
C
on

qu
er

in
g

C
om

pl
ex

 a
nd

 C
ha

ng
in

g
Sy

st
em

s
O

bj
ec

t-
O

ri
en

te
d

So
ft

w
ar

e
E

ng
in

ee
ri

ng
Chapter 9,
Testing

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 2

Odds and Ends:
Abstract Factory & Builder Patterns revisited

♦ Abstract Factory and Builder are creational patterns that enable
a client to build complex objects.

♦ Abstract Factory:
w Provides a single interface to create families of dependent products

w Example: Graphical objects that are represented on different
windowing platforms transparently

♦ Builder:
w Separates the construction process of a complex object from its

representation

w Example: Conversion of RTF to a variety of formats.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 3

Abstract FactoryAbstractFactory

AbstractWindow

createWindow()
createButton()

MotifWindow MacWindow

MacFactory

createWindow()
createButton()

MotifFactory

createWindow()
createButton()

AbstractButton

MotifButton MacButton

Client

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 4

Builder example: convert from RTF to external formats

Parse()

RTFReader

While (t = GetNextToken()) {
Switch t.Type {
 CHAR: builder->ConvertCharacter(t.Char)
 FONT: bulder->ConvertFont(t.Font)
 PARA: builder->ConvertParagraph
 }
}

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

 TextConverter

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

AsciiConverter

AsciiText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

TexConverter

TeXText

ConvertCharacter()
ConvertFontChange
ConvertParagraph()

GetASCIIText()

HTMLConverter

HTMLText

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 5

Builder Creation Sequence

♦ The client creates a directory and configures it for a specific
builder:

director = new Directory(new HTMLBuilder());

director->construct()

♦ The directory invokes the builder to create the parts
while (t = GetNextToken()) {

 switch t.Type {

 CHAR: builder->ConvertCharacter(t.char)

 FONT: bulder->ConvertFont(t.font)

 PARA: builder->ConvertParagraph(t.para)

 }

}

♦ The client requests the result
w htmlResult = director-> getResult();

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 6

Abstract Factor vs. Builder

♦ Abstract Factory
w Shields the client from the representation
w Returns individual products immediately

♦ Builder
w Separates the creation process from the representation
w The client is exposed to the representation

w Incrementally builds the product and returns the aggregate product
when requested by the client

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 7

Outline

♦ Terminology

♦ Types of errors

♦ Dealing with errors

♦ Quality assurance vs Testing

♦ Component Testing
w Unit testing
w Integration testing

♦ Testing Strategy

♦ Design Patterns & Testing

♦ System testing
w Function testing
w Structure Testing

w Performance testing
w Acceptance testing

w Installation testing

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 8

Terminology

♦ Reliability: The measure of success with which the observed
behavior of a system confirms to some specification of its
behavior.

♦ Failure: Any deviation of the observed behavior from the
specified behavior.

♦ Error: The system is in a state such that further processing by
the system will lead to a failure.

♦ Fault (Bug): The mechanical or algorithmic cause of an error.

There are many different types of errors and different ways how
we can deal with them.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 9

What is this?

A failure?

An error?

A fault?

Need to specify
the desired behavior first!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 10

Erroneous State (“Error”)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 11

Algorithmic Fault

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 12

Mechanical Fault

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 13

How do we deal with Errors and Faults?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 14

Verification?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 15

Modular Redundancy?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 16

Declaring the Bug
as a Feature?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 17

Patching?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 18

Testing?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 19

Examples of Faults and Errors

♦ Faults in the Interface
specification
w Mismatch between what the

client needs and what the
server offers

w Mismatch between
requirements and
implementation

♦ Algorithmic Faults
w Missing initialization

w Branching errors (too soon,
too late)

w Missing test for nil

♦ Faults in the Interface
specification
w Mismatch between what the

client needs and what the
server offers

w Mismatch between
requirements and
implementation

♦ Algorithmic Faults
w Missing initialization

w Branching errors (too soon,
too late)

w Missing test for nil

♦ Mechanical Faults (very
hard to find)
w Documentation does not

match actual conditions or
operating procedures

♦ Errors
w Stress or overload errors
w Capacity or boundary errors

w Timing errors
w Throughput or performance

errors

♦ Mechanical Faults (very
hard to find)
w Documentation does not

match actual conditions or
operating procedures

♦ Errors
w Stress or overload errors
w Capacity or boundary errors

w Timing errors
w Throughput or performance

errors

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 20

Dealing with Errors

♦ Verification:
w Assumes hypothetical environment that does not match real

environment

w Proof might be buggy (omits important constraints; simply wrong)

