
Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 1

Object Design

v 8 September 1994

2

Lecture Notes on Object
Design

Bernd Brügge

Lehrstuhl für Angewandte Softwaretechnik

Technische Universität München

1 February 2002

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Object Design

v Object design is the process of adding details to the
requirements analysis and making implementation
decisions

v The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.
w Requirements Analysis: The functional model and the dynamic

model deliver operations for the object model

w Object Design: We decide on where to put these operations in
the object model

v Object Design serves as the basis of implementation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Odds and Ends

v Next week:
w Thursday February 7: Client Acceptance Test

w Friday February 8: Last lecture

v Exam:
w Thursday February 14, 14:30-16:00

w Open Book

v Interested in more software engineering?
w Diploma thesis in the USA

w Advanced Project Management Seminar

w Software Engineering II

w Softwaretechnik Praktikum Augmented Reality (Prof. Gudrun
Klinker)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requir ements gap

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

 Object Design Issues

v Full definition of associations

v Full definition of classes

v Choice of algorithms and data structures (Info I)

v Detection of new application-domain independent
classes (example: Cache, Cash)

v Optimization (also called “Refactoring”)

v Increase of inheritance (Generalization, Specialization)

v Decision on control

v Packaging

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Terminology of Activities

v Object-Oriented Methodologies
w System Design

u Decomposition into subsystems

w Object Design
u Choice of implementation language (not earlier!)

u Choice of data structures and algorithms

v SA/SD (structured analysis/structured design) uses
different terminology:
w Preliminary Design

u Decomposition into subsystems

u Choice of data structures

w Detailed Design
u Choice of algorithms

u Data structures are refined

u Choice of implementation language

u Typically in parallel with preliminary design, not a separate phase

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

Object Design Activities

v 1. Service specification
w Describes precisely each class interface

w Class builder (implementor), Class user, Class extender

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility and reusability

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Service Specification

v Requirements analysis
w Identifies attributes and operations without

specifying their types or their parameters.

v Object design
wAdds visibility information

wAdds type signature information

wAdds contracts

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

Add Visibility

UML defines three levels of visibility:

v Private (Class implementor):
w A private attribute can be accessed only by the class in which it

is defined.

w A private operation can be invoked only by the class in which
it is defined.

w Private attributes and operations cannot be accessed by
subclasses or other classes.

v Protected (Class extender):
w A protected attribute or operation can be accessed by the class

in which it is defined and on any descendent of the class.

v Public (Class user):
w A public attribute or operation can be accessed by any class.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Information Hiding Heuristics

v Carefully define the public interface for classes as well as
subsystems (façade)

v Always apply the “Need to know” principle.
w Only if somebody needs to access the information, make it

publicly possible, but then only through well defined
channels, so you always know the access.

v The fewer an operation knows
w the less likely it will be affected by any changes

w the easier the class can be changed

v Trade-off: Information hiding vs efficiency
w Accessing a private attribute might be too slow (for example in

real-time systems or games)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Information Hiding Design Principles

v Only the operations of a class are allowed to manipulate
its attributes
w Access attributes only via operations.

v Hide external objects at subsystem boundary
w Define abstract class interfaces which mediate between system

and external world as well as between subsystems

v Do not apply an operation to the result of another
operation.
w Write a new operation that combines the two operations.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

Design by Contract

v Contracts on a class enable caller and callee to share the
same assumptions about the class. Contracts include
three types of constraints:

v Invariant:
w A predicate that is always true for all instances of a class.

