Lecture Notes on ODbject
Design

Bernd Brugge
Lehrstuhl fur Angewandte Softwaretechnik
Technische Universitat Munchen

1 February 2002

Object Design

< Object design Is the process of adding details to the
requirements analysis and making implementation
decisions

« The object designer must choose among different ways to
Implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.

+ Requirements Analysis: The functional model and the dynamic
model deliver operations for the object model

+ Object Design: We decide on where to put these operations in
the object model

« Object Design serves as the basis of implementation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Odds and Ends

< Next week:
¢ Thursday February 7: Client Acceptance Test
¢ Friday February 8: Last lecture

< Exam:
¢ Thursday February 14, 14:30-16:00
¢+ Open Book

« Interested in more software engineering?
¢ Diploma thesis in the USA
+ Advanced Project Management Seminar
¢ Software Engineering Il

+ Softwaretechnik Praktikum Augmented Reality (Prof. Gudrun
Klinker)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Design: Closing the Gap
‘ System 5

‘Appl i cation object 55

N

\

Z Sol ution objects 5 \

‘ Cust om obj ect s > \

N

‘ O f-the-shelf conponents >

=

Machine

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Object Design Issues

« Full definition of associations
« Full definition of classes
« Choice of algorithms and data structures (Info I)

« Detection of new application-domain independent
classes (example: Cache, Cash)

« Optimization (also called “Refactoring’)

« Increase of inheritance (Generalization, Specialization)
« Decision on control

« Packaging

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Terminology of Activities

« Object-Oriented Methodologies

¢ System Design
¢ Decomposition into subsystems

¢ Object Design
+ Choice of implementation language (not earlier!)
+ Choice of data structures and algorithms

<« SA/SD (structured analysis/structured design) uses
different terminology:

¢ Preliminary Design
+ Decomposition into subsystems
+ Choice of data structures

¢ Detailed Design
+ Choice of algorithms
+ Data structures are refined
+ Choice of implementation language
+ Typically in parallel with preliminary design, not a separate phase

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Object Design Activities

< 1. Service specification

¢ Describes precisely each class interface

¢ Class builder (implementor), Class user, Class extender
« 2. Component selection

+ |dentify off-the-shelf components and additional solution
objects

« 3. Object model restructuring

+ Transforms the object design model to improve its
understandability and extensibility and reusability

< 4. Object model optimization

+ Transforms the object design model to address performance
criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Service Specification

+ Requirements analysis

+ ldentifies attributes and operations without
specifying their types or their parameters.

« Object design
+ Adds visibility information

+ Adds type signature information
+ Adds contracts

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Add Visibility

UML defines three levels of visibility:

< Private (Class implementor):

+ A private attribute can be accessed only by the class in which it
Is defined.

+ A private operation can be invoked only by the class in which
It is defined.

* Private attributes and operations cannot be accessed by
subclasses or other classes.

< Protected (Class extender):

+ A protected attribute or operation can be accessed by the class
In which it is defined and on any descendent of the class.

< Public (Class user):
* A public attribute or operation can be accessed by any class.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Information Hiding Heuristics

« Carefully define the public interface for classes as well as
subsystems (facade)
<« Always apply the “Need to know” principle.

+ Only if somebody needs to access the information, make it
publicly possible, but then only through well defined
channels, so you always know the access.

< The fewer an operation knows
+ the less likely it will be affected by any changes
+ the easier the class can be changed

< Trade-off: Information hiding vs efficiency

* Accessing a private attribute might be too slow (for example in
real-time systems or games)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Information Hiding Design Principles

< Only the operations of a class are allowed to manipulate
Its attributes

+ Access attributes only via operations.

< Hide external objects at subsystem boundary

+ Define abstract class interfaces which mediate between system
and external world as well as between subsystems

<« Do not apply an operation to the result of another
operation.