♦ Modular redundancy:
w Expensive

♦ Declaring a bug to be a “feature”
w Bad practice

♦ Patching
w Slows down performance

♦ Testing (this lecture)
w Testing is never good enough

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 21

Another View on How to Deal with Errors

♦ Error prevention (before the system is released):
w Use good programming methodology to reduce complexity
w Use version control to prevent inconsistent system

w Apply verification to prevent algorithmic bugs

♦ Error detection (while system is running):
w Testing: Create failures in a planned way

w Debugging: Start with an unplanned failures
w Monitoring: Deliver information about state. Find performance bugs

♦ Error recovery (recover from failure once the system is released):
w Data base systems (atomic transactions)
w Modular redundancy

w Recovery blocks

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 22

Some Observations

♦ It is impossible to completely test any nontrivial module or any
system
w Theoretical limitations: Halting problem

w Practial limitations: Prohibitive in time and cost

♦ Testing can only show the presence of bugs, not their absence
(Dijkstra)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 23

Testing takes creativity

♦ Testing often viewed as dirty work.

♦ To develop an effective test, one must have:
t Detailed understanding of the system

t Knowledge of the testing techniques

t Skill to apply these techniques in an effective and efficient manner

♦ Testing is done best by independent testers
w We often develop a certain mental attitude that the program should

in a certain way when in fact it does not.

♦ Programmer often stick to the data set that makes the program
work
w "Don’t mess up my code!"

♦ A program often does not work when tried by somebody else.
w Don't let this be the end-user.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

Testing Activities

Tested
Subsystem

Subsystem
Code

FunctionalIntegration

Unit

Tested
Subsystem

Requirements
Analysis

Document

System
Design

Document

Tested Subsystem

Test Test

Test

Unit
Test

Unit
Test

User
Manual

Requirements
Analysis

Document

Subsystem
Code

Subsystem
Code

All tests by developerAll tests by developer

Functioning
System

Integrated
Subsystems

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

Global
Requirements

Testing Activities continued

User’s understanding
Tests by developerTests by developer

Performance Acceptance

Client’s
Understanding

of Requirements

Test

Functioning
System

Test
Installation

User
Environment

Test

System in
Use

Usable
System

Validated
System

Accepted
System

Tests (?) by userTests (?) by user

Tests by clientTests by client

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Fault Handling Techniques

Testing

Fault Handling

Fault Avoidance
Fault Tolerance

Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification
Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

Reviews
Design

Methodology

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Quality Assurance encompasses Testing

Usability Testing

Quality Assurance

Testing

Prototype
Testing

Scenario
Testing

Product
Testing

Fault Avoidance Fault Tolerance

Fault Detection

Debugging

Unit
Testing

Integration
Testing

System
Testing

Verification
Configuration
Management

Atomic
Transactions

Modular
Redundancy

Correctness
Debugging

Performance
Debugging

Reviews

Walkthrough Inspection

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Types of Testing

♦ Unit Testing:
w Individual subsystem
wCarried out by developers
wGoal: Confirm that subsystems is correctly coded and

carries out the intended functionality

♦ Integration Testing:
wGroups of subsystems (collection of classes) and

eventually the entire system
wCarried out by developers
wGoal: Test the interface among the subsystem

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

System Testing

♦ System Testing:
w The entire system
w Carried out by developers

w Goal: Determine if the system meets the requirements (functional
and global)