Invariants are constraints associated with classes or interfaces.

v Precondition:
w Preconditions are predicates associated with a specific

operation. A predicate that must be true before the operation is
invoked. Preconditions are used to specify constraints that a
caller must meet before calling an operation.

v Postcondition:
w Postconditions are predicates associated with a specific

operation. A predicate must be true after an operation is
invoked. Postconditions are used to specify constraints that the
object must ensure after the invocation of the operation.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Expressing constraints in UML

v OCL (Object Constraint Language)
w OCL allows constraints to be formally specified on single

model elements or groups of model elements

w A constraint is expressed as an OCL expression returning the
value true or false. OCL is not a procedural language (cannot
constrain control flow).

v OCL expressions for Hashtable operation put():
w Invariant:

u context Hashtable inv: numElements >= 0 OCL expression

Context is a class
operation put

w Precondition:
u context Hashtable::put(key, entry) pre:!containsKey(key)

w Post-condition:
u context Hashtable::put(key, entry) post: containsKey(key) and

get(key) = entry

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Expressing Constraints in UML

v A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

<<invariant>>
numElements >= 0

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

Object Design Areas

v 1. Service specification
w Describes precisely each class interface

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Component Selection

v Search for existing
w off-the-shelf class libraries,

w frameworks or

w components

v Adjust the class libraries, framework or components
w Change the API if you have access to the source code.

w Use the adapter or bridge pattern if you don’t have access

v Architecture-driven Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Reuse...2/1/02

v Look for existing classes in class libraries
w JSAPI, JTAPI,

v Select data structures appropriate to the algorithms
w Container classes

w Arrays, lists, queues, stacks, sets, trees, ...

v It might be necessary to define new internal classes and
operations
w Complex operations defined in terms of lower-level operations

might need new classes and operations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Odds and Ends

v February 14, 14:30-16:00, exam for
w Bachelors, Masters in CE, Exchange Students, ...

v Scope:
w Chapters 1-9 in the book

w Material presented in the lecture

w Tools (e.g., REQuest, CVS, Notes) are NOT part of the exam

v Open book:
w Bring anything you want

w However, your notes, the book, and the slides are all what you
need.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Object Design Areas

v 1. Service specification
w Describes precisely each class interface

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring (refactoring)
w Transforms the object design model to improve its

understandability and extensibility

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Restructuring Activities

v Revisiting inheritance to increase reuse

v Revising inheritance to remove implementation
dependencies

v Realizing associations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Increase Inheritance

v Rearrange and adjust classes and operations to prepare
for inheritance
w Generalization: Finding the base class first, then the sub

classes.

w Specialization: Finding the the sub classes first, then the base
class

v Generalization is a common modeling activity. It allows
to abstract common behavior out of a group of classes
w If a set of operations or attributes are repeated in 2 classes the

classes might be special instances of a more general class.

v Always check if it is possible to change a subsystem
(collection of classes) into a superclass in an inheritance
hierarchy.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Generalization: Building a super class from
several classes

v You need to prepare or modify your classes for
generalization.
w All operations must have the same signature

v Often the signatures do not match:
w Some operations have fewer arguments than others: Use

overloading (Possible in Java)

w Similar attributes in the classes have different names: Rename
attribute and change all the operations.

w Operations defined in one class but no in the other: Use
abstract methods and method overriding.

v Superclasses are desirable. They
w increase modularity, extensibility and reusability

w improve configuration management

v Many design patterns use superclasses
w Try to retrofit an existing model to use a design pattern

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

 Implement Associations

v Two strategies for implementing associations:
1. Be as uniform as possible

2. Make an individual decision for each association

v Example of a uniform implementation (often used by
CASE tools)
w 1-to-1 association:

u Role names are treated like attributes in the classes and translate
to references

w 1-to-many association:
u Always Translate into a Vector

w Qualified association:
u Always translate into to Hash table

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Unidirectional 1-to-1 Association

MapAreaZoomInAction

targetMap:MapArea

Object design model befor e transformation

Object design model after transformation

MapAreaZoomInAction
11

targetMap

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Bidirectional 1-to-1 Association

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

MapAreaZoomInAction
11

Object design model before transformation

Object design model after transformation

targetMapzoomIn

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

1-to-Many Association

Layer LayerElement

-containedIn:Layer-layerElements:List
+elements()
+addElement(le)

+getLayer()
+setLayer(l)

+removeElement(le)

Layer LayerElement
1 *

Object design model before transformation

Object design model after transformation

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Qualification

Scenario

-runs:Map
+elements()
+addRun(simname, sr:SimulationRun)
+removeRun(simname, sr:SimulationRun)

