
Bernd Brügge Component-Based Software Engineering 1

2

TUM

Analysis: Object Modeling

Bernd Brügge

Technische Universität München

Applied Software Engineering

15 November 2001

Bernd Brügge Component-Based Software Engineering 2

Outline

v From use cases to class diagrams

v Model and reality

v A little discourse into philosophy

v Activities during object modeling

v Object identification

v Object types
w entity, boundary and control objects

v Object naming

v Abott’s technique helps in object identification

v Users of class diagrams

Bernd Brügge Component-Based Software Engineering 3

From Use Cases to Objects

Level 1 Use Case

Level 2 Use Cases

Level 3 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

Bernd Brügge Component-Based Software Engineering 4

From Use Cases to Objects: Why Functional
Decomposition is not Enough

Scenarios

Level 1 Use Cases

Level 2 Use Cases

Operations

Participating
Objects

 Level 2

 Level 1

 Level 2

 Level 3 Level 3

 Level 4 Level 4

 Level 3

A B

Bernd Brügge Component-Based Software Engineering 5

Reality and Model

v Reality R: Real Things, People, Processes happening
during some time, Relationship between things

v Model M: Abstractions from (really existing or only
thought of) things, people , processes and relationships
between these abstractions.

Bernd Brügge Component-Based Software Engineering 6

Why models?

v We use models
w To abstract away from details in the reality, so we can draw

complicated conclusions in the reality with simple steps in the
model

w To get insights into the past or presence

w To make predictions about the future

Bernd Brügge Component-Based Software Engineering 7

What is a “good” model?

v Relationships, which are valid in reality R, are also valid
in model M.
w I : Mapping of real things in reality R to abstractions in the

model M abbildet (Interpretation)

w fM: relationship between abstractions in M

w fR: relationship between real things inR

v In a good model the following diagram is commutative:
fM

fR

MM

R R

I I

Bernd Brügge Component-Based Software Engineering 8

Models are falsifiable

v In the middle age people believed in truth

v Models of reality cannot be true

v A model is always an approximation
w We must say “according to our knowledge”, or “with today’s

knowledge”

v Popper (“Objective Knowledge):
w We can only build models from reality, which are “true” until, we

have found a counter example (Principle of Falsification)
u And even then we might stick with the model (“because it works

quite well in most settings”)

v The falsification principle is the basis of software
development
w The goal of prototypes, reviews and system testing is to falsify the

software system

Bernd Brügge Component-Based Software Engineering 9

Models of models of models...

v Modeling is relative. We can think of a model as reality
and can build another model from it (with additional
abstractions).

fM1

fR

M1M1

R R

Requirements
Elicitation I1

M2M2

Analysis I2

fM2

….
The development of

Software-Systemes is a
Transformation of

Models:
 Analysis, Design,

 Implementation,Testing

Bernd Brügge Component-Based Software Engineering 10

A small discourse into Philosophy

v Philosophy works on 3 major problems
w Metaphysics: What is reality?

w Epistemology: What is knowledge? How can we store knowledge
in our brain? How far can I describe reality with knowledge?

w Ethics: What is good, what is bad?

v Metaphysics and epistemology depend on each other:
w Assertions about reality depend on closely on assertions about

knowledge and vice versa.

v Relationship to software engineering
w Metaphysics <=> Modeling

w Epistemology <=> Acquisition of knowledge, knowledge
management

w Ethics: <=> Good and bad practices during software development

Bernd Brügge Component-Based Software Engineering 11

The four basic questions in metaphysics

1. Is reality real or not real?
Does reality exist only in our brain or does it exist independently

from our existence?

2. What is reality made out of?

3. How many realities are there (1,2, many)?

4. Is reality constant or does it change?

Bernd Brügge Component-Based Software Engineering 12

1. Reality: Real or ideal?

v The metaphysical realism assumes, that reality is real
w Reality exists outside our brain. It is “really” real. Subtypes of

Realism:
u Naïve realism: Things are real, that is a fact!

u Critical realism (transzendental Realism): Things are real, but I see
only what I want to see

u Pragmatisc realism: Realism works, that’s why reality is real

v The metaphysical idealism assumes that reality is an
illusion.