♦ Acceptance Testing:
w Evaluates the system delivered by developers
w Carried out by the client. May involve executing typical

transactions on site on a trial basis
w Goal: Demonstrate that the system meets customer requirements

and is ready to use

♦ Implementation (Coding) and testing go hand in hand

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Unit Testing

♦ Informal:
w Incremental coding

♦ Static Analysis:
w Hand execution: Reading the source code

w Walk-Through (informal presentation to others)
w Code Inspection (formal presentation to others)

w Automated Tools checking for
t syntactic and semantic errors

t departure from coding standards

♦ Dynamic Analysis:
w Black-box testing (Test the input/output behavior)

w White-box testing (Test the internal logic of the subsystem or
object)

w Data-structure based testing (Data types determine test cases)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

 Black-box Testing

♦ Focus: I/O behavior. If for any given input, we can predict the
output, then the module passes the test.
w Almost always impossible to generate all possible inputs ("test

cases")

♦ Goal: Reduce number of test cases by equivalence partitioning:
w Divide input conditions into equivalence classes

w Choose test cases for each equivalence class. (Example: If an object
is supposed to accept a negative number, testing one negative
number is enough)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Black-box Testing (Continued)

♦ Selection of equivalence classes (No rules, only guidelines):
w Input is valid across range of values. Select test cases from 3

equivalence classes:
t Below the range

t Within the range

t Above the range

w Input is valid if it is from a discrete set. Select test cases from 2
equivalence classes:
t Valid discrete value

t Invalid discrete value

♦ Another solution to select only a limited amount of test cases:
w Get knowledge about the inner workings of the unit being tested =>

white-box testing

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

White-box Testing

♦ Focus: Thoroughness (Coverage). Every statement in the
component is executed at least once.

♦ Four types of white-box testing
w Statement Testing

w Loop Testing
w Path Testing

w Branch Testing

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

if (i = TRUE) printf("YES\n"); else printf("NO\n");
Test cases: 1) i = TRUE; 2) i = FALSE

White-box Testing (Continued)

♦ Statement Testing (Algebraic Testing): Test single statements
(Choice of operators in polynomials, etc)

♦ Loop Testing:
w Cause execution of the loop to be skipped completely. (Exception:

Repeat loops)
w Loop to be executed exactly once

w Loop to be executed more than once

♦ Path testing:
w Make sure all paths in the program are executed

♦ Branch Testing (Conditional Testing): Make sure that each
possible outcome from a condition is tested at least once

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

/*Read in and sum the scores*/

White-box Testing Example

FindMean(float Mean, FILE ScoreFile)

{ SumOfScores = 0.0; NumberOfScores = 0; Mean = 0;
 Read(ScoreFile, Score);

 while (! EOF(ScoreFile) {
 if (Score > 0.0) {

 SumOfScores = SumOfScores + Score;
 NumberOfScores++;
 }

 Read(ScoreFile, Score);
 }

 /* Compute the mean and print the result */
 if (NumberOfScores > 0) {

 Mean = SumOfScores/NumberOfScores;
printf("The mean score is %f \n", Mean);

 } else
printf("No scores found in file\n");

}

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

White-box Testing Example: Determining the Paths
FindMean (FILE ScoreFile)
{ float SumOfScores = 0.0;

int NumberOfScores = 0;
float Mean=0.0; float Score;
Read(ScoreFile, Score);
while (! EOF(ScoreFile) {

if (Score > 0.0) {
SumOfScores = SumOfScores + Score;
NumberOfScores++;
}

Read(ScoreFile, Score);
}
/* Compute the mean and print the result */
if (NumberOfScores > 0) {

Mean = SumOfScores / NumberOfScores;
printf(“ The mean score is %f\n”, Mean);

} else
printf (“No scores found in file\n”);

}

1

2
3

4

5

7

6

8

9

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Constructing the Logic Flow Diagram

Start

2

3

4 5

6

7

8 9

 Exit

1

F

T F

T F

T

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Finding the Test Cases

Start

2

3

4 5

6

7

8 9

 Exit

1

b

d e

gf

i j

h
c

k l

a (Covered by any data)

(Data set must

(Data set must contain at least one value)

 be empty)

(Total score > 0.0)(Total score < 0.0)