-scenarios:List

+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

SimulationRun

SimulationRunsimname
0..1*

Scenario

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

Object Design Areas

v 1. Service specification
w Describes precisely each class interface

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Design Optimizations

v Design optimizations are an important part of the object
design phase:
w The requirements analysis model is semantically correct but

often too inefficient if implemented directly.

v Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency

3. Store derived attributes to save recomputation time

v As an object designer you must strike a balance between
efficiency and clarity.
w Optimizations will make your models more obscure

v A note of caution:
w Only optimize when needed.

w Perform optimizations based on an actual profile.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Design Optimization Activities

1. Add redundant associations (data flow optimization)
w What are the most frequent operations? (Sensor data lookup?)

w How often is the operation called? (once times a month, every
50 msec)

2. Rearrange execution order (control flow optimization)
w Eliminate dead paths as early as possible (Use knowledge of

distributions, frequency of path traversals)

w Narrow search as soon as possible

w Check if execution order of loop should be reversed

v 3. Turn classes into attributes (object optimization)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Implement Application domain classes

v To collapse or not collapse: Attribute or association?

v Object design choices:
w Implement entity as embedded attribute

w Implement entity as separate class with associations to other
classes

v Associations are more flexible than attributes but often
introduce unnecessary indirection.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Optimization Activities: Collapsing Objects

Person

SocialSecurity

ID:String

Person

SSN:String

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

To Collapse or not to Collapse?

v Collapse a class into an attribute if the only operations
defined on the attributes are Set() and Get().

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Design Optimizations ctd

Store derived attributes
w Example: Define new classes to store information locally

(database cache)

v Problem with derived attributes:
w Derived attributes must be updated when base values change.

w There are 3 ways to deal with the update problem:
u Explicit code: Implementor determines affected derived attributes

(push)

u Periodic computation: Recompute derived attribute occasionally
(pull)

u Active value: An attribute can designate set of dependent values
which are automatically updated when active value is changed
(notification, data trigger)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Optimization Activities: Delaying Complex
Computations

Image

filename:String

width()
height()
paint()

Image

filename:String

width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String
width()
height()
paint()

image

1 0..1

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Realization of Application Domain Classes

v New objects are often needed during object design:
w Use of Design patterns lead to new classes

w The implementation of algorithms may necessitate objects to
hold values

w New low-level operations may be needed during the
decomposition of high-level operations

v Example: The EraseArea() operation offered by a
drawing program.
w Conceptually very simple

w Implementation
u Area represented by pixels

u Repair () cleans up objects partially covered by the erased area

u Redraw() draws objects uncovered by the erasure

u Draw() erases pixels in background color not covered by other
objects

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Application Domain vs Solution Domain Objects

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Incident
Report

Object Design
(Language of Solution Domain)

Text box Menu Scrollbar

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Package it all up

v Pack up design into discrete physical units that can be
edited, compiled, linked, reused

v Construct physical modules
w Ideally use one package for each subsystem

w System decomposition might not be good for implementation.

v Two design principles for packaging
w Minimize coupling:

u Classes in client-supplier relationships are usually loosely
coupled

u Large number of parameters in some methods mean strong
coupling (> 4-5)

u Avoid global data

w Maximize cohesiveness:
u Classes closely connected by associations => same package

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Packaging Heuristics

v Each subsystem service is made available by one or more
boundary objects within the package

v Start with one boundary object for each subsystem service
w Try to limit the number of interface operations (7+-2)

v If the subsystem service has too many operations,
reconsider the number of boundary objects

v If you have too many boundary objects, reconsider the
number of subsystems

v Difference between boundary objects and Java interfaces
w Boundary object : Used during requirements analysis, system

design and object design. Basis for service

w Java interface: Used during implementation in Java (A Java
interface may or may not implement an boundary object)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

Further Readings

v For more on refactoring:
w Fowler. Refactoring. Addison-Wesley. 1999.

v For more on OCL:
w Warmer & Klappe. The object constraint language. Addison-

Wesley, 1998.

