SwRISAS BulbueyD pue xo _QEo_o _mc _.b:_ucoo
bulesuibu3z a fremyos paiueli0-1%1[q0

Odds And Ends: Remaining Lectures

Week 2:

¢ January 10: System Design
¢ January 11: Finish System Design, Start Design Patterns

Week 3:

¢ January 17: Guest Lecture (Frank Mang, Accenture)
¢ January 18: Design Patterns

Week 4:

¢ January 24: Object Design | (Inheritancerevisited, OCL, Contracts)
¢ January 25: Object Design |1 (JavaDoc)

Week 5:

¢ January 31: Testing |
¢ February 1. Testing |l

Week 6:

¢ February 7: Client Acceptance Test
¢ February 8: Software Lifecycle

Week 7.
¢ February 14 : Exam

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Overview

System Design | (previous lecture)
0. Overview of System Design
1. Design Goals
2. Subsystem Decomposition

System Design ||
3. Concurrency
4. Har dwar e/Software M apping
5. Persistent Data M anagement
6. Global Resource Handling and Access Control
7. Softwar e Control
8. Boundary Conditions

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

3. Concurrency

|dentify concurrent threads and address concurrency 1Ssues.
Design goal: response time, performance.

Threads

+ A thread of control isa path through a set of state diagramson
which a single object isactive at atime.

+ A thread remainswithin a state diagram until an object sends an
event to another object and waitsfor another event

* Thread splitting: Object doesa nonblocking send of an event.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Concurrency (continued)

-~ Two objects are inherently concurrent if they can recelve events
at the same time without interacting

~ Inherently concurrent objects should be assigned to different
threads of control

- Objects with mutual exclusive activity should be folded into a
single thread of control (Why?)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Concurrency Questions

- Which objects of the object model are independent?
- What kinds of threads of control are identifiable?
- Does the system provide access to multiple users?

- Can asingle request to the system be decomposed into multiple
requests? Can these requests be handled in parallel ?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

| mplementing Concurrency

- Concurrent systems can be implemented on any system that
provides

+ physical concurrency (hardware)
or

+ |ogical concurrency (software): Scheduling problem
(Operating systems)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

4. Hardware Software Mapping

This activity addresses two guestions:
+ How shall werealizethe subsystems. Hardware or Softwar e?

+ How isthe object model mapped on the chosen hardware &
softwar e?

+ Mapping Objectsonto Reality: Processor, Memory, | nput/Output
¢+ Mapping Associations onto Reality: Connectivity

Much of the difficulty of designing a system comes from
meeting externally-imposed hardware and software constraints.

+ Certain tasks haveto be at specific locations

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Mapping the Objects

Processor Issues:
¢ |sthe computation rate too demanding for a single processor ?

+ Can we get a speedup by distributing tasks acr oss sever al
processor s?

+ How many processors arerequired to maintain steady state load?
Memory ISsues:

¢+ |sthere enough memory to buffer burstsof requests?
1/O Issues:

* Do you need an extra piece of hardwareto handlethe data
generation rate?

* Doestheresponsetime exceed the available communication
bandwidth between subsystems or atask and a piece of hardware?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Mapping the Subsystems Associations. Connectivity

Describe the physical connectivity of the hardware

+ Often the physical layer in ISO’s OSl Reference M odel

¢ Which associationsin the object model are mapped to physical
connections?

+ Which of the client-supplier relationshipsin the analysis’design model
correspond to physical connections?

Describe the logical connectivity (subsystem associations)

+ |dentify associationsthat do not directly map into physical
connections:

+ How should these associations be implemented?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Typical Informal Example of a Connectivity Drawing
Physical

Application Application Application =
Client Client Client Connectivity

| TCP/IP Ether net
: |
L ogical , LAN
Connectivity —
Communication O
Agent for

Application Clients LAN Global

Data

Communication Communication Server
Backbone Network Agent for Data
Agent for OODBMS
) i) Server
Application Clients

Communication Global

Agent for Data Data
Server Server

[LAN O RDBMS
a
Local Data Global Data
Server Server

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Logical vs Physical Connectivity and the relationship
to Subsystem Layering

/
Application Layer | »| | Application Layer
Presentation Layer [« » |Presentation Layer
Logical
Session Layer < »| | Session Layer < Connectivity
Bidirectional associa- Layers
tions for each layer
Transport Layer |« » | Transport Layer
Network Layer p X Network Layer
DatalLink Layer |« » | DataLink Layer \
Physical
Physical Layer |« > Physical Layer < Connectivity
Processor 1 Processor 2

