Software 15-413 Software Engineering Fall 1999 49

Image

filename:String

width()
height()
paint()

Image

filename:String

width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String
width()
height()
paint()

image

1 0..1

4d. Delay Complex Computations

• Avoid calculating results
– Deliver proxies instead

• The essence of lazy
computation

– Drive computation by
demand

Bruegge/Software 15-413 Software Engineering Fall 1999 50

The Object Design Document (ODD), 1

• Object design document
– Similar to RAD + ...

… + Additions to object, functional and dynamic models
(from solution domain)

… + Navigational map for object model
… + Javadoc documentation for all classes

Bruegge/Software 15-413 Software Engineering Fall 1999 51

ODD Conventions

• Each subsystem in a system provides a service
– Describe the set of operations provided by the subsystem

• Specifying a service operation as
– Signature: Name of operation, fully typed parameter list and return

type

– Abstract: Describes the operation

– Pre: Precondition for calling the operation (where appropriate)

– Post: Postcondition describing important state after the execution of
the operation (where appropriate)

• Use JavaDoc for the specification of service operations.

Bruegge/Software 15-413 Software Engineering Fall 1999 52

The Object Design Document (ODD), 2

• ODD Management issues
– Update the RAD models in the RAD?
– Should the ODD be a separate document?
– Target audience for these documents

• Customer?
• Developer?
• Remote team?

– If time is short:
• Focus on the Navigational Map and Javadoc documentation

• Example of acceptable ODD:
– [to be provided]

Bruegge/Software 15-413 Software Engineering Fall 1999 53

Packaging

• Package design into discrete
physical units that can be
edited, compiled, linked,
reused:

– Ideally one package per
subsystem

– But: system decomposition
might not favor
implementation.

• Design principles
– Minimize coupling:

• Client-supplier relationships

• Limit number of parameters

• Avoid global data

– Maximize cohesiveness:
• Tights associations imply

same package

– Consider the number of interface
objects offered

• Interface object :

– Denotes a service or API

– For requirements analysis,
system/object design.

• Java interface:

– Implements an interface
object, or not.