(Positive score) (Negative score)

(Reached if either f or
 e is reached)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Test Cases

♦ Test case 1 : ? (To execute loop exactly once)

♦ Test case 2 : ? (To skip loop body)

♦ Test case 3: ?,? (to execute loop more than once)

 These 3 test cases cover all control flow paths

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

Comparison of White & Black-box Testing 25.1.2002

♦ White-box Testing:
w Potentially infinite number of

paths have to be tested

w White-box testing often tests
what is done, instead of what
should be done

w Cannot detect missing use cases

♦ Black-box Testing:
w Potential combinatorical

explosion of test cases (valid &
invalid data)

w Often not clear whether the
selected test cases uncover a
particular error

w Does not discover extraneous
use cases ("features")

♦ Both types of testing are needed

♦ White-box testing and black box
testing are the extreme ends of a
testing continuum.

♦ Any choice of test case lies in
between and depends on the
following:
w Number of possible logical paths

w Nature of input data

w Amount of computation

w Complexity of algorithms and
data structures

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 41

The 4 Testing Steps

1. Select what has to be
measured
w Analysis: Completeness of

requirements
w Design: tested for cohesion

w Implementation: Code tests

2. Decide how the testing is
done
w Code inspection
w Proofs (Design by Contract)

w Black-box, white box,
w Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

1. Select what has to be
measured
w Analysis: Completeness of

requirements
w Design: tested for cohesion

w Implementation: Code tests

2. Decide how the testing is
done
w Code inspection
w Proofs (Design by Contract)

w Black-box, white box,
w Select integration testing

strategy (big bang, bottom
up, top down, sandwich)

3. Develop test cases
w A test case is a set of test

data or situations that will
be used to exercise the unit
(code, module, system) being
tested or about the attribute
being measured

4. Create the test oracle
w An oracle contains of the

predicted results for a set of
test cases
w The test oracle has to be

written down before the
actual testing takes place

3. Develop test cases
w A test case is a set of test

data or situations that will
be used to exercise the unit
(code, module, system) being
tested or about the attribute
being measured

4. Create the test oracle
w An oracle contains of the

predicted results for a set of
test cases
w The test oracle has to be

written down before the
actual testing takes place

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 42

Guidance for Test Case Selection

♦ Use analysis knowledge
about functional
requirements (black-box
testing):
w Use cases

w Expected input data
w Invalid input data

♦ Use design knowledge about
system structure, algorithms,
data structures (white-box
testing):
w Control structures

t Test branches, loops, ...

w Data structures
t Test records fields, arrays,

...

♦ Use analysis knowledge
about functional
requirements (black-box
testing):
w Use cases

w Expected input data
w Invalid input data

♦ Use design knowledge about
system structure, algorithms,
data structures (white-box
testing):
w Control structures

t Test branches, loops, ...

w Data structures
t Test records fields, arrays,

...

♦ Use implementation
knowledge about algorithms:
w Examples:

w Force division by zero
w Use sequence of test cases for

interrupt handler

♦ Use implementation
knowledge about algorithms:
w Examples:

w Force division by zero
w Use sequence of test cases for

interrupt handler

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 43

Unit-testing Heuristics

1. Create unit tests as soon as object
design is completed:

w Black-box test: Test the use
cases & functional model
w White-box test: Test the

dynamic model
w Data-structure test: Test the

object model
2. Develop the test cases

w Goal: Find the minimal
number of test cases to cover
as many paths as possible

3. Cross-check the test cases to
eliminate duplicates

w Don't waste your time!

1. Create unit tests as soon as object
design is completed:

w Black-box test: Test the use
cases & functional model
w White-box test: Test the

dynamic model
w Data-structure test: Test the

object model
2. Develop the test cases

w Goal: Find the minimal
number of test cases to cover
as many paths as possible

3. Cross-check the test cases to
eliminate duplicates

w Don't waste your time!