+ Write a new operation that combines the two operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Add Type Signature Information

Hasht abl e

-nuntEl enent s: i nt

+put ()

+get ()

+r enove()
+cont ai nsKey()
+si ze()

Hasht abl e

-nuntl enent s: i nt

+put (key: Qbj ect, entry: Qbj ect)
+get (key: Qbj ect) : Obj ect

+r enove(key: Cbj ect)

+cont ai nsKey(key: (bj ect) : bool ean
+si ze():int

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Design by Contract

< Contracts on a class enable caller and callee to share the
same assumptions about the class. Contracts include
three types of constraints:

< Invariant:

+ A predicate that is always true for all instances of a class.
Invariants are constraints associated with classes or interfaces.

< Precondition:

+ Preconditions are predicates associated with a specific
operation. A predicate that must be true before the operation is
Invoked. Preconditions are used to specify constraints that a
caller must meet before calling an operation.

< Postcondition:

+ Postconditions are predicates associated with a specific
operation. A predicate must be true after an operation is
Invoked. Postconditions are used to specify constraints that the
object must ensure after the invocation of the operation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Expressing constraints in UML

« OCL (Object Constraint Language)

¢ OCL allows constraints to be formally specified on single
model elements or groups of model elements

* A constraint is expressed as an OCL expression returning the
value true or false. OCL is not a procedural language (cannot
constrain control flow).

« OCL expressions for Hashtable operation put():
¢ |nvariant;
+ context Hashtable inv: numElements >=0 OCL expression
Context is a class

operation put O

+ Precondition: > O

O ©)

+ context Hashtable::put(key, entry) pre:!containsKey(key)

+ Post-condition:

+ context Hashtable::put(key, entry) post: containsKey(key) and
get(key) = entry

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Expressing Constraints in UML

< A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

_ <<invariant>> 'ﬁ
. numElements >= 0

<<precondition>> HashTabl e —
| i - . Mﬁ i - F 1 <<pOStC0n Ition>> lﬁ
containsKey(key) - ot — get(kev) == entry

'put (key, entry: Cbject)-~~

<<precondition>> _.{9et(key): Obj ect
corrl)tainsKev(kev) remove(key: Qoj ect) - _

— . - [cont ai nsKey(key: Obj ect) -haqol ean
<<precondition>> Br, . : > -9 —
containsKey(key) size():int 11 Tgopnq[gti%orlgtlokré>> El

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Object Design Areas

< 1. Service specification
¢ Describes precisely each class interface

« 2. Component selection

+ |dentify off-the-shelf components and additional solution
objects

< 3. Object model restructuring

+ Transforms the object design model to improve its
understandability and extensibility

< 4. Object model optimization

+ Transforms the object design model to address performance
criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

16

Component Selection

« Search for existing
+ off-the-shelf class libraries,
+ frameworks or
¢ components

< Adjust the class libraries, framework or components
¢+ Change the API if you have access to the source code.
¢ Use the adapter or bridge pattern if you don’t have access

« Architecture-driven Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

17

Reuse...2/1/02

+ Look for existing classes In class libraries
+ JSAPI, JTAPI,

« Select data structures appropriate to the algorithms
¢ Container classes
* Arrays, lists, queues, stacks, sets, trees, ...

< It might be necessary to define new internal classes and
operations

¢+ Complex operations defined in terms of lower-level operations
might need new classes and operations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Odds and Ends

< February 14, 14:30-16:00, exam for
+ Bachelors, Masters in CE, Exchange Students, ...

+ SCope:
¢ Chapters 1-9 in the book
+ Material presented in the lecture
* Tools (e.g., REQuest, CVS, Notes) are NOT part of the exam

« Open book:
* Bring anything you want

+ However, your notes, the book, and the slides are all what you
need.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

19

Object Design Areas

< 1. Service specification
¢ Describes precisely each class interface

« 2. Component selection

+ |dentify off-the-shelf components and additional solution
objects

« 3. Object model restructuring (refactoring)

+ Transforms the object design model to improve its
understandability and extensibility

< 4. Object model optimization

+ Transforms the object design model to address performance
criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

20

Restructuring Activities

« Revisiting inheritance to increase reuse

« Revising inheritance to remove implementation
dependencies

« Realizing associations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

21

Increase Inheritance

+ Rearrange and adjust classes and operations to prepare
for inheritance

* Generalization: Finding the base class first, then the sub
classes.