Bernd Brügge Component-Based Software Engineering 13

Categorization of the various types of
realism

Metaphysical
Realism

Naive
Realism

Critical
Realism

pragmatic
realism

Metaphysical
Realism

Naive
Realism

Critical
Realism

Pragmatic
Realism

Example of a categorisation
(Taxonomy, Ontology)

Bernd Brügge Component-Based Software Engineering 14

2. What is reality made out of?

v Materialism:
w Reality consists of real things

w Sokrates: Everything is made out of water

v Antimaterialism:
w Reality consists of real things as well as of ideas

w Plato: A form,e.g beauty, is as real as real things, e.g. This little
train(actually forms are more real, because they are permanent,
real things live only for a short time)

v Scientific materialism:
w Reality consists only of things that have energy and/or mass

w Modern science: mind-reading capability is not real

Bernd Brügge Component-Based Software Engineering 15

Model of Plato’s Antimaterialism

Form
(Essence, Idea)

Reality

Material
Thing

**

Bernd Brügge Component-Based Software Engineering 16

3. How many realities are there ?

v Monism:
w There is only one thing, which is simultaneously the source and

essence of reality (Thales von Milet: Everything is made out of
water)

v Dualism:
w There are 2 different sources for things in Reality

w Plato: Forms and Material Things are 2 types of Reality

w Descartes: The mind and the body are separate things

w Tao: Each thing consists of two complementary principles: Ying
und Yang

v Pluralism:
w Software Engineering: There are many realities , the customer

requirements are reality

Bernd Brügge Component-Based Software Engineering 17

4. Is reality constant or does it change?

v Parmenides (600 A.D):
w There is a difference between appearance and underlying reality.

Change is an illusion, reality is constant

v Heraklit (540-475 A.D.):
w Everything flows, there is no solid substance

u “Jupiter’s eye” is actually a hurricane

u Modern physics: Reality is a field of vibrations

v Software Engineering:
w The graphical user interface (“GUI”) changes, but the

underlying business process is constant.

w WIMP : Windows, Icons, Mouse and Pointing Device

w The business process changes as result of technology enablers:
“Change is the only constant” (Hammer&Champy,
Reengineering)

Bernd Brügge Component-Based Software Engineering 18

The 4 basic questions in epistemology

v 1. How do we acquire knowledge, through our senses
or through our intelligence?

v 2. How far can we describe or create reality with
knowledge?

v 3. What is knowledge made out of?

v 4. What are the activities during knowledge acquisition?

Bernd Brügge Component-Based Software Engineering 19

1. How do we acquire knowledge?

v Empirism: Knowledge is acquired by experimentation
and through our senses
w Our brain is initially empty (“tabula rasa”)

v Rationalism: Knowledge is acquired by our mind
w The brain is already at birth equipped with ideas (“a priori”)

v Voluntarism: Knowledge is only acquired if you want to
achieve something

v Intuitionism: Knowledge is acquired by intuition

Bernd Brügge Component-Based Software Engineering 20

Taxonomy of knowledge acquistion methods

Empirismus IntuitionismusVoluntarismus Realismus

Knowledge
Acquisition

Empirism:
•Conzepts (“Truths”) can only be produced empirically.
• The human mind can produce concepts , but such concepts
do not produce new knowledge about reality. Example: It is
a mathematical truth, that the angles in a triangle add up to to
180 degrees. But we cannot deduce from that that there are
triangles in reality or - should they exist - that we can find
them.

Realism:
• Koncepts - fact as well as a priori conzepts- are not simply
copies or extensions of the sensual experience
• Concepts are built into our mind:

•Concepts are “remembrance” of forms. They can be
triggered by senses, but they are already in our mind,
they are only woken up. (Plato)
•Concepts are categories of our mind. They are
structures which allow us mentally to keep track of
sensual objects. Concepts are not derived from sensor
data, but are used to make sense from sensor data (Kant)

Bernd Brügge Component-Based Software Engineering 21

Can we describe reality with knowledge?

v Epistemological idealism:
w What you know about an object, exists only in your mind. Models

can only describe parts of reality, never reality.

v Epistemological realism:
w The knowledge about an object is independent from our mind.

Models can describe reality.

v Epistemological idealists are pessimists:
w There are always conclusions, that you cannot draw in the model,

because they depend on components in reality which are not
described in the model.

v Epistemological realists are optimists:
w All conclusions in the model describe things in reality.

