
Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 1

Software Engineering

Bernd Brügge

Technische Universität München

Lehrstuhl für Angewandte Softwaretechnik

http://wwwbruegge.in.tum.de

18 October 2001

TUM

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 2

Assumptions and Requirements for this Class

v Assumption:
w You are proficient in a programming language, but you have no

experience in analysis or design of a system

w You want to learn more about the technical aspects of analysis
and design of complex software systems

v Requirements:
w You are an enrolled student in

u Diplom for Informatik

u Bachelor for Informatik

u Master program for computational science and engineering

v Beneficial:
w You have practical experience with maintaining or developing

a large software system and have experienced major problems

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 3

Intended audience

v Informatik students (Diplom)

v Informatik students (Bachelor)

v Computational Science and Engineerinng
(Master)

v Students taking the associated Software
Engineering Praktikum TRAMP

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 4

Times

v Main lecture slot (Everybody):
w Thursday 14:30-16:00

v Tutorials (Diplom and Bachelor students, interested
students)
w Fridays: 11:15-12:00

v First issue:
w The software engineering lecture conflicts with several

seminars (Hauptseminare Prof. Bayer, Prof. Spiess)

w Can we move the lecture to 13:00 o’clock?

w Alternatively, can we move the lecture to 14:00 o’clock?

v Bachelor exam: Feb 14, 2002: 14:30 in S1128

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 5

v Appreciate Software Engineering:
w Build complex software systems in the context of frequent

change

v Understand how to
w produce a high quality software system within time

w while dealing with complexity and change

v Acquire technical knowledge (main emphasis)

v Acquire managerial knowledge

Objectives of the Class

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 6

v Understand System Modeling

v Learn UML (Unified Modeling Language)

v Learn different modeling methods:

u Use Case modeling

u Object Modeling

u Dynamic Modeling

u Issue Modeling

v Learn to use Tools:
w CASE (Computer Aided Software Engineering)

u Tool: Together-J

v Move into Component-Based Software Engineering

w Use Design Patterns and Frameworks

Acquire Technical Knowledge

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 7

v Understand the Software Lifecycle
w Process vs Product

w Learn about different software lifecycles

w Greenfield Engineering, Interface Engineering, Reengineering

Acquire Managerial Knowledge

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 8

Readings

v Required:
w Bernd Brügge, Allen Dutoit: “Object-Oriented Software

Engineering: Mastering Complexity and Change”, Prentice
Hall, 1999, ISBN 0-13-489725-0

u Available in the TUM library

u TUM bookstores (Kanzler, Obelisk)

v Recommended:
w Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides:

“Design Patterns”, Addison-Wesley 1996, ISBN 0-201-633

w Grady Booch, James Rumbaugh, Ivar Jacobsen, “The Unified
Modeling Language User Guide”, Addison Wesley, 1999

w K. Popper, “Objective Knowledge, an Evolutionary Approach,
Oxford Press, 1979.

v Additional books maybe recommended during
individuals lectures

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 9

Outline of Today’s Lecture

v High quality software: State of the art

v Modeling complex systems
w Functional vs. object-oriented decomposition

v Dealing with change:
w Software lifecycle modeling

v Reuse:
w Design Patterns

w Frameworks

v Concluding remarks

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 10

Can you develop this?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 11

Requirements

Software

Limititations of Non-engineered Software

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 12

Software Production has a Poor Track Record
Example: Space Shuttle Software

v Cost: $10 Billion, millions of dollars more than planned

v Time: 3 years late

v Quality: First launch of Columbia was cancelled because
of a synchronization problem with the Shuttle's 5
onboard computers.
w Error was traced back to a change made 2 years earlier when a

programmer changed a delay factor in an interrupt handler
from 50 to 80 milliseconds.

w The likelihood of the error was small enough, that the error
caused no harm during thousands of hours of testing.

v Substantial errors still exist.
w Astronauts are supplied with a book of known software

problems "Program Notes and Waivers".

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 13

Quality of today’s software….

v The average software product released on the market is
not error free.

