
C
on

qu
er

in
g 

C
om

pl
ex

 a
nd

 C
ha

ng
in

g 
Sy

st
em

s

O
bj

ec
t-

O
ri

en
te

d 
So

ft
w

ar
e 

E
ng

in
ee

ri
ng Chapter 6,

System Design
Lecture 2



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      2

Odds And Ends: Remaining Lectures

♦ Week 2:
t January 10: System Design
t January 11: Finish System Design, Start Design Patterns

♦ Week 3:
t January 17: Guest Lecture (Frank Mang, Accenture)
t January 18: Design Patterns

♦ Week 4:
t January 24: Object Design I (Inheritance revisited, OCL, Contracts)
t January 25: Object Design II (JavaDoc)

♦ Week 5:
t January 31:  Testing I
t February 1:  Testing II

♦ Week 6:
t  February 7: Client Acceptance Test
t February 8: Software Lifecycle

♦ Week 7:
t February 14 : Exam



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      3

Overview

System Design I (previous lecture)
0. Overview of System Design
1. Design Goals

2. Subsystem Decomposition

System Design II
3. Concurrency

4. Hardware/Software Mapping
5. Persistent Data Management

6. Global Resource Handling and Access Control
7. Software Control

8. Boundary Conditions



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      4

3. Concurrency

♦ Identify concurrent threads and address concurrency issues.

♦ Design goal: response time, performance.

♦ Threads
w A thread of control is a path through a set of state diagrams on

which a single object is active at a time.

w A thread remains within a state diagram until an object sends an
event to another object and waits for another event

w Thread splitting: Object does a  nonblocking send of an event.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      5

Concurrency (continued)

♦ Two objects are inherently concurrent if they can receive events
at the same time without interacting

♦ Inherently concurrent objects should be assigned to different
threads of control

♦ Objects with mutual exclusive activity should be folded into a
single thread of control (Why?)



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      6

Concurrency Questions

♦ Which objects of the object model are independent?

♦ What kinds of threads of control are identifiable?

♦ Does the system provide access to multiple users?

♦ Can a single request to the system be decomposed into multiple
requests? Can these requests be handled in parallel?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      7

Implementing Concurrency

♦ Concurrent systems can be implemented on any system that
provides

w physical concurrency (hardware)
or

w logical concurrency (software): Scheduling problem
(Operating systems)



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      8

4. Hardware Software Mapping

♦ This activity addresses two questions:
w How shall we realize the subsystems: Hardware or Software?
w How is the object model mapped on the chosen hardware &

software?
t Mapping Objects onto Reality: Processor, Memory, Input/Output

t Mapping Associations onto Reality: Connectivity

♦ Much of the difficulty of designing a system comes from
meeting externally-imposed hardware and software constraints.
w Certain tasks have to be at specific locations



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      9

Mapping the Objects

♦ Processor issues:
w Is the computation rate too demanding for a single processor?
w Can we get a speedup by distributing tasks across several

processors?
w How many processors are required to maintain steady state load?

♦ Memory issues:
w Is there enough memory to buffer bursts of requests?

♦ I/O issues:
w Do you need an extra piece of hardware to  handle the data

generation rate?
w Does the response time  exceed the available communication

bandwidth between subsystems or a task and a piece of hardware?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      10

Mapping the Subsystems Associations: Connectivity

♦ Describe the physical connectivity  of the hardware
w Often the physical layer in ISO’s OSI Reference Model

t Which associations in the object model  are mapped to physical
connections?

t Which of the client-supplier relationships in the analysis/design model
correspond to physical connections?

♦ Describe the logical connectivity  (subsystem associations)
w Identify associations that do not directly map into physical

connections:
t How should these associations be implemented?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      11

Typical Informal Example of a Connectivity Drawing
Application 

Client
Application 

Client
Application 

Client

Communication
Agent for  

Application Clients

Communication
Agent for  

Application Clients

Communication
Agent for Data 

Server

Communication
Agent for Data 

Server

Local Data
Server

Global Data
Server

Global 
Data 

Server

Global 
Data 

Server

OODBMS

RDBMS

Backbone Network

LAN

LAN

LAN

TCP/IP Ethernet

Physical 
Connectivity

Logical 
Connectivity



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      12

Logical vs Physical Connectivity and the relationship
to Subsystem Layering

Application LayerApplication Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Bidirectional associa-
tions for each layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Processor 1 Processor 2

