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Object Design

v Object design is the process of adding details to the
requirements analysis and making implementation
decisions

v The object designer must choose among different ways to
implement the analysis model with the goal to minimize
execution time, memory and other measures of cost.
w Requirements Analysis: The functional model and the dynamic

model deliver operations for the object model

w Object Design: We decide on  where to put these operations in
the object model

v Object Design serves as the basis of implementation
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Odds and Ends

v Next week:
w Thursday February 7: Client Acceptance Test

w Friday February 8:  Last lecture

v Exam:
w Thursday February 14, 14:30-16:00

w Open Book

v Interested in more software engineering?
w Diploma thesis in the USA

w Advanced Project Management Seminar

w Software Engineering II

w Softwaretechnik Praktikum Augmented Reality (Prof. Gudrun
Klinker)
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Object Design: Closing the Gap

Custom objects

Application objects

Off-the-shelf components

Solution objects

System Problem

Machine

System design gap

Object design gap

Requir ements gap



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      5

 Object Design Issues

v Full definition of  associations

v Full definition of  classes

v Choice of algorithms and data structures (Info I)

v Detection of new application-domain independent
classes (example: Cache, Cash)

v Optimization  (also called “Refactoring”)

v Increase of inheritance (Generalization, Specialization)

v Decision on control

v Packaging
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Terminology of Activities

v Object-Oriented Methodologies
w System Design

u Decomposition into subsystems

w Object Design
u Choice of implementation language (not earlier!)

u Choice of data structures and algorithms

v SA/SD (structured analysis/structured design) uses
different terminology:
w Preliminary Design

u Decomposition into subsystems

u Choice of data structures

w Detailed Design
u Choice of algorithms

u Data structures are refined

u Choice of implementation language

u Typically in parallel with preliminary design, not a separate  phase
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Object Design Activities

v 1. Service specification
w  Describes precisely each class interface

w Class builder (implementor), Class user, Class extender

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility and reusability

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.
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Service Specification

v  Requirements analysis
w Identifies attributes and operations without

specifying their types or their parameters.

v Object design
wAdds visibility information

wAdds type signature information

wAdds contracts



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      9

Add Visibility

UML defines three levels of visibility:

v Private (Class implementor):
w  A private attribute can be accessed only by the class in which it

is defined.

w A private operation can be invoked only by the class in which
it is defined.

w Private attributes and operations cannot be accessed by
subclasses or other classes.

v Protected (Class extender):
w A protected attribute or operation can be accessed by the class

in which it is defined and on any descendent of the class.

v Public (Class user):
w A public attribute or operation can be accessed by any class.
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Information Hiding Heuristics

v Carefully define the public interface for classes as well as
subsystems (façade)

v Always apply the “Need to know” principle.
w Only if somebody needs to access the information, make it

publicly possible, but then only through well defined
channels, so you always know the access.

v The fewer an operation knows
w the less likely it will be affected by any changes

w the easier the class can be changed

v Trade-off: Information hiding vs efficiency
w Accessing a private attribute might be too slow (for example in

real-time systems or games)
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Information Hiding Design Principles

v Only the operations of a class are allowed to manipulate
its attributes
w Access attributes only via operations.

v Hide external objects at subsystem boundary
w Define abstract class interfaces which mediate between system

and external world as well as between subsystems

v Do not apply an operation to the result of another
operation.
w  Write a new operation that combines the two operations.
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Add Type Signature Information

Hashtable

+put(key:Object,entry:Object)
+get(key:Object):Object
+remove(key:Object)
+containsKey(key:Object):boolean
+size():int

-numElements:int

Hashtable

+put()
+get()
+remove()
+containsKey()
+size()

-numElements:int
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Design by Contract

v Contracts on a class enable caller and callee to share the
same assumptions about the class.  Contracts include
three types of constraints:

v Invariant:
w A predicate that is always true for all instances of a class.

Invariants are constraints associated with classes or interfaces.

v Precondition:
w Preconditions are predicates associated with a specific

operation. A predicate that must be true before the operation is
invoked. Preconditions are used to specify constraints that a
caller must meet before calling an operation.

v Postcondition:
w Postconditions are predicates associated with a specific

operation. A predicate must be true after an operation is
invoked. Postconditions are used to specify constraints that the
object must ensure after the invocation of the operation.
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Expressing constraints in UML

v OCL (Object Constraint Language)
w OCL allows constraints to be formally specified on single

model elements or groups of model elements

w A constraint is expressed as an OCL expression returning the
value true or false.  OCL is not a procedural language (cannot
constrain control flow).

v OCL expressions for Hashtable operation put():
w Invariant:

u context Hashtable inv: numElements >= 0 OCL expression

Context is a class 
operation put

w Precondition:
u context Hashtable::put(key, entry) pre:!containsKey(key)

w Post-condition:
u context Hashtable::put(key, entry) post: containsKey(key) and

get(key) = entry
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Expressing Constraints in UML

v A constraint can also be depicted as a note attached to the
constrained UML element by a dependency relationship.