+ Specialization: Finding the the sub classes first, then the base
class

« Generalization is a common modeling activity. It allows
to abstract common behavior out of a group of classes

+ |f a set of operations or attributes are repeated in 2 classes the
classes might be special instances of a more general class.

« Always check if it is possible to change a subsystem
(collection of classes) into a superclass in an inheritance
hierarchy.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Generalization: Building a super class from
several classes

< You need to prepare or modify your classes for
generalization.

+ All operations must have the same signature

« Often the signatures do not match:

¢+ Some operations have fewer arguments than others: Use
overloading (Possible in Java)

+ Similar attributes in the classes have different names: Rename
attribute and change all the operations.

¢ Operations defined in one class but no in the other: Use
abstract methods and method overriding.

« Superclasses are desirable. They
¢ Increase modularity, extensibility and reusability
¢ improve configuration management

<« Many design patterns use superclasses
* Try to retrofit an existing model to use a design pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

23

Implement Associations

« Two strategies for implementing associations:
1. Be as uniform as possible
2. Make an individual decision for each association

« Example of a uniform implementation (often used by
CASE tools)
¢ 1-to-1 association:

o Role names are treated like attributes in the classes and translate
to references

¢ 1-to-many association:
+ Always Translate into a Vector
+ Qualified association:
+ Always translate into to Hash table

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Unidirectional 1-to-1 Association

Object design model befor

e transformation

Zoom nActi on

targetMap
1 1

MapAr ea

Object design model after transformation

Zoom nActi on

t ar get Map: MBpAr ea

MapAr ea

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

25

Bidirectional 1-to-1 Association

Object design model before transformation

_ zoomlIn targetMap
Zooml nAct i on 1 1 MapAr ea

Object design model after transformation

Zoonm nActi on MapAr ea
-t arqget Vap: MapAr ea - zoom n: Zoom nAct i on
+getTargetthg) +getZoon1nAction$) _
+set Tar get Map(nap) +set Zoom nActi on(acti on)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

1-to-Many Association

Object design model before transformation

Layer Layer El enent

Object design model after transformation

Layer Layer El enent
-l ayer El enents: Li st -contai nedl n: Laver
+el ement s() +get Layer ()
+addEl enent (| e) +set Layer (1)
+r enoveEl enent (I e)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Qualification

Scenari o

Si Mmane

Scenari o

-runs: Vap

+el enent s()

+addRun(si mmane, sr: Si nul ati onRun)
+r enoveRun(si rane, sr: Si nul ati onRun)

Bernd Bruegge & Allen Dutoit

Si mul ati onRun

Si nul ati onRun

=ostlclial I US. LT St

+el enment s()
+addScenari o(s: Scenari o)
+r enpveScenari o(s: Scenari 0)

Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Object Design Areas

< 1. Service specification
¢ Describes precisely each class interface

« 2. Component selection

+ |dentify off-the-shelf components and additional solution
objects

< 3. Object model restructuring

+ Transforms the object design model to improve its
understandability and extensibility

< 4. Object model optimization

+ Transforms the object design model to address performance
criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

29

Design Optimizations

< Design optimizations are an important part of the object
design phase:

* The requirements analysis model is semantically correct but
often too inefficient if implemented directly.

« Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency
3. Store derived attributes to save recomputation time

« As an object designer you must strike a balance between
efficiency and clarity.