Logical
Connectivity
Layers

Physical
Connectivity



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      13

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Hardware

Bidirectional associa-
tions for each layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Hardware

Application Layer

Layer 1

Layer 2

Layer 3

Layer 4

Subsystem 1

Processor 1 Processor 2

Layer 1

Layer 2

Layer 3

Subsystem 2



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      14

Hardware/Software Mapping Questions

♦ What is the connectivity among physical units?
w Tree, star, matrix, ring

♦ What is the appropriate communication protocol between the
subsystems?
w Function of required bandwidth, latency and desired reliability,

desired quality of service (QOS)

♦ Is certain functionality already available in hardware?

♦ Do certain tasks require specific locations to control the
hardware or to permit concurrent operation?
w Often true for embedded systems

♦ General system performance question:
w What is the desired response time?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      15

Connectivity in Distributed Systems

♦ If the architecture is distributed, we need to describe the network
architecture (communication subsystem) as well.

♦ Questions to ask
w What are the transmission media? (Ethernet, Wireless)

w What is the Quality of Service (QOS)? What kind of communication
protocols can be used?

w Should the interaction asynchronous, synchronous or blocking?
w What are the available bandwidth requirements between the

subsystems?
t Stock Price Change  -> Broker

t Icy Road Detector  ->  ABS System



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      16

Drawing Hardware/Software Mappings in UML

♦ System design must model static and dynamic structures:
w Component Diagrams for static structures

t show the structure at design time or compilation time

w Deployment Diagram for dynamic structures
t show the structure of the run-time system

♦ Note the lifetime of components
w Some exist only at design time
w Others exist only until  compile time

w Some exist at link or runtime



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      17

Component Diagram

♦ Component Diagram
w A graph of components connected by dependency relationships.
w Shows the dependencies among software components

t source code, linkable libraries, executables

♦ Dependencies are shown as dashed arrows from the client
component to the supplier component.
w The kinds of dependencies are implementation language specific.

♦ A component diagram may also be used to show dependencies
on a façade:
w Use dashed arrow the corresponding UML interface.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      18

Component Diagram Example

UML Interface
UML Component

Scheduler

Planner

GUI

reservations

update



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      19

Deployment Diagram

♦ Deployment diagrams are useful for showing a system design
after the following decisions are made
w Subsystem decomposition

w Concurrency
w Hardware/Software Mapping

♦ A deployment diagram is a graph of nodes connected by
communication associations.
w Nodes are shown as 3-D boxes.

w Nodes may contain component instances.
w Components may contain objects (indicating that the object is part

of the component)



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      20

Deployment Diagram Example

Runtime
Dependency

Compile Time
Dependency

:Planner

:PC

:Scheduler

:HostMachine

<<database>>
meetingsDB



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      21

5. Data Management

♦ Some objects in the models need to be persistent
w Provide clean separation points between subsystems with well-

defined interfaces.

♦ A persistent object can be realized with one of the following
w Data structure

t If the data can be volatile

w Files
t Cheap, simple, permanent storage

t Low level (Read, Write)

t Applications must add code to provide suitable level of abstraction

w Database
t Powerful, easy to port

t Supports multiple writers and readers



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      22

File or Database?

♦ When should you  choose a file?
w Are the data voluminous (bit maps)?
w Do you have lots of raw data (core dump, event trace)?

w Do you need to keep the data only for a short time?
w Is the information density low (archival files,history logs)?

♦ When should you choose a database?
w Do the data require access at fine levels of details by multiple users?
w Must the data be ported across multiple platforms (heterogeneous

systems)?
w Do multiple application programs access the data?

w Does the data management require a lot of infrastructure?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      23

Database Management System

♦ Contains mechanisms for describing data, managing persistent
storage and for providing a backup mechanism

♦ Provides concurrent access to the stored data

♦ Contains information about the data (“meta-data”), also called
data schema.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      24

Issues To Consider When Selecting a Database

♦ Storage space
w Database require about triple the storage space of actual data

♦ Response time
w Mode databases are I/O or communication bound (distributed

databases). Response time is also affected by CPU time, locking
contention and delays from frequent screen displays

♦ Locking modes
w Pessimistic locking: Lock before accessing object and release when

object access is complete

w Optimistic locking: Reads and writes may freely occur (high
concurrency!) When activity has been completed, database checks if
contention has occurred. If yes, all work has been lost.