Bernd Brügge Component-Based Software Engineering 22

Combining metaphysics and ephistemology

v Metaphysical realist, ephistemological realist:
w There is a reality outside of my mind, I can acquire knowledge about

this reality and I can represent reality with my model. (Software
Engineering: Reengineering)

v Metaphysiscal realist, ephistemological idealist:
w There is a reality outside of my mind, the knowledge about this reality

is limited by the structures and activities of my mind (Kant)

v Metaphysisical idealist, ephistemological idealist:
w Reality depends on a (another) mind, my knowledge about this reality

is limited by my mind.

v Metaphysiscal idealist, ephistemological realist:
w Reality depends on a (another) mind, my mind can understand the

concepts of this other mind, and I can represent this externally with
models (Software Engineering: Customer specifies the system)

Bernd Brügge Component-Based Software Engineering 23

Combination of metaphysics and ephistemology

Metaphys.
Realism

Epistemol.
Realism

Metaphys.
Idealism

Epistemol.
Idealism

Kant Reengineering

Software
Engineering
(Interface &
Greenfield

Engineering)

Bernd Brügge Component-Based Software Engineering 24

Realities for software engineers

v Some people say: “The computer scientist can play god,
because they can create realities”. Nonsense.

v But : The computer scientist can model different kinds of
realities and build them:
w An existing system (physical system, technical system, social

system, software system)
u An important special case is here when the existing system is a

software system. We then call it “Legacy System”

w An idea without counterpart in reality:
u A visionary scenario or a customer requirement.

v The constructed reality might actually only be part of the
ideas, namely those that were realizable in software
w Example: A visionary scenario turns out to be a dream, a

customer requirement turns out to be too expensive to realize.

Bernd Brügge Component-Based Software Engineering 25

How do we model complex systems (Natural
Systems, Social Systems, Artificial Systems)?

Epistemology

Knowledge about Causality
(Dynamic Model)

Describes our knowledge about the system

Knowledge about Functionality
(Functional model)

Knowledge about Relationships
(Object model)

Neural
Networks

DataFlow Diagrams
(SA/SD)

Scenarios/Use Cases
(Jacobsen)

Formal
Specifications

(Liskov)

 State Diagrams
(Harel)

 Petri Nets(Petri)
Inheritance

Frames,SemanticNet
works (Minsky)

Uncertain Knowledge
Fuzzy Sets (Zadeh)

Data Relationship
(E/R Modeling, Chen)

Hierarchical
 Database

Model (IMS)

Network
Database

Model
(CODASYL)

Relational
Database Model

(Codd)

Fuzzy Frames
(Graham)

Class Diagrams
(“E/R + Inheritance”,

Rumbaugh)

 Sequence
Diagrams

Activity
 Diagrams

Bernd Brügge Component-Based Software Engineering 26

Activities during Object Modeling

v Main goal: Find the important abstractions

v What happens if we find the wrong abstractions?
w Iterate and correct the model

v Steps during object modeling
w 1. Class identification

u Based on the fundamental assumption that we can find abstractions

w 2. Find the attributes

w 3. Find the methods

w 4. Find the associations between classes

v Order of steps
w Goal: get the desired abstractions

w Order of steps secondary, only a heuristic

w Iteration is important

Bernd Brügge Component-Based Software Engineering 27

Class Identification

v Identify the boundaries of the system

v Identify the important entities in the system

v Class identification is crucial to object-oriented
modeling

v Basic assumption:
w 1. We can find the classes for a new software system (Forward

Engineering)

w 2. We can identify the classes in an existing system (Reverse
Engineering)

v Why can we do this?
w Philosophy, science, experimental evidence

Bernd Brügge Component-Based Software Engineering 28

Class identification is an ancient problem

v Objects are not just found by taking a picture of a scene
or domain

v The application domain has to be analyzed.

v Depending on the purpose of the system different
objects might be found
w How can we identify the purpose of a system?

w Scenarios and use cases

v Another important problem: Define system boundary.
w What object is inside, what object is outside?

Bernd Brügge Component-Based Software Engineering 29

What is This?

Face

Eye

1..2

Bernd Brügge Component-Based Software Engineering 30

Modeling in Action

v Face

v Mask

v Sad

v Happy

v Is it one Face or two?

v Who is using it?
w Person at Carneval?

w Bankrobber?

w Painting collector

v How is it used?

Bernd Brügge Component-Based Software Engineering 31

Pieces of an Object Model

v Classes

v Associations (Relations)
w Generic associations

w Canonical associations
u Part of- Hierarchy (Aggregation)

u Kind of-Hierarchy (Generalization)

v Attributes
w Detection of attributes

w Application specific

w Attributes in one system can be classes in another system

w Turning attributes to classes

v Operations
w Detection of operations

w Generic operations: Get/Set, General world knowledge, design
patterns

w Domain operations: Dynamic model, Functional model

Bernd Brügge Component-Based Software Engineering 32

Object vs Class

v Object (instance): Exactly one thing
w This lecture on Software Engineering on November 15 from 14:30 -

16:00

v A class describes a group of objects with similar
properties
w Game, Tournament, mechanic, car, database

v Object diagram: A graphic notation for modeling objects,
classes and their relationships ("associations"):
w Class diagram: Template for describing many instances of data.