4. Desk check your source code

w Reduces testing time
5. Create a test harness

w Test drivers and test stubs are
needed for integration testing

6. Describe the test oracle

w Often the result of the first
successfully executed test

7. Execute the test cases

w Don’t forget regression testing
w Re-execute test cases every time

a change is made.
8. Compare the results of the test with the

test oracle

w Automate as much as possible

4. Desk check your source code

w Reduces testing time
5. Create a test harness

w Test drivers and test stubs are
needed for integration testing

6. Describe the test oracle

w Often the result of the first
successfully executed test

7. Execute the test cases

w Don’t forget regression testing
w Re-execute test cases every time

a change is made.
8. Compare the results of the test with the

test oracle

w Automate as much as possible

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 44

Integration Testing Strategy

♦ The entire system is viewed as a collection of subsystems (sets
of classes) determined during the system and object design.

♦ The order in which the subsystems are selected for testing and
integration determines the testing strategy

wBig bang integration (Nonincremental)
wBottom up integration
wTop down integration
w Sandwich testing
wVariations of the above

♦ For the selection use the system decomposition from the
System Design

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 45

Using the Bridge Pattern to enable early Integration
Testing

♦ Use the bridge pattern to provide multiple implementations
under the same interface.

♦ Interface to a component that is incomplete, not yet known or
unavailable during testing

VIP Seat Interface
(in Vehicle Subsystem)

Seat Implementation

Stub Code Real Seat
Simulated

Seat (SA/RT)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 46

Example: Three Layer Call Hierarchy

A

B C D

GFE

Layer I

Layer II

Layer III

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 47

Integration Testing: Big-Bang Approach

Unit Test
F

Unit Test
E

Unit Test
D

Unit Test
C

Unit Test
B

Unit Test
A

System Test

Don’t try this!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 48

Bottom-up Testing Strategy

♦ The subsystem in the lowest layer of the call hierarchy are
tested individually

♦ Then the next subsystems are tested that call the previously
tested subsystems

♦ This is done repeatedly until all subsystems are included in the
testing

♦ Special program needed to do the testing, Test Driver:
w A routine that calls a subsystem and passes a test case to it

SeatDriver
(simulates VIP)

Seat Interface
(in Vehicle Subsystem)

Seat Implementation

Stub Code Real Seat
Simulated

Seat (SA/RT)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 49

Bottom-up Integration A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test G

Test C

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 50

Pros and Cons of bottom up integration testing

♦ Bad for functionally decomposed systems:

wTests the most important subsystem (UI) last
♦ Useful for integrating the following systems

wObject-oriented systems
w real-time systems
w systems with strict performance requirements

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 51

Top-down Testing Strategy

♦ Test the top layer or the controlling subsystem first

♦ Then combine all the subsystems that are called by the tested
subsystems and test the resulting collection of subsystems

♦ Do this until all subsystems are incorporated into the test

♦ Special program is needed to do the testing, Test stub :
w A program or a method that simulates the activity of a missing

subsystem by answering to the calling sequence of the calling
subsystem and returning back fake data.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 52

Top-down Integration Testing
A

B C D

GFE

Layer I

Layer II

Layer III

Test A

Layer I

Test A, B, C, D

Layer I + II

Test
A, B, C, D,

E, F, G

All Layers

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 53

Pros and Cons of top-down integration testing

♦ Test cases can be defined in terms of the functionality of the
system (functional requirements)

♦ Writing stubs can be difficult: Stubs must allow all possible
conditions to be tested.

♦ Possibly a very large number of stubs may be required,
especially if the lowest level of the system contains many
methods.

♦ One solution to avoid too many stubs: Modified top-down
testing strategy

wTest each layer of the system decomposition individually
before merging the layers
wDisadvantage of modified top-down testing: Both, stubs

and drivers are needed

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 54

Sandwich Testing Strategy

♦ Combines top-down strategy with bottom-up strategy

♦ The system is view as having three layers

wA target layer in the middle
wA layer above the target
wA layer below the target
wTesting converges at the target layer

♦ How do you select the target layer if there are more than 3
layers?