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Subsystem 1

Subsystem 2

[]

Layer 1
Layer 2 Layer 1
y L] ,
Layer 3 Layer 2 I:IJ\\/EI
/ o
Layer 4 Layer-3
< >
Presentation Layer |« » |Presentation Layer
Session Layer |« » | SessionLayer
Bidirectional associa-
tions for each layer
Transport Layer |« » | Transport Layer
Network Layer § R Network Layer
DataLink Layer |« » | DataLink Layer
Hardware < > Hardware

Processor 1

Bernd Bruegge & Allen Dutoit

Processor 2

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

13

Hardwar e/Software Mapping Questions

- What is the connectivity among physical units?
¢ Tree, star, matrix, ring

- What is the appropriate communication protocol between the
subsystems?

+ Function of required bandwidth, latency and desired reliability,
desired quality of service (QOYS)

|s certain functionality already available in hardware?

Do certain tasks reguire specific locations to control the
hardware or to permit concurrent operation?

¢ Often truefor embedded systems

- General system performance question:
+ What isthe desired response time?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

14

Connectivity in Distributed Systems

If the architecture is distributed, we need to describe the network
architecture (communication subsystem) as well.

Questions to ask

+ \What arethetransmission media? (Ethernet, Wireless)

+ What isthe Quality of Service (QOS)? What kind of communication
protocols can be used?

+ Should theinteraction asynchronous, synchronous or blocking?

+ \WWhat arethe available bandwidth requirements between the
subsystems?
¢ Stock Price Change -> Broker
¢ lcy Road Detector -> ABS System

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Drawing Hardware/Software Mappings in UML

System design must model static and dynamic structures:

¢+ Component Diagramsfor static structures
¢ show thestructure at design timeor compilation time

* Deployment Diagram for dynamic structures
¢ show the structure of therun-time system

Note the lifetime of components
* Someexist only at design time
¢ Othersexist only until compiletime
+ Someexist at link or runtime

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

16

Component Diagram

Component Diagram
+ A graph of components connected by dependency relationships.

+ Shows the dependencies among softwar e components
¢ source code, linkablelibraries, executables
Dependencies are shown as dashed arrows from the client
component to the supplier component.
+ Thekinds of dependencies are implementation language specific.

A component diagram may also be used to show dependencies
on afacade:
¢ Usedashed arrow the corresponding UML interface.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Component Diagram Example

UML Component

Bernd Bruegge & Allen Dutoit

Scheduler ———() reservations

Planner

GUI

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

18

Deployment Diagram

Deployment diagrams are useful for showing a system design
after the following decisions are made

+ Subsystem decomposition
+ Concurrency
+ Hardwar e/Software Mapping

A deployment diagram is a graph of nodes connected by
communi cation associ ations.

+ Nodes are shown as 3-D boxes.
+ Nodes may contain component instances.

¢+ Components may contain objects (indicating that the object is part
of the component)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

19

Deployment Diagram Example

-HostMachine

-
-
-

-

-

(e 2

-2

[:i:] :Scheduler

1

<<database>>
meetingsDB

Bernd Bruegge & Allen Dutoit

Runtime

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

20

5. Data Management

Some objects in the models need to be persistent

* Provide clean separation points between subsystems with well-
defined interfaces.

A persistent object can be realized with one of the following

+ Data structure

+ If thedata can bevolatile
* Files

+ Cheap, simple, per manent storage

¢ Low level (Read, Write)

¢ Applicationsmust add codeto provide suitable level of abstraction
¢ Database

¢ Powerful, easy to port
¢ Supportsmultiplewritersand readers

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

21

File or Database?

When should you choose afile?
+ Arethedata voluminous (bit maps)?
+ Do you have lots of raw data (core dump, event trace)?
+ Do you need to keep the data only for a short time?
¢+ |stheinformation density low (archival files,history logs)?

When should you choose a database?
+ Do thedatarequireaccess at fine levels of details by multiple users?

+ Must the data be ported across multiple platfor ms (heter ogeneous
systems)?

¢ Do multiple application programs access the data?
* Doesthe data management requirealot of infrastructure?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Database Management System

~ Contains mechanisms for describing data, managing persistent
storage and for providing a backup mechanism

 Provides concurrent access to the stored data

- Contains information about the data (“ meta-data’), also called
data schema.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

23

| ssues To Consider When Selecting a Database
- Storage space

¢ Database require about triple the storage space of actual data
Response time

* Modedatabasesare /O or communication bound (distributed
databases). Response timeis also affected by CPU time, locking
contention and delays from frequent screen displays

L ocking modes

+ Pessimistic locking: L ock before accessing object and release when
obj ect accessis complete

* Optimistic locking: Reads and writes may freely occur (high
concurrency!) When activity has been completed, database checksif
contention has occurred. If yes, all work has been lost.