+ Optimizations will make your models more obscure

« A note of caution:
+ Only optimize when needed.
¢ Perform optimizations based on an actual profile.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

30

Design Optimization Activities

1. Add redundant associations (data flow optimization)
+ \What are the most frequent operations? (Sensor data lookup?)

+ How often is the operation called? (once times a month, every
50 msec)

2. Rearrange execution order (control flow optimization)

+ Eliminate dead paths as early as possible (Use knowledge of
distributions, frequency of path traversals)

+ Narrow search as soon as possible
* Check if execution order of loop should be reversed

« 3. Turn classes into attributes (object optimization)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Implement Application domain classes

« To collapse or not collapse: Attribute or association?

< Object design choices:
+ Implement entity as embedded attribute

+ Implement entity as separate class with associations to other
classes

< Assoclations are more flexible than attributes but often
Introduce unnecessary indirection.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Optimization Activities: Collapsing Objects

Per son

Soci al Security

Bernd Bruegge & Allen Dutoit

| D: String

Per son

SSN:String

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

33

To Collapse or not to Collapse?

« Collapse a class into an attribute if the only operations
defined on the attributes are Set() and Get().

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Design Optimizations ctd

Store derived attributes

+ Example: Define new classes to store information locally
(database cache)

< Problem with derived attributes:
+ Derived attributes must be updated when base values change.

* There are 3 ways to deal with the update problem:
+ Explicit code: Implementor determines affected derived attributes

(push)
+ Periodic computation: Recompute derived attribute occasionally

(pull)

+ Active value: An attribute can designate set of dependent values
which are automatically updated when active value is changed

(notification, data trigger)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Optimization Activities: Delaying Complex

Computations
| mage
filename: String
dat a: byte[]
wi dt h()
hei ght ()
pai nt ()
Image
filename:String
width(Q
height()
paint()
i mage
| magePr oxy 1 0 Real | nage
filenanme: String dat a: byte[]
wi dt h() wi dt h()
hei ght () hei ght ()
pai nt () pai nt ()

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

36

Realization of Application Domain Classes

<« New objects are often needed during object design:
¢ Use of Design patterns lead to new classes

+ The implementation of algorithms may necessitate objects to
hold values

* New low-level operations may be needed during the
decomposition of high-level operations

« Example: The EraseArea() operation offered by a
drawing program.
¢ Conceptually very simple
¢ Implementation
+ Area represented by pixels
+ Repair () cleans up objects partially covered by the erased area
+ Redraw() draws objects uncovered by the erasure

+ Draw() erases pixels in background color not covered by other
objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Application Domain vs Solution Domain Objects

Requirements Analysis
(Language of Application
Domain)

Incident
Report

Bernd Bruegge & Allen Dutoit

Object Design

(Language of Solution Domain)

Incident
Report

<

Text box

Menu

Scrollbar

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

38

Package it all up

« Pack up design into discrete physical units that can be
edited, compiled, linked, reused

« Construct physical modules
+ |deally use one package for each subsystem

¢ System decomposition might not be good for implementation.

« Two design principles for packaging
* Minimize coupling:

+ Classes in client-supplier relationships are usually loosely
coupled

+ Large number of parameters in some methods mean strong
coupling (> 4-5)
+ Avoid global data
+ Maximize cohesiveness:.
+ Classes closely connected by associations => same package

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

39

Packaging Heuristics

« Each subsystem service is made available by one or more
boundary objects within the package

« Start with one boundary object for each subsystem service
¢ Try to limit the number of interface operations (7+-2)

« If the subsystem service has too many operations,
reconsider the number of boundary objects

« If you have too many boundary objects, reconsider the
number of subsystems
< Difference between boundary objects and Java interfaces

¢ Boundary object : Used during requirements analysis, system
design and object design. Basis for service

¢ Java interface: Used during implementation in Java (A Java
Interface may or may not implement an boundary object)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Further Readings

<« For more on refactoring:
¢ Fowler. Refactoring. Addison-Wesley. 1999.

<+ For more on OCL.:

+ Warmer & Klappe. The object constraint language. Addison-
Wesley, 1998.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

41