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 14

…has major impact on Users

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 15

Software Engineering: A Problem Solving Activity

v Analysis: Understand the nature of the problem and break
the problem into pieces

v Synthesis: Put the pieces together into a large structure

v For problem solving we use

v Techniques(Methods):
w Formal procedures for producing results using some

well-defined notation

v Methodologies:
wCollection of techniques applied across software

development and unified by a philosphical approach

v Tools:
w Instrument or automated systems to accomplish a

technique

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 1620

Software Engineering is a collection of techniques,
 methodologies and tools that help
with the production of

a high quality software system

with a given budget

before a given deadline

 while change occurs.

Software Engineering: Definition

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 17

Scientist vs Engineer

v Computer Scientist
w Proves theorems about algorithms, designs languages, defines

knowledge representation schemes

w Has infinite time…

v Engineer
w Develops a solution for an application-specific problem for a

client

w Uses computers & languages, tools, techniques and methods

v Software Engineer
w Works in multiple application domains

w Has only 3 months...

w …while changes occurs in requirements and available
technology

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 18

Factors affecting the quality of a software
system

v Complexity:
w The system is so complex that no single programmer can

understand it anymore

w The introduction of one bug fix causes another bug

v Change:
w The “Entropy” of a software system increases with each change:

Each implemented change erodes the structure of the system
which makes the next change even more expensive (“Second Law
of Software Dynamics”).

w As time goes on, the cost to implement a change will be too high,
and the system will then be unable to support its intended task.
This is true of all systems, independent of their application
domain or technological base.

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 19

Why are software systems so complex?

v The problem domain is difficult

v The development process is very difficult to manage

v Software offers extreme flexibility

v Software is a discrete system
w Continuous systems have no hidden surprises (Parnas)

w Discrete systems have!

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 20

1. Abstraction

2. Decomposition

3. Hierarchy

Dealing with Complexity

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 21

What is this?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 22

v Inherent human limitation to deal with
complexity
wThe 7 +- 2 phenomena

v Chunking: Group collection of objects

v Ignore unessential details: => Models

1. Abstraction

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 23

Models are used to provide abstractions

v System Model:
w Object Model: What is the structure of the system? What are

the objects and how are they related?

w Functional model: What are the functions of the system? How
is data flowing through the system?

w Dynamic model: How does the system react to external events?
How is the event flow in the system ?

v Task Model:
w PERT Chart: What are the dependencies between the tasks?

w Schedule: How can this be done within the time limit?

w Org Chart: What are the roles in the project or organization?

v Issues Model:
w What are the open and closed issues? What constraints were

posed by the client? What resolutions were made?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 24

Interdependencies of the Models

System Model (Structure,
 Functionality,
 Dynamic Behavior)

Issue Model
(Proposals,
Arguments,
Resolutions)

Task Model
(Organization,
Activities
Schedule)

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 25

The “Bermuda Triangle” of Modeling

System Models

Issue Model Task Models

PERT Chart
Gantt Chart

Org Chart
Constraints

Issues

Proposals

Arguments

Object Model

Functional
Model

Dynamic Model

class...
class...
class...

Code

Pro Con

Forward
Engineering

Reverse
Engineering

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 26

Model-based software Engineering:
Code should be a derivation of object model

Problem Statement : A stock exchange lists many companies.
Each company is identified by a ticker symbol

public class StockExchange
{

 public Vector m_Company = new Vector();

};

public class Company

{

 public int m_tickerSymbol

 public Vector m_StockExchange = new Vector();

};

Implementation phase results in code

Analysis phase results in cbject model (UML Class Diagram):

StockExchange Company

tickerSymbolLists
**

A good software engineer writes as little code as possibleA good software engineer writes as little code as possible

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 27

Example of an Issue: Galileo vs the Church

What is the center of the Universe?

wChurch: The earth is the center of the
universe. Why? Aristotle says so.

wGalileo: The sun is the center of the universe.
Why? Copernicus says so. Also, the Jupiter’s
moons rotate round Jupiter, not around
Earth.

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 28

Issue-Modeling

Issue:
What is the

Center of the
Universe?

Proposal1:
 The earth!

Proposal2:
The sun!

Pro:
 Copernicus

says so.

Pro:
 Aristotle
says so.

Pro:
 Change will disturb

the people.

Con:
Jupiter’s moons rotate

around Jupiter, not
around Earth.