- Administration

+ L argedatabasesrequire specially trained support staff to set up

security policies, manage the disk space, prepare backups, monitor
perfor mance, adjust tuning.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Object-Oriented Databases

Support all fundamental object modeling concepts
* Classes, Attributes, M ethods, Associations, | nheritance

Mapping an object model to an OO-database
¢ Determine which objectsare persistent.
¢ Perform normal requirement analysis and object design
+ Create single attribute indicesto reduce perfor mance bottlenecks

* Do the mapping (specific to commer cially available product).
Example:

¢ In ObjectStore, implement classes and associations by preparing C++
declarationsfor each class and each association in the object model

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Relational Databases

Based on relational algebra

Data is presented as 2-dimensional tables. Tables have a
specific number of columns and and arbitrary numbers of rows

* Primary key: Combination of attributesthat uniquely identify arow
In atable. Each table should have only one primary key

* Foreign key: Referenceto a primary key in another table
- SQL isthe standard language defining and manipulating tables.

L eading commercial databases support constraints.

+ Referential integrity, for example, meansthat referencesto entries
In other tables actually exist.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Mapping an object model to a relational database

UML object models can be mapped to relational databases:

+ Some degradation occur s because all UML constructs must be
mapped to a singlerelational database construct - the table.

UML mappings
¢ Each classis mapped to atable
¢ Each classattribute is mapped onto a column in the table
+ Aninstanceof a classrepresentsarow in thetable
+ A many-to-many association is mapped into its own table
+ A one-to-many association isimplemented as buried foreign key

Methods are not mapped

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

27

Turning Object Modelsinto Tables|

Many-to-Many Associations. Separate Table for Association

City

x*

cityName

Serves =

City TableOO

Alrport
airportCode
airportName

Airport Table

g

Separate
Table

%ves Table

o
o

cityName

Houston

Albany

Munich

Hamburg

airportCode airportName cityName | airportCode
|IAH | ntercontinental Houston |AH
HOU Hobby Houston HOU
ALB Albany County Albany ALB
MUC Munich Airport Munich MUC
HAM Hamburg Airport Hamburg HAM

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

28

Turning Object Modelsinto Tables| |

1-To-Many or Many-to-1 Associations: Buried Foreign Keys

) Portfolio
Transaction | *
. portfoliol D
transactionl D
Foreign Ke
)
Transaction Tabte Portfolio Table
transactionl D portfoliol D portfoliol D

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Data Management Questions

- Should the data be distributed?

- Should the database be extensible?

- How often is the database accessed?

- What is the expected request (query) rate? In the worst case?
- What isthe size of typical and worst case requests?

Do the data need to be archived?

- Does the system design try to hide the location of the databases
(location transparency)?

 Isthere a need for asingle interface to access the data?
- What isthe query format?
- Should the database be relational or object-oriented?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

6. Global Resource Handling/1/10/02

- Discusses access control
- Describes access rights for different classes of actors
- Describes how object guard against unauthorized access

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

31

Defining Access Control

In multi-user systems different actors have access to different
functionality and data.

+ During analysis we model these different accesses by associating
different use cases with different actors.

* During system design we model these different accesses by examing the
object model by determining which objects are shared among actors.

+ Depending on the security requirements of the system, we also define how
actors are authenticated to the system and how selected datain the system
should be encrypted.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Access Matrix

We model access on classes with an access matrix.
+ Therows of the matrix representsthe actors of the system
+ The column represent classes whose access we want to control.

Access Right: An entry in the access matrix. It liststhe
operations that can be executed on instances of the class by the
actor.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Access Matrix | mplementations

Global accesstable: Represents explicitly every cell inthe
matrix as a (actor,class, operation) tuple.

+ Determining if an actor has access to a specific object requires looking
up the corresponding tuple. If no such tuple is found, access is denied.

 Access control list associates alist of (actor,operation) pairs
with each class to be accessed.

+ Every time an object is accessed, its access list is checked for the
corresponding actor and operation.

¢ Example: guest list for a party.
- A capability associates a (class,operation) pair with an actor.

¢ A capability provides an actor to gain control access to an object of the
class described in the capability.

+ Example: Aninvitation card for a party.
- Which is the right implementation?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Global Resource Questions

Does the system need authentication?