wHeuristic: Try to minimize the number of stubs and
drivers

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 55

Sandwich Testing Strategy A

B C D

GFE

Layer I

Layer II

Layer IIITest E

Test D,G

Test B, E, F

Test
A, B, C, D,

E, F, G

Test F

Test G

Test A

Bottom
Layer
Tests

Top
Layer
Tests

Test A,B,C, D

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 56

Pros and Cons of Sandwich Testing

♦ Top and Bottom Layer Tests can be done in parallel

♦ Does not test the individual subsystems thoroughly before
integration

♦ Solution: Modified sandwich testing strategy

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 57

Modified Sandwich Testing Strategy

♦ Test in parallel:

wMiddle layer with drivers and stubs
wTop layer with stubs
wBottom layer with drivers

♦ Test in parallel:

wTop layer accessing middle layer (top layer replaces
drivers)
wBottom accessed by middle layer (bottom layer replaces

stubs)

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 58

Modified Sandwich Testing Strategy

A

B C D

GFE

Layer I

Layer II

Layer III

Test F

Test E

Test B

Test G

Test D

Test A

Test C

Test B, E, F

Triple
Test I

Triple
Test ITriple

Test I

Triple
Test I

Test D,G

Double
Test II

Double
Test II

Double
Test II

Double
Test II

Double
Test I

Double
Test I

Double
Test I

Double
Test I

Test A,C

Test
A, B, C, D,

E, F, G

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 59

Scheduling Sandwich Tests: Example of a
Dependency Chart

Unit Tests Double Tests Triple Tests SystemTests

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 60

Steps in Integration-Testing

.

1. Based on the integration strategy,
select a component to be tested.
Unit test all the classes in the
component.

2. Put selected component together;
do any preliminary fix-up
necessary to make the integration
test operational (drivers, stubs)

3. Do functional testing: Define test
cases that exercise all uses cases
with the selected component

1. Based on the integration strategy,
select a component to be tested.
Unit test all the classes in the
component.

2. Put selected component together;
do any preliminary fix-up
necessary to make the integration
test operational (drivers, stubs)

3. Do functional testing: Define test
cases that exercise all uses cases
with the selected component

4. Do structural testing: Define test
cases that exercise the selected
component

5. Execute performance tests

6. Keep records of the test cases and
testing activities.

7. Repeat steps 1 to 7 until the full
system is tested.

The primary goal of integration
testing is to identify errors in the
(current) component
configuration.

4. Do structural testing: Define test
cases that exercise the selected
component

5. Execute performance tests

6. Keep records of the test cases and
testing activities.

7. Repeat steps 1 to 7 until the full
system is tested.

The primary goal of integration
testing is to identify errors in the
(current) component
configuration.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 61

Which Integration Strategy should you use?

♦ Factors to consider

w Amount of test harness
(stubs &drivers)

w Location of critical parts in
the system

w Availability of hardware
w Availability of components

w Scheduling concerns
♦ Bottom up approach

w good for object oriented
design methodologies

w Test driver interfaces must
match component interfaces

w ...

♦ Factors to consider

w Amount of test harness
(stubs &drivers)

w Location of critical parts in
the system

w Availability of hardware
w Availability of components

w Scheduling concerns
♦ Bottom up approach

w good for object oriented
design methodologies

w Test driver interfaces must
match component interfaces

w ...

w ...Top-level components are
usually important and
cannot be neglected up to the
end of testing
w Detection of design errors

postponed until end of
testing

♦ Top down approach

w Test cases can be defined in
terms of functions examined
w Need to maintain correctness

of test stubs
w Writing stubs can be

difficult

w ...Top-level components are
usually important and
cannot be neglected up to the
end of testing
w Detection of design errors

postponed until end of
testing

♦ Top down approach

w Test cases can be defined in
terms of functions examined
w Need to maintain correctness

of test stubs
w Writing stubs can be

difficult

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 62

System Testing

♦ Functional Testing

♦ Structure Testing

♦ Performance Testing

♦ Acceptance Testing

♦ Installation Testing

Impact of requirements on system testing:
w The more explicit the requirements, the easier they are to test.

w Quality of use cases determines the ease of functional testing
w Quality of subsystem decomposition determines the ease of

structure testing
w Quality of nonfunctional requirements and constraints determines

the ease of performance tests:

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 63

Structure Testing

♦ Essentially the same as white box testing.
♦ Goal: Cover all paths in the system design
w Exercise all input and output parameters of each component.

w Exercise all components and all calls (each component is called at
least once and every component is called by all possible callers.)

w Use conditional and iteration testing as in unit testing.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 64

Functional Testing

.

