
Practice Midterm Exam: Software Engineering

Prof. Bruegge
WS 2001/2002

Out: December 13, 16:00, S1128
Due: December 14, 11:15, S1128

Last name

First name

Matriklnr.

Hauptfach

Semester

Date of birth



1. Modeling with UML

Hint: read the exercise completely before drawing your diagram.

a) Draw a class diagram representing a book defined by the following statement: “A book is
composed of a number of parts, which in turn are composed of a number of chapters. Chapters
are composed of sections.” Focus only on classes and relationships.

b) Add multiplicity to the class diagram.

c) Extend the class diagram to include the following attributes:
• a book includes a publisher, publication date, and an ISBN 
• a part includes a title and a number
• a chapter includes a title, a number, and an abstract
• a section includes a title and a number

d) Note that the Part, Chapter, and Section classes all include a title and a number attribute.
Add an abstract class and an inheritance relationship to factor out these two attributes into the
abstract class.



2. Project communication

You are a member of the user interface team. You are responsible for designing and
implementing forms collecting information about users of the system (e.g., first name, last
name, address, E-mail address, level of expertise). The information collected by these forms is
stored by a storage subsystem and used by the reporting subsystem. You are not sure which
fields of these forms are required information and which are optional.

How do you find out?



3. Requirements elicitation

a) Consider your watch as a system and set the time 2 minutes ahead. Write down each
interaction between you and your watch as a scenario. Record all interactions, including any
feedback the watch provides you.

b) Consider the scenario you wrote in a). Identify the actor of the scenario. Next, write the
corresponding use case SetTime. Use the template provided in the book. Include all flow of
events, and include setting the time forward, backward, setting hours, minutes, and seconds.



4. Analysis

Hint: read the exercise completely before drawing your diagram.

Consider the object model in Figure 1:

a) Given your knowledge of the calendar, list all the problems with this model. Modify it to
correct each of them.

b) Using association multiplicity only, can you modify this object model such that a developer
unfamiliar with the Gregorian calendar could deduce the number of days in each month?
Identify additional classes if necessary.

Figure 1 A naive model of the calendar (UML class diagram).

Year

Month

Week

Day

1

*

1

*

1

*



5. Analysis II

a) Consider a file system with a graphical user interface, such as Macintosh’s Finder,
Microsoft’s Windows Explorer, or Linux’s KDE. The following objects were identified from a
use case describing how to copy a file from a floppy disk to a hard disk: File, Icon, TrashCan,
Folder, Disk, Pointer. Specify which are entity objects, which are boundary objects, and
which are control objects.

b) Assuming the same file system as before, consider a scenario consisting of selecting a file on
a floppy, dragging it to Folder and releasing the mouse. Identify and define at least one control
object associated with this scenario.

c) Arrange the objects listed in a) & b) horizontally on a sequence diagram, the boundary objects
to the left, then the control object you identified, and finally, the entity objects. Draw the
sequence of interactions resulting from dropping the file into a folder. For now, ignore the
exceptional cases.

d) Examining the sequence diagram produced c), identify the associations between these
objects.

e) Identify the attributes of each object that are relevant to this scenario (copying a file from a
floppy disk to a hard disk). Also consider the exception cases “There is already a file with that
name in the folder” and “There is no more space on disk.”



6. System Design

a) Decomposing a system into subsystems reduces the complexity developers have to deal with
by simplifying the parts and increasing their coherence. Decomposing a system into simpler
parts usually results into increasing a different kind of complexity: Simpler parts also means a
larger number of parts and interfaces. If coherence is the guiding principle driving developers
to decompose a system into small parts, which competing principle drives them to keep the total
number of parts small?

b) In the lecture, we classified design goals into five categories: performance, dependability,
cost, maintenance, and end user. Assign one or more categories to each of the following goals:
• Users must be given a feedback within 1 second after they issue any command.
• The TicketDistributor must be able to issue train tickets, even in the event of a network 

failure.
• The housing of the TicketDistributor must allow for new buttons to be installed in the 

event the number of different fares increases.
• The AutomatedTellerMachine must withstand dictionary attacks (i.e., users attempting to 

discover a identification number by systematic trial).
The user interface of the system should prevent users from issuing commands in the wrong
order.