If yes, what Is the authentication scheme?
* User name and password? Access control list

* Tickets? Capability-based
- What isthe user interface for authentication?
Does the system need a network-wide name server?

How is a service known to the rest of the system?
+ At runtime? At compile time?
+ By Port?
+ By Name?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

35

7. Decide on Software Control

Choose implicit control (non-procedural, declarative languages)
¢ Rule-based systems
¢ L ogic programming
Choose explicit control (procedural languages): Centralized or
decentralized
Centralized control: Procedure-driven or event-driven

Procedure-driven control

¢ Control ressdeswithin program code. Example: Main program
calling procedures of subsystems.

+ Simple, easy to build, hard to maintain (high recompilation costs)

Event-driven control

+ Control ressdeswithin a dispatcher calling functions via callbacks.

+ Very flexible, good for the design of graphical user interfaces, easy
to extend

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

Event-Driven Control Example: MVC

- Modéd-View-Controller Paradigm (Adele Goldberg, Smalltalk
80)

-Control

—

Update View
Ja
Updat & Update

Model has cha 9d’

-Model = -View
-View

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Software Control (continued)

Decentralized control
¢ Control residesin several independent objects.

* Possible speedup by mapping the objects on different processors,
increased communication over head.

+ Example: Message based system.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

38

Centralized vs. Decentralized Designs

Should you use a centralized or decentralized design?

+ Takethe sequence diagrams and control objects from the analysis
model

+ Check the participation of the control objectsin the sequence
diagrams

¢ |f sequencediagram looksmorelikeafork: Centralized design
¢+ Thesequencediagram looks morelikea stair: Decentralized design

Centralized Design

+ Onecontrol object or subsystem (" spider") controls everything
¢ Pro: Changeinthecontrol structureisvery easy
¢ Con: Thesingleconctrol ojbect isa possible performance bottleneck

Decentralized Design

+ Not asingleobject isin control, control isdistributed, That means,
thereis morethan one control object
¢ Con: Theresponshbility is spread out
¢ Pro: Fitsnicely into object-oriented development

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

8. Boundary Conditions

Most of the system design effort is concerned with steady-state
behavior.

However, the system design phase must also address the
Initiation and finalization of the system. Thisis addressed by a
set of new uses cases called administration use cases

+ |nitialization

¢ Describes how the system is brought from an non initialized state to
steady-state (" startup use cases’).

¢ Termination

¢ Describeswhat resources are cleaned up and which systemsare
notified upon termination (" termination use cases').

+ Failure
¢+ Many possible causes: Bugs, errors, external problems (power supply).
¢ Good system design foresees fatal failures (“failure use cases’).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Example: Administrative Use casesfor MyTrip

- Administration use cases for My Trip (UML use case diagram).

-~ An additional subsystems that was found during system design

ISsthe server. For this new subsystem we need to define use
Cases.

- ManageServer includes all the functions necessary to start
up and shutdown the server.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

ManageServer Use Case

<<include>> ©
-7

-

_ _ - StartServer
PlanningService -
Administrator - <<include>>
AU >
~
~
ManageServer >~ ShutdownServer
RN
~
<<include>> ©
ConfigureServer

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Boundary Condition Questions

8.1 Initialization
¢+ How doesthe system start up?
+ What data need to be accessed at startup time?
¢+ What services havetoregistered?
+ \What doesthe user interfacedo at start up time?
¢ How doesit present itself tothe user?

8.2 Termination
+ Aresingle subsystems allowed to terminate?
+ Areother subsystemsnotified if a single subsystem ter minates?
+ How arelocal updates communicated to the database?

8.3 Faillure

+ How does the system behave when a node or communication link fails?
Arethere backup communication links?

+ How doesthe system recover from failure? Isthisdifferent from
Initialization?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Modeling Boundary Conditions

Boundary conditions are best modeled as use cases with actors
and objects.
- Actor: often the system administrator

Interesting use cases.
¢ Start up of a subsystem
¢ Start up of thefull system
¢ Termination of a subsystem
¢ Error in asubystem or component, failure of a subsystem or
component
- Task:
* Mode the startup of the ARENA system as a set of use cases.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Summary

In this lecture, we reviewed the activities of system design :
 Concurrency identification

- Hardware/Software mapping

- Persistent data management

- Global resource handling

- Software control selection

 Boundary conditions

Each of these activities revises the subsystem decomposition to
address a specific issue. Once these activities are completed,
the interface of the subsystems can be defined.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