<<precondition>>
!containsKey(key)

<<precondition>>
containsKey(key)

<<precondition>>
containsKey(key)

<<postcondition>>
get(key) == entry

<<postcondition>>
!containsKey(key)

<<invariant>>
numElements >= 0

HashTable

put(key,entry:Object)
get(key):Object
remove(key:Object)
containsKey(key:Object):boolean
size():int

numElements:int
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Object Design Areas

v 1. Service specification
w  Describes precisely each class interface

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.
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Component Selection

v Search for existing
w off-the-shelf class libraries,

w frameworks or

w components

v Adjust the class libraries, framework or components
w Change the API if you have access to the source code.

w Use the adapter or bridge pattern if you don’t have access

v Architecture-driven Design
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Reuse...2/1/02

v Look for existing classes in class libraries
w JSAPI, JTAPI, ....

v Select data structures appropriate to the algorithms
w Container classes

w Arrays, lists, queues, stacks, sets, trees, ...

v It might be necessary to define new internal classes and
operations
w Complex operations defined in terms of lower-level operations

might need new classes and operations
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Odds and Ends

v February 14, 14:30-16:00, exam for
w Bachelors, Masters in CE, Exchange Students, ...

v Scope:
w Chapters 1-9 in the book

w Material presented in the lecture

w Tools (e.g., REQuest, CVS, Notes) are NOT part of the exam

v Open book:
w Bring anything you want

w However, your notes, the book, and the slides are all what you
need.
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Object Design Areas

v 1. Service specification
w  Describes precisely each class interface

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring (refactoring)
w Transforms the object design model to improve its

understandability and extensibility

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.
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Restructuring Activities

v Revisiting inheritance to increase reuse

v Revising inheritance to remove implementation
dependencies

v Realizing associations
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Increase Inheritance

v Rearrange and adjust classes and operations to prepare
for inheritance
w Generalization: Finding the base class first, then the sub

classes.

w Specialization: Finding the the sub classes first, then the base
class

v Generalization is a common modeling activity. It allows
to abstract common behavior out of a group of classes
w If a set of operations or attributes are repeated in 2 classes the

classes might be special instances of a more general class.

v Always check if it is possible to change a subsystem
(collection of classes) into a superclass in an inheritance
hierarchy.
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Generalization: Building a super class from
several classes

v You need to prepare or modify your classes for
generalization.
w All operations must have the same signature

v Often the signatures do not match:
w Some operations have fewer arguments than others: Use

overloading (Possible in Java)

w Similar attributes in the classes have different names: Rename
attribute and change all the operations.

w Operations defined in one class but no in the other: Use
abstract methods and method overriding.

v Superclasses are desirable. They
w increase modularity, extensibility and reusability

w improve configuration management

v Many design patterns use superclasses
w Try to retrofit an existing model to use a design pattern
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 Implement Associations

v Two strategies for implementing associations:
1. Be as uniform as possible

2. Make an individual decision for each association

v Example of a uniform implementation (often used by
CASE tools)
w 1-to-1 association:

u  Role names are treated like attributes in the classes  and translate
to references

w 1-to-many association:
u Always Translate into a Vector

w Qualified association:
u Always translate  into to Hash table
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Unidirectional 1-to-1 Association

MapAreaZoomInAction

targetMap:MapArea

Object design model befor e transformation

Object design model after transformation

MapAreaZoomInAction
11

targetMap
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Bidirectional 1-to-1 Association

MapAreaZoomInAction

-targetMap:MapArea -zoomIn:ZoomInAction
+getZoomInAction()
+setZoomInAction(action)

+getTargetMap()
+setTargetMap(map)

MapAreaZoomInAction
11

Object design model before transformation

Object design model after transformation

targetMapzoomIn
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1-to-Many Association

Layer LayerElement

-containedIn:Layer-layerElements:List
+elements()
+addElement(le)

+getLayer()
+setLayer(l)

+removeElement(le)

Layer LayerElement
1 *

Object design model before transformation

Object design model after transformation
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Qualification

Scenario

-runs:Map
+elements()
+addRun(simname, sr:SimulationRun)
+removeRun(simname, sr:SimulationRun)