Resolution (1615):
The church

decides proposal 1
is right

Resolution (1998):
The church declares

proposal 1 was wrong

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 29

Which decomposition is the right one?

2. Decomposition

v Another technique used to master complexity (“divide
and conquer”)

v Functional decomposition
w The system is decomposed into modules

w Each module is a major processing step (function) in the
application domain

w Modules can be decomposed into smaller modules

v Object-oriented decomposition
w The system is decomposed into classes (“objects”)

w Each class is a major abstraction in the application domain

w Classes can be decomposed into smaller classes

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 30

Functional Decomposition

Top Level functions

Level 1 functions

Level 2 functions

Machine Instructions

System
Function

Load R10 Add R1, R10

Read Input Transform
Produce
Output

Transform
Produce
OutputRead Input

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 31

Functional Decomposition

v Functionality is spread all over the system

v Maintainer must understand the whole system to make a
single change to the system

v Consequence:
w Codes are hard to understand

w Code that is complex and impossible to maintain

w User interface is often awkward and non-intuitive

v Example: Microsoft Powerpoint’s Autoshapes

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 32

Autoshape

Functional Decomposition: Autoshape

Draw
Rectangle

Draw
Oval

Draw
Circle

DrawChangeMouse
click

Change
Rectangle

Change
Oval

Change
Circle

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 33

What is This?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 34

Model of an Eskimo
Eskimo

Size
Dress()
Smile()
Sleep()

Shoe
Size

Color
Type

Wear()

*
Coat
Size

Color
Type

Wear()

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 35

Iterative Modeling then leads to
Eskimo

Size
Dress()
Smile()
Sleep()

Cave
Lighting
Enter()
Leave()

lives in

but is it the right model?

Entrance*

Outside
Temperature

Light
Season
Hunt()

Organize()

 moves
around

Windhole
Diameter

MainEntrance
Size

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 36

Alternative Model: The Head of an Indian

Indian
Hair

Dress()
Smile()
Sleep()

Mouth
NrOfTeeths
Size
open()
speak()

*
Ear

Size
listen()

Face
Nose
smile()
close_eye()

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 37

Class Identification

v Class identification is crucial to object-oriented modeling

v Basic assumption:
w 1. We can find the classes for a new software system: We call

this Greenfield Engineering

w 2. We can identify the classes in an existing system: We call
this Reengineering

w 3. We can create a class-based interface to any system: We call
this Interface Engineering

v Why can we do this? Philosophy, science, experimental
evidence

v What are the limitations? Depending on the purpose of
the system different objects might be found

u How can we identify the purpose of a system?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 38

What is this Thing?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 39

Modeling a Briefcase

BriefCase

Capacity: Integer
Weight: Integer

Open()
Close()
Carry()

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 40

A new Use for a Briefcase

BriefCase

Capacity: Integer
Weight: Integer

Open()
Close()
Carry()

SitOnIt()

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 41

Questions

v Why did we model the thing as “Briefcase”?

v Why did we not model it as a chair?

v What do we do if the SitOnIt() operation is the
most frequently used operation?

v The briefcase is only used for sitting on it. It is
never opened nor closed.
w Is it a “Chair”or a “Briefcase”?

v How long shall we live with our modeling
mistake?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 42

3. Hierarchy

v We got abstractions and decomposition
w This leads us to chunks (classes, objects) which we view with

object model

v Another way to deal with complexity is to provide
simple relationships between the chunks

v One of the most important relationships is hierarchy

v 2 important hierarchies
w "Part of" hierarchy

w "Is-kind-of" hierarchy

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 43

Part of Hierarchy

Computer

I/O Devices CPU Memory

Cache ALU Program
 Counter

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 44

Is-Kind-of Hierarchy (Taxonomy)

Cell

Muscle Cell Blood Cell Nerve Cell

Striate Smooth Red White Cortical Pyramidal

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 45

So where are we right now?

v Three ways to deal with complexity:
w Abstraction

w Decomposition

w Hierarchy

v Object-oriented decomposition is a good methodology
w Unfortunately, depending on the purpose of the system,

different objects can be found

v How can we do it right?
w Many different possibilities

w Our current approach: Start with a description of the
functionality (Use case model), then proceed to the object
model

w This leads us to the software lifecycle

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 46

Software Lifecycle Activities

Structured
By

class...
class...
class...