♦ Administration
w Large databases require specially trained support staff to set up

security policies, manage the disk space, prepare backups, monitor
performance, adjust tuning.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      25

Object-Oriented Databases

♦ Support all fundamental object modeling concepts
w Classes, Attributes, Methods, Associations, Inheritance

♦ Mapping an object model to an OO-database
w Determine which objects are persistent.

w Perform normal requirement analysis and object design
w Create single attribute indices to reduce performance bottlenecks

w Do the mapping (specific to commercially available product).
Example:
t In ObjectStore, implement classes and associations by preparing C++

declarations for each class and each association in the object model



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      26

Relational Databases

♦ Based on relational algebra

♦ Data is presented as 2-dimensional tables. Tables have a
specific number of columns and and arbitrary numbers of rows
w Primary key: Combination of attributes that uniquely identify a row

in a table. Each table should have only one primary key
w Foreign key: Reference to a primary key in another table

♦ SQL is the standard language defining and manipulating tables.

♦ Leading commercial databases support constraints.
w Referential integrity, for example,  means that references to entries

in other tables actually exist.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      27

Mapping an object model to a relational database

♦ UML object models can be mapped to relational databases:
w Some degradation occurs because all UML constructs must be

mapped to a single relational database construct - the table.

♦ UML mappings
w Each class is mapped to a table
w Each class attribute is mapped onto a column in the table

w An instance of a class represents a row in the table
w A many-to-many association is mapped into its own table

w A one-to-many association is implemented as buried foreign key

♦ Methods are not mapped



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      28

Turning Object Models into Tables I

City

cityName

Airport
airportCode
airportName

* *Serves

cityName
Houston
Albany
Munich

Hamburg

City Table

cityName
Houston
Houston
Albany
Munich

Hamburg

Serves Table

airportCode
IAH
HOU
ALB
MUC
HAM

Airport Table

airportCode
IAH
HOU
ALB
MUC
HAM

airportName
Intercontinental

Hobby
Albany County
Munich Airport

Hamburg Airport

Primary Key

Many-to-Many Associations: Separate Table for Association

Separate 
Table



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      29

Turning Object Models into Tables II

Transaction

transactionID

Portfolio

portfolioID
...

*

portfolioID    ...

Portfolio Table

transactionID

Transaction Table

portfolioID

Foreign Key

1-To-Many or Many-to-1 Associations: Buried Foreign Keys



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      30

Data Management Questions

♦ Should the data be distributed?

♦ Should the database be extensible?

♦ How often is the database accessed?

♦ What is the expected request (query) rate? In the worst  case?

♦ What is the size of typical and worst case requests?

♦ Do the data need to be archived?

♦ Does the system design try to hide the location of the databases
(location transparency)?

♦ Is there a  need for a single interface to access the data?

♦ What is the query format?

♦ Should the database be relational or object-oriented?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      31

6. Global Resource Handling/1/10/02

♦ Discusses access control

♦ Describes access rights for different classes of actors

♦ Describes how object guard against unauthorized access



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      32

Defining Access Control

♦ In multi-user systems different actors have access to different
functionality and data.
w During analysis we model these different accesses  by associating

different use cases with different actors.

w During system design we model these different accesses by examing the
object model by determining which objects are shared among actors.
t Depending on the security requirements of the system, we also define how

actors are authenticated to the system and how selected data in the system
should be encrypted.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      33

Access Matrix

♦ We model access on classes with an access matrix.
w The rows of the matrix represents the actors of the system
w The column represent classes whose access we want to control.

♦ Access Right: An entry in the access matrix. It lists the
operations that can be executed on instances of the class by the
actor.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      34

Access Matrix Implementations

♦ Global access table: Represents explicitly every cell in the
matrix as a (actor,class, operation) tuple.
w Determining if an actor has access to a specific object requires looking

up the corresponding tuple. If no such tuple is found, access is denied.

♦ Access control list associates a list of (actor,operation) pairs
with each class to be accessed.
w Every time an object is accessed, its access list is checked for the

corresponding actor and operation.

w Example: guest list for a party.

♦ A capability associates a (class,operation) pair with an actor.
w  A capability provides an actor to gain control access to an object of the

class described in the capability.

w Example: An invitation card for a party.

♦ Which is the right implementation?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      35

Global Resource Questions

♦ Does the system need authentication?