-scenarios:List

+elements()
+addScenario(s:Scenario)
+removeScenario(s:Scenario)

SimulationRun

SimulationRunsimname
0..1*

Scenario
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Object Design Areas

v 1. Service specification
w  Describes precisely each class interface

v 2. Component selection
w Identify off-the-shelf components and additional solution

objects

v 3. Object model restructuring
w Transforms the object design model to improve its

understandability and extensibility

v 4. Object model optimization
w Transforms the object design model to address performance

criteria such as response time or memory utilization.
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Design Optimizations

v Design optimizations are an important part of the object
design phase:
w The requirements analysis model is semantically correct but

often too inefficient if implemented directly.

v Optimization activities during object design:
1. Add redundant associations to minimize access cost

2. Rearrange computations for greater efficiency

3. Store derived attributes to save recomputation time

v As an object designer you must strike a balance between
efficiency and clarity.
w Optimizations will make your models more obscure

v A note of caution:
w Only optimize when needed.

w Perform optimizations based on an actual profile.
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Design Optimization Activities

1. Add redundant associations (data flow optimization)
w What are the most frequent operations? ( Sensor data lookup?)

w How often is the operation called? (once times a month, every
50 msec)

2. Rearrange execution order (control flow optimization)
w Eliminate dead paths as early as possible (Use knowledge of

distributions, frequency of path traversals)

w Narrow search as soon as possible

w Check if execution order of loop should be reversed

v 3. Turn classes into attributes (object optimization)
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Implement Application domain classes

v To collapse or not collapse: Attribute or association?

v Object design choices:
w Implement entity as embedded attribute

w Implement entity as separate class with associations to other
classes

v Associations are more flexible than attributes but often
introduce unnecessary indirection.
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Optimization Activities: Collapsing Objects

Person

SocialSecurity

ID:String

Person

SSN:String
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To Collapse or not to Collapse?

v Collapse a class into an attribute if the only operations
defined on the attributes  are Set() and Get().
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Design Optimizations ctd

Store derived attributes
w Example: Define new classes to store information locally

(database cache)

v Problem with derived attributes:
w Derived attributes must be updated when base values change.

w There are 3  ways to deal with the update problem:
u Explicit code: Implementor determines affected derived attributes

(push)

u Periodic computation: Recompute derived attribute occasionally
(pull)

u Active value: An attribute can designate set of dependent values
which are automatically updated when active value is changed
(notification, data trigger)
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Optimization Activities: Delaying Complex
Computations

Image

filename:String

width()
height()
paint()

Image

filename:String

width()
height()
paint()

RealImage

width()
height()
paint()

data:byte[]

data:byte[]

ImageProxy

filename:String
width()
height()
paint()

image

1 0..1
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Realization of Application Domain Classes

v New objects are often needed during object design:
w Use of Design patterns lead to new classes

w The implementation of algorithms may necessitate objects to
hold values

w New low-level operations may be needed during the
decomposition of high-level operations

v Example: The EraseArea() operation offered by a
drawing program.
w Conceptually very simple

w Implementation
u Area  represented by pixels

u Repair ()  cleans up objects partially covered by the erased area

u Redraw() draws objects uncovered by the erasure

u Draw() erases pixels in background color not covered by other
objects
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Application Domain vs Solution Domain Objects

Incident
Report

Requirements Analysis
(Language of Application

Domain)

Incident
Report

Object Design
(Language of Solution Domain)

Text box Menu Scrollbar
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Package it all up

v Pack up design into discrete physical units that can be
edited, compiled, linked, reused

v Construct physical modules
w Ideally use one package for each subsystem

w System decomposition might not be good for implementation.

v Two design principles for packaging
w Minimize coupling:

u Classes in client-supplier relationships are usually loosely
coupled

u Large number of parameters in some methods mean strong
coupling (> 4-5)

u Avoid global data

w Maximize cohesiveness:
u Classes closely connected by associations => same package
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Packaging Heuristics

v Each  subsystem service is made available by one or more
boundary objects within the package

v Start with one boundary object for each subsystem service
w Try to limit the number of interface operations (7+-2)

v If the subsystem service has too many operations,
reconsider the number of boundary objects

v If you have too many boundary objects, reconsider the
number of subsystems

v Difference between boundary objects and Java interfaces
w Boundary object : Used during requirements analysis, system

design and object design. Basis for service

w Java interface: Used during implementation in Java (A Java
interface may or may not implement an boundary object)
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Further Readings

v For more on refactoring:
w Fowler. Refactoring. Addison-Wesley. 1999.

v For more on OCL:
w Warmer & Klappe. The object constraint language. Addison-

Wesley, 1998.