Useful for taxonomies, patters, schemata...

w Instance diagram: A particular set of objects relating to each other.
Useful for discussing scenarios, test cases and examples

v Together-J: CASE (Computer-Aided Software
Engineering) Tool for building object diagrams, in
particular class diagrams
w Lecture tomorrow (November 16)

Bernd Brügge Component-Based Software Engineering 33

Class identification

v Finding objects is the central piece in object modeling

v Approaches
w Application domain approach (not a special lecture, examples):

u Ask application domain expert to identify relevant abstractions

w Syntactic approach (today):
u Start with use cases. Extract participating objects from flow of events

u Use noun-verb analysis (Abbot’s technique) to identify components
of the object model

w Design patterns approach (Lecture on design patterns)
u Use reusable design patterns

w Component-based approach (Lecture on object design):
u Identify existing solution classes

Bernd Brügge Component-Based Software Engineering 34

How do you find classes?

v Finding objects is the central piece in object modeling
w Learn about problem domain: Observe your client

w Apply general world knowledge and intuition

w Take the flow of events and find participating objects in use cases

w Try to establish a taxonomy

w Do a syntactic analysis of problem statement, scenario or flow of events

w Abbott Textual Analysis, 1983, also called noun-verb analysis
u Nouns are good candidates for classes

u Verbs are good candidates for opeations

w Apply design knowledge:
u Distinguish different types of objects

u Apply design patterns (Lecture on design patterns)

Bernd Brügge Component-Based Software Engineering 35

How do you find classes?

v Finding objects is the central piece in object modeling
w Learn about problem domain: Observe your client

w Apply general world knowledge and intuition

w Take the flow of events and find participating objects in use cases

w Try to establish a taxonomy

w Apply design knowledge:
u Distinguish different types of objects

u Apply design patterns (Lecture on design patterns)

w Do a syntactic analysis of problem statement, scenario or flow of events

w Abbott Textual Analysis, 1983, also called noun-verb analysis
u Nouns are good candidates for classes

u Verbs are good candidates for opeations

Bernd Brügge Component-Based Software Engineering 36

Finding Participating Objects in Use Cases

v Pick a use case and look at its flow of events
w Find terms that developers or users need to clarify in order to

understand the flow of events

w Look for recurring nouns (e.g., Incident),

w Identify real world entities that the system needs to keep track of
(e.g., FieldOfficer, Dispatcher, Resource),

w Identify real world procedures that the system needs to keep
track of (e.g., EmergencyOperationsPlan),

w Identify data sources or sinks (e.g., Printer)

w Identify interface artifacts (e.g., PoliceStation)

v Be prepared that some objects are still missing and need
to be found:

u Model the flow of events with a sequence diagram

v Always use the user’s terms

Bernd Brügge Component-Based Software Engineering 37

Object Types

v Entity Objects
w Represent the persistent information tracked by the system

(Application domain objects, “Business objects”)

v Boundary Objects
w Represent the interaction between the user and the system

v Control Objects:
w Represent the control tasks performed by the system

v Having three types of objects leads to models that are
more resilient to change.
w The interface of a system changes more likely than the control

w The control of the system change more likely than the application
domain

v Object types originated in Smalltalk:
w Model, View, Controller (MVC)

Bernd Brügge Component-Based Software Engineering 38

Example: 2BWatch Objects

Year

Month

Day

ChangeDate
Button

LCDDisplay

Entity Objects Control Objects Interface Objects

Bernd Brügge Component-Based Software Engineering 39

Naming of Object Types in UML

v UML provides several mechanisms to extend the
language

v UML provides the stereotype mechanism to present
new modeling elements

<<Entity>>
Year

<<Entitity>>
Month

<<Entity>>
Day

<<Control>>
ChangeDate

<<Boundary>>
Button

<<Boundary>>
LCDDisplay

Entity Objects Control Objects Boundary Objects

Bernd Brügge Component-Based Software Engineering 40

Recommended Naming Convention for Object
Types

v To distinguish the different object tpyes on a syntactical basis, we
recommend suffixes:

v Objects ending with the “_Boundary” suffix are boundary objects

v Objects ending with the “_Control” suffix are control objects

v Entity objects do not have any suffix appended to their name.