♦ If yes, what is the authentication scheme?
w User name and password? Access control list
w Tickets? Capability-based

♦ What is the user interface for authentication?

♦ Does the system need a network-wide name server?

♦ How is a service known to the rest of the system?
w At runtime? At compile time?
w By Port?

w By Name?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      36

7. Decide on Software Control

Choose implicit  control (non-procedural, declarative languages)
w Rule-based systems
w Logic programming

Choose explicit control (procedural languages): Centralized or
decentralized

Centralized control: Procedure-driven or event-driven

♦ Procedure-driven control
w Control resides within program code. Example: Main program

calling procedures of subsystems.
w Simple, easy to build, hard to maintain (high recompilation costs)

♦ Event-driven control
w Control resides within a dispatcher calling functions via callbacks.
w Very flexible, good for the design of graphical user interfaces, easy

to extend



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      37

Event-Driven Control Example: MVC

♦ Model-View-Controller Paradigm (Adele Goldberg, Smalltalk
80)

:Control

:Model
:View

:View

:View
Model has changed

Update Update

Update



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      38

Software Control (continued)

♦ Decentralized control
w Control resides in several independent objects.
w Possible speedup by mapping the objects on different processors,

increased communication overhead.
w Example: Message based system.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      39

Centralized vs. Decentralized Designs

♦ Should you  use a centralized or decentralized design?
w Take the sequence diagrams and control objects from the analysis

model

w Check the participation of the control objects in the sequence
diagrams
t If sequence diagram looks more like a fork: Centralized design

t The sequence diagram looks more like a stair:  Decentralized design

♦ Centralized Design
w One control object or subsystem ("spider") controls everything

t Pro: Change in the control structure is very easy

t Con: The single conctrol ojbect is a possible performance bottleneck

♦ Decentralized Design
w Not a single object is in control, control is distributed, That means,

there is more than one control object
t Con: The responsibility is spread out

t Pro: Fits nicely into object-oriented development



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      40

8. Boundary Conditions

♦ Most of the system design effort is concerned with steady-state
behavior.

♦ However, the system design phase must also address the
initiation and finalization of the system. This is addressed by a
set of new uses cases called administration use cases
w Initialization

t Describes how the system is brought from an non initialized state to
steady-state ("startup use cases”).

w Termination
t Describes what resources are cleaned up and which systems are

notified upon termination ("termination use cases").

w Failure
t Many possible causes: Bugs, errors, external problems (power supply).

t Good system design foresees fatal failures (“failure use cases”).



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      41

Example: Administrative Use cases for MyTrip

♦ Administration use cases for MyTrip (UML use case diagram).

♦ An additional subsystems that was found during system design
is the server. For this new subsystem we need to define use
cases.

♦ ManageServer includes all the functions necessary to start
up and shutdown the server.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      42

ManageServer Use Case

PlanningService

ManageServer

Administrator

StartServer

ShutdownServer

ConfigureServer

<<include>>

<<include>>

<<include>>



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      43

Boundary Condition Questions

♦ 8.1 Initialization
w How does the system start up?

t What data need to be accessed at startup time?

t What services have to registered?
w What does the user interface do at start up time?

t How does it present itself to the user?

♦ 8.2 Termination
w Are single subsystems allowed to terminate?

w Are other subsystems notified if a single subsystem terminates?
w How are local updates communicated to the database?

♦ 8.3 Failure
w How does the system behave when a node or communication link fails?

Are there backup communication links?

w How does the system recover from failure? Is this different from
initialization?



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      44

Modeling Boundary Conditions

♦ Boundary conditions are best modeled as use cases with actors
and objects.

♦ Actor: often the system administrator

♦ Interesting use cases:
w Start up of a subsystem

w Start up of the full system
w Termination of a subsystem

w Error in a subystem or component, failure of a subsystem or
component

♦ Task:
w Model the startup of the ARENA system as a set of use cases.



Bernd Bruegge & Allen Dutoit        Object-Oriented Software Engineering: Conquering Complex and Changing Systems      45

Summary

In this lecture, we reviewed the activities of system design :

♦ Concurrency identification

♦ Hardware/Software mapping

♦ Persistent data management

♦ Global resource handling

♦ Software control selection

♦ Boundary conditions

Each of these activities revises the subsystem decomposition to
address a specific issue. Once these activities are completed,
the interface of the subsystems can be defined.