.

Essentially the same as black box testing
♦ Goal: Test functionality of system

♦ Test cases are designed from the requirements analysis
document (better: user manual) and centered around
requirements and key functions (use cases)

♦ The system is treated as black box.

♦ Unit test cases can be reused, but in end user oriented new test
cases have to be developed as well.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 65

Performance Testing

♦ Stress Testing
w Stress limits of system (maximum # of

users, peak demands, extended
operation)

♦ Volume testing
w Test what happens if large amounts of

data are handled

♦ Configuration testing
w Test the various software and

hardware configurations

♦ Compatibility test
w Test backward compatibility with

existing systems

♦ Security testing
w Try to violate security requirements

♦ Timing testing
w Evaluate response times and

time to perform a function

♦ Environmental test
w Test tolerances for heat,

humidity, motion, portability

♦ Quality testing
w Test reliability, maintain- ability

& availability of the system

♦ Recovery testing
w Tests system’s response to

presence of errors or loss of
data.

♦ Human factors testing
w Tests user interface with user

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 66

Test Cases for Performance Testing

♦ Push the (integrated) system to its limits.
♦ Goal: Try to break the subsystem
♦ Test how the system behaves when overloaded.
w Can bottlenecks be identified? (First candidates for redesign in the

next iteration

♦ Try unusual orders of execution
w Call a receive() before send()

♦ Check the system’s response to large volumes of data
w If the system is supposed to handle 1000 items, try it with 1001

items.

♦ What is the amount of time spent in different use cases?
w Are typical cases executed in a timely fashion?

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 67

Acceptance Testing

♦ Goal: Demonstrate system is
ready for operational use
w Choice of tests is made by

client/sponsor
w Many tests can be taken

from integration testing
w Acceptance test is performed

by the client, not by the
developer.

♦ Majority of all bugs in software is
typically found by the client after
the system is in use, not by the
developers or testers. Therefore
two kinds of additional tests:

♦ Goal: Demonstrate system is
ready for operational use
w Choice of tests is made by

client/sponsor
w Many tests can be taken

from integration testing
w Acceptance test is performed

by the client, not by the
developer.

♦ Majority of all bugs in software is
typically found by the client after
the system is in use, not by the
developers or testers. Therefore
two kinds of additional tests:

♦ Alpha test:
w Sponsor uses the software at

the developer’s site.

w Software used in a controlled
setting, with the developer
always ready to fix bugs.

♦ Beta test:
w Conducted at sponsor’s site

(developer is not present)
w Software gets a realistic

workout in target environ-
ment

w Potential customer might get
discouraged

♦ Alpha test:
w Sponsor uses the software at

the developer’s site.

w Software used in a controlled
setting, with the developer
always ready to fix bugs.

♦ Beta test:
w Conducted at sponsor’s site

(developer is not present)
w Software gets a realistic

workout in target environ-
ment

w Potential customer might get
discouraged

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 68

Testing has its own Life Cycle

Establish the test objectives

Design the test cases

Write the test cases

Test the test cases

Execute the tests

Evaluate the test results

Change the system

Do regression testing

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 69

Test Team

Test

Analyst

TeamUser

Programmer
too familiar
with code

Professional
Tester

Configuration
Management

Specialist

System
Designer

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 70

Summary

♦ Testing is still a black art, but many rules and heuristics are
available

♦ Testing consists of component-testing (unit testing, integration
testing) and system testing

♦ Design Patterns can be used for integration testing

♦ Testing has its own lifecycle

♦ Testing is still a black art, but many rules and heuristics are
available

♦ Testing consists of component-testing (unit testing, integration
testing) and system testing

♦ Design Patterns can be used for integration testing

♦ Testing has its own lifecycle