Year

Month

Day

ChangeDate_
Control

Button_Boundary

LCDDisplay_Boundary

Bernd Brügge Component-Based Software Engineering 41

Example: Flow of events

v The customer enters a store with the intention of
buying a toy for his child with the age of n.

v Help must be available within less than one minute.

v The store owner gives advice to the customer. The
advice depends on the age range of the child and the
attributes of the toy.

v The customer selects a dangerous toy which is kind of
unsuitable for the child.

v The store owner recommends a more yellow doll.

Bernd Brügge Component-Based Software Engineering 42

Mapping parts of speech to object model
components [Abbot 1983]

 Part of speech Model component Example

 Proper noun object Jim Smith

 Improper noun class Toy, doll

 Doing verb method Buy, recommend

 being verb inheritance is-a (kind-of)

 having verb aggregation has an

 modal verb constraint must be

 adjective attribute 3 years old

 transitive verb method enter

 intransitive verb method (event) depends on

Bernd Brügge Component-Based Software Engineering 43

Another Example

v The customer enters the store to buy a
toy.

v It has to be a toy that his daughter
likes and it must cost less than 50
Euro.

v He tries a videogame, which uses a
data glove and a head-mounted display.
He likes it.

v An assistant helps him.

v The suitability of the game depends
on the age of the child.

v His daughter is only 3 years old.

v The assistant recommends another type
of toy, namely the boardgame
“Monopoly".

Flow of events:

Is this a good use
Case?

“Monopoly” is probably a
left over from the scenario

The use case should
terminate with the

customer leaving the store

Not quite!

Bernd Brügge Component-Based Software Engineering 44

Grammatical construct UML Component

Concrete Person, Thing Object

noun class

verb Operation

Classifying verb Inheritance

Possessive Verb Aggregation

modal Verb Constraint

Adjective Attribute

Intransitive verb Operation (Event)

Textual Analysis using Abbot‘s technique

Example

“Monopoly"

“toy"

 “enters"

“is a" ,“either..or",
“kind of…"

"Has a ", “consists of"

“must be", “less than…"

"3 years old"

“depends on…."

Bernd Brügge Component-Based Software Engineering 45

Generation of a class diagram from flow of events

v The customer enters the store
to buy a toy. It has to be a
toy that his daughter likes and
it must cost less than 50 Euro.
He tries a videogame, which
uses a data glove and a head-
mounted display. He likes it.

v An assistant helps him. The
suitability of the game depends
on the age of the child. His
daughter is only 3 years old.
The assistant recommends
another type of toy, namely a
boardgame. The customer buy the
game and leaves the store

type of toy

customer

depends

storeenters
Customer

?

enter()

toy

daughter

suitable

*

less than 50 Euro
store

enter()

daughter
age

toy

buy()

videogame boardgame

toy

age

videogame

daughter

boardgame

Flow of events:

toy
price
buy()
like()

buy

Bernd Brügge Component-Based Software Engineering 46

Order of activities in modeling

1. Formulate a few scenarios with help from the end user
and/or application domain expert.

2. Extract the use cases from the scenarios, with the help
of application domain expert.

3. Analyse the flow of events, for example with Abbot's
textual analysis.

4. Generate the class diagrams, which includes the
following steps:

1. Class identification (textual analysis, domain experts).

2. Identification of attributes and operations (sometimes before
the classes are found!)

3. Identification of associations between classes

4. Identification of multiplicities

5. Identification of roles

6. Identification of constraints

Bernd Brügge Component-Based Software Engineering 47

Ways to find objects
v Syntactical investigation with Abbot‘s techniqe:
w In the problem statement (originally proposed, but rarely works if

the problem statement is large (more than 5 pages)

w In the flow of events of use cases

w => Textuelle Analyse nach Abbot

v Use of various knowledge sources:
w Application knowledge: Interviews of end users and experts, to

determine the abstractions of the application domain.
w Design knowledge: Reusable abstractions in the solution domain.
w General world knowledge: Also use your generic knowledge and

intution.

v Formulation of scenarios (in natural language):
w Description of the concrete usage of the system.

v Formulation of use cases (natural language and UML):
w Description of functions with actors and flow of events

Bernd Brügge Component-Based Software Engineering 48

Summary

v Modeling vs reality

v System modeling
w Object model

w Dynamic model

w Functional model

v Object modeling is the central activity
w Class identification is a major activity of object modeling

v Abbot’s technique
w syntactic rules to find classes/objects