Implemented
 By

Realized By

System
Design

Object
Design

Implemen-
tation

Testing

Expressed in
Terms Of Verified

By

class....

Requirements
Elicitation

Analysis

...and their models

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 47

Software Lifecycle Definition

v Software lifecycle:
w Set of activities and their relationships to each other to support

the development of a software system

v Typical Lifecycle questions:
w Which activities should I select for the software project?

w What are the dependencies between activities?

w How should I schedule the activities?

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 48

Reusability

v A good software design solves a specific problem but is
general enough to address future problems (for example,
changing requirements)

v Experts do not solve every problem from first principles
w They reuse solutions that have worked for them in the past

v Goal for the software engineer:
w Design the software to be reusable across application domains

and designs

v How?
w Use design patterns and frameworks whenever possible

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 49

Design Patterns and Frameworks

v Design Pattern:
w A small set of classes that provide a template solution to a

recurring design problem

w Reusable design knowledge on a higher level than
datastructures (link lists, binary trees, etc)

v Framework:
w A moderately large set of classes that collaborate to carry out a

set of responsibilities in an application domain.

u Examples: User Interface Builder

v Provide architectural guidance during the design phase

v Provide a foundation for software components industry

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 50

Patterns are used by many people

v Chess Master:
w Openings

w Middle games

w End games

v Writer
w Tragically Flawed Hero

(Macbeth, Hamlet)

w Romantic Novel

w User Manual

v Architect
w Office Building

w Commercial Building

w Private Home

v Software Engineer
w Composite Pattern: A

collection of objects needs to
be treated like a single object

w Adapter Pattern (Wrapper):
Interface to an existing system

w Bridge Pattern: Interface to an
existing system, but allow it
to be extensible

w etc

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 51

What to do next?

v Get the book
w Read Chapter 1

v Questions about the course?
w My office hours

u Friday 11:45 - 12:15, Hauptgebäude, Room 1209

w Preferred:

u Send me e-mail: bruegge@in.tum.edu

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 52

Schedule until Christmas

Lectures Thursday 14:30-16:00

v Oct 18: Introduction

v Oct 25: Problem Statement

v Nov 1: No lecture (Allerheiligen)

v Nov 8: Object Modeling

v Nov 15: Dynamic Modeling

v Nov 22: System Design

v Nov 29: System Design ctd

v Dec 6: No lecture (Dies
Academicus)

v Dec 13: Design Patterns

v Dec 20: Object Design

Tutorials Friday 11:00-12:00

v Oct 19: UML Tutorial

v Oct 26: Requirements Elicitation

v Nov 2: System Design

v Nov 9: Object Modeling ctd

v Nov 16: Case Tool Tutorial

v Nov 23: Rationale

v Nov 30: RAD Presentation

v Dec 7: System Design ctd

v Dec 14: Design Patterns ctd

v Dec 21: Object Design ctd

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 53

Where to find more Information

v Lecture schedule is available on the web
w http://tramp.globalse.org/schedule.html

v Lecture home page:
w http://wwwbruegge.in.tum.de/teaching/ws01/SE/

v Associated project:
wTRAMP: Traveling Repair and Maintenance

Platform
w http://wwwbruegge.in.tum.de/teaching/ws01/GSE/index.html

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 54

TRAMP Project Communication Infrastructure

Domino
Servers

Configuration
Management

Server

Web
Servers

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 55

Focus of TRAMP Project:
Maintenance with digital documents and
wearable Computers

Copyright 1999 Bernd Bruegge Sofgtware Engineering 1999 56

Summary

v Software engineering is a problem solving activity
w Developing quality software for a complex problem within a

limited time while things are changing

v Many ways to deal with complexity
w Modeling, decomposition, (abstraction, hierarchy)

w Issue models: Negotiation aspects

w System models: Technical aspects

w Task models: Project management aspects

w Use Patterns

v Many ways to do deal with change
w Tailoring the software lifecycle

w Use a nonlinear software lifecycle based on issue modeling

w Provide configuration management

